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Abstract 

 
The extended plane wave expansion (EPWE) formulation is derived to obtain 

the complex band structure of flexural waves in viscoelastic thin phononic crystal 

plates considering the Kirchhoff-Love plate theory. The presented formulation 

yields the evanescent behavior of flexural waves in periodic thin plates consid- 

ering viscoelastic effects. The viscosity is modeled by the standard linear solid 

model (SLSM), typically used to closely model the behavior of polymers. It is 

observed that the viscoelasticity influences significantly both the propagating 

and evanescent Bloch modes. The highest unit cell wave attenuation of the 

viscoelastic phononic thin plate is found around a filling fraction of 0.37 for 

higher frequencies considering the least attenuated wave mode. This EPWE 

formulation broadens the suitable methods to handle evanescent flexural waves 

in 2-D thin periodic plate systems considering the effects of viscoelasticity on 

wave attenuation. 
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1. Introduction

Phononic structures (PnSs) are artificial composite materials composed of

unit cells arranged in a specific spatially periodic form [1–3]. By tailoring the 

material composition and/or the spatial arrangement of the unit cell, the PnSs 

exhibit unusual band structure characteristics, such as Bragg scattering band 

gap formation. They have been also applied to vibration reduction [4–6], wave 

manipulation [7], energy harvesting [8, 9], as mechanical wave filters [10], seismic 

wave shields [11], and acoustic barriers [12, 13], among others. 

The wave propagation characteristics of PnSs have been widely investigated 

for 1-D [14], 2-D [15–21], and 3-D [22, 23] cases. A fairly common type of inves- 

tigated 2-D PnS is the phononic crystal considering thin plate theories [15–21], 

since the plate structures are widely used in aeronautical, mechanical and civil 

engineering, aerospace, and manufacturing applications [24]. Even though the 

propagating behavior of flexural waves in 2-D phononic thin plates has already 

been reported [15–21] by using a ω(k) (where ω is the angular frequency and 

k is the Bloch wave vector) approach (i.e., considering propagating frequencies 

and neglecting the evanescent wave behavior), it should be highlighted that the 

flexural evanescent wave behavior (i.e., both the real and imaginary parts of 

the wave vector, respectively, �{k(ω)} and S'{k(ω)}) has not been reported 

yet for 2-D phononic thin plates. As a result, the unit cell wave attenuation 

(i.e., S'{k(ω)}a, where a is the lattice parameter), remains not investigated for 

flexural waves in 2-D phononic thin plates. This, in turn, is associated with the 

difficulty to formulate a k(ω) approach (i.e., considering any value of frequency 

and computing complex values for the wavevector k) to obtain the flexural 

evanescent modes. 

It is important to mention that in 2000s, some authors [25–28] reported very 

interesting results about flexural waves (i.e., propagating [25, 27] and evanes- 
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cent [26, 28] waves) in 2-D phononic thin plates. However, only ||k(ω)|| and 

�{ω(k)} were computed and the complex band structure, typically obtained in 

terms of both �{k(ω)} and S'{k(ω)} in the first Brillouin [29] zone (FBZ) for 2- 

D PnSs [30–33], was not reported. Poulton et al. [27] presented converged band 

structures (�{ω(k)}) for Bloch-Floquet bending waves in a phononic thin plate 

containing a square array of circular inclusions, using the multipole formulation 

and applied in the situation where the perforations are no longer considered to 

be small in comparison with the lattice pitch. Movchan and collaborators [28] 

presented an analytical approach to model the Bloch-Floquet waves (||k||) in 

structured Mindlin plates. They performed a comparative analysis of two sim- 

plified plate models, that is the classical Kirchhoff-Love theory and the Mindlin 

theory for dynamic response of periodic structure. 

In the context of wave propagation in PnSs, an important issue that is 

sometimes commonly neglected in the complex band structure calculations is 

the viscoelastic effect present in many components, such as polymers. More- 

over, the analysis of viscoelasticity and band structure of periodic structures 

has become an interesting topic for both the mathematical community [34–37] 

and engineering applications [33, 38]. The viscoelastic effect on the evanescent 

Bloch waves was firstly reported by [39, 40] for PnSs in a plane strain condition 

(i.e., with infinite thickness). To the best of our knowledge, the influence of 

viscoelasticity on the complex band structure of 2-D phononic thin plates, con- 

sidering the Kirchhoff-Love [41, 42] plate theory and only flexural waves, has 

not been studied. 

The extended plane wave expansion (EPWE) method is a semi-analytical 

k(ω) approach which has been extensively used to compute the complex band 

structure of 2-D acoustic metamaterials [14, 24, 43–45] and PnSs [30–32, 46] 

since this approach presents similar result as methods based on finite elements, 

but with a considerably lower computational cost [20]. The EPWE can obtain 

both propagating (purely real values of k) and evanescent (imaginary and/or 

complex conjugate values of k) wave modes. It should be highlighted that 

the wave modes computed by the EPWE are not restricted to the FBZ [30]. 
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However, Hsue et al. [47] proved that the evanescent modes obtained by the 

EPWE obey Floquet-Bloch’s theorem [48, 49]. One limitation of plane wave 

expansion (PWE) and EPWE methods is that both approaches can handle 

only infinite structures, i.e., only the band structure can be obtained. 

There are few previous studies that focused on phononic structures with 

viscoelastic components whose band structure was computed using the PWE 

[50, 51] and EPWE [37, 38, 40] approaches. Zhao and Wei [50, 51] com- 

puted the band structure (using the PWE) of 1-D and 2-D solid (infinite thick- 

ness) phononic crystals with viscoelasticity modelled by the standard linear 

solid model (SLSM). However, they did not obtain the evanescent waves, i.e., 

omitting the information of the unit cell wave attenuation. Moiseyenko and 

Laude [40] calculated the evanescent wave modes for 2-D solid (infinite thick- 

ness) phononic crystals with the simple Kelvin-Voigt model. Thus, the complex 

band structure cannot handle the viscosity in a more realistic way, since the 

Kelvin-Voigt model is limited. 

The main purpose of this study is to derive the EPWE formulation to com- 

pute the complex band structure of flexural waves propagating in a phononic 

thin plate using the Kirchhoff-Love theory [41, 42], with square inclusions dis- 

tributed in a square lattice and the presence of viscoelastic effects. Viscosity is 

modelled by the SLSM, which contains three elements, i.e., a Maxwell model (a 

spring and dashpot in series) and a spring in parallel [52]. 

The paper is organized as follows. Section 2 presents the new EPWE for- 

mulation for a phononic thin plate considering viscoelastic effects based on 

Kirchhoff-Love plate theory [41, 42]. In Section 3, a numerical example is carried 

out. Conclusions are presented in Section 4. 

 
2. Viscoelastic Phononic Thin Plate Modelling 

 
This section describes the EPWE formulation for a phononic Kirchhoff-Love 

[41, 42] thin plate considering viscoelastic effects. We consider wave propagation 

in the xy plane in a 2-D periodic isotropic medium. 
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The EPWE formulation is derived to investigate the evanescent flexural 

waves in phononic thin plates considering the SLSM. The SLSM contains three 

elements, i.e., a Maxwell model (a spring and dashpot in series) and a spring 

in parallel. The viscosity presents a more realistic behavior involving a single 

exponential term in both creep and relaxation [52]. Figure 1 (a) sketches the 

top view of the 2-D phononic thin plate containing square inclusions in a square 

lattice. The phononic thin plate is composed by hard elastic inclusions and a 

soft viscoelastic matrix. 

The SLSM [52] (Fig. 1 (b)) is used to consider the viscoelasticity of the 

material that forms the soft matrix, where G1 and G2 are the shear modulus 

(springs) and η is the viscosity (dashpot) [52]. It should be highlighted that the 

SLSM has two forms, i.e., the Maxwell and Kelvin forms. In this study, the 

Maxwell form is used, and the term SLSM means the Maxwell form of the SLSM 

[53]. In Fig. 1 (c), it is illustrated the first irreducible Brillouin [29] zone (FIBZ) 

for a square lattice (a), where k1, k2 ∈ R are the point coordinates within the 

FIBZ, φ¯ is the azimuth angle of k, and the FIBZ high-symmetry points are Γ 

(0, 0), X (π/a, 0), and M (π/a, π/a). 

 

2.1. Extended Plane Wave Expansion 

The governing equation for the flexural vibration of a uniform isotropic thin 

plate considering the Kirchhoff-Love model [41, 42] composed by material B (see 

Fig. 1 (a)) without viscoelastic components can be written in the spatiotemporal 

domain as: 

¨ ∂2 ∂2ŵ(r, t) 
 

 

 

∂2ŵ(r, t)
 

∂2 
 

 

 

∂2ŵ(r, t) 
 
 

 
 

 

∂2 
+ 

∂y2 

∂2ŵ(r, t) 
DB 

∂y2 
+ βB 

∂2ŵ(r, t) 
 

 

∂x2 

 

, (1) 

 

where αB = ρBh, ρB is the material specific mass density, h is the plate thick- 

ness, DB = EBh3/12(1 − ν2 ) is the plate flexural stiffness, EB is the mate- 

rial Young’s modulus, νB is the material Poisson’s ratio, βB = DBνB, γB = 

DB(1 − νB), ŵ (r ,  t) is the transverse displacement, t is the time, r = xe1 + ye2 

∂y2 ∂x∂y 
DB γB 



6  

 

 

 

    

 
    

    

 
 

𝐤 
 

𝜙̅  

 

 

 
 

𝑦 

 
 
 
 
 
 
 

 
⋯ 

 

𝐺2 

𝑥 

 
 
 
 
 

⋮ 
 

(a) 

 
 
 

𝑘2 

 

(b) 

 

 

 
 

 

X 
𝑘1 

 
 
 
 

(c) 
 

Figure 1: (a) Top view of the infinite 2-D viscoelastic PnS plate with square hard inclusions 

(A) in a soft matrix (B) with a square lattice, where a is the lattice parameter, (b) the SLSM 

(where η is the viscosity and G1,2 is the shear modulus), and (c) the first irreducible Brillouin 

zone (FIBZ) (where k1, k2 ∈ R are the point coordinates within the FIBZ, φ¯ is the azimuth 

angle of k, Γ (0, 0), X (π/a, 0), and M (π/a, π/a) are the high-symmetry points). 
 

(x, y ∈ R) is the two-dimensional spatial vector, and ei (i = 1, 2) are the basis 

vectors of the periodic lattice in the real space. To facilitate the mathematical 

notation, hereafter the indexes A and B are related to elastic hard inclusions 

and viscoelastic soft matrix of the viscoelastic phononic thin plate (Fig. 1 (a)), 

𝐺1 
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respectively. 

Equation (1) can also be rewritten for a uniform viscoelastic isotropic Kirchhoff- 

Love thin plate [41, 42] (composed by material B, see Fig. 1 (a)), however, it 

should be revisited that the constitutive equations, in the spatiotemporal do- 

main, for a linearly viscoelastic material are given by [54, 55]: 

 

σ̂ij(t) = 

t 

c îjklB (t − τ ) 
−∞ 

dE k̂l(t) 
dτ, (2)

 

dτ 

where {i, j, k, l} = 1, 2, 3 refer to the tensor indices, σ̂ i j  is the elastic stress 

tensor, c îjklB is the elastic stiffness tensor, E îj is the elastic strain tensor, and 

τ is a time constant. The standard tensor notation is used with Latin indices 

running from 1 to 3, obeying Einstein’s summation convention when repeated. 

The integration in Eq. (2) is known as the Boltzmann [52] or a hereditary 

integral, which expresses a convolution. 

Applying the temporal Fourier transform to Eq. (1) and considering Eq. 

(2), thus, the governing equation for flexural vibration of a uniform viscoelastic 

isotropic Kirchhoff-Love thin plate [41, 42] can be rewritten as: 

∂2 
 

 

∂x2 

1 

iωDB(ω) 
∂2w(r, ω) 

∂x2 
+ iωβB(ω) 

∂2w(r, ω) 
 

 

∂y2 

∂2 
+ 2 

∂x∂y 

1

iωγB(ω) ∂2w(r, ω) 
 

 

∂x∂y 

∂2 
+ 

∂y2 

1 

iωDB(ω) 
∂2w(r, ω) 

∂y2 
+ iωβB(ω) 

∂2w(r, ω) 
 

 

∂x2 
− ω2αBw(r, ω) = 0, (3) 

where DB(ω), βB(ω), γB(ω), and w(r, ω) are the Fourier transforms of D̂ B  (t), 

βˆ
B (t), γ̂B (t), and ŵ (r ,  t), respectively, and ω is the angular frequency. We notice 

that the term iω multiplying the elastic constants (DB(ω), βB(ω), γB(ω)) in Eq. 

(3) comes from the temporal derivative in Eq. (2). It is important to highlight 

that ν is considered approximately as a constant in this case, an assumption 

also considered in previous studies [56]. 

Regarding the viscoelastic phononic thin plate described in Fig. 1 (a), there 

are two materials, i.e., a soft (viscoelastic) matrix and hard (elastic) inclusions, 

Z 

)l l 

)l 
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ˆ ˆ 

B 

 

 
 

thus one can rewrite Eq. (3) as: 

∂2 
 

 

∂x2 

1 

D(r, ω) 
∂2w(r, ω) 

∂x2 
+ β(r, ω) 

∂2w(r, ω) 
 

 

∂y2 

∂2 
+ 2 

∂x∂y 

1

γ(r, ω) 
∂2w(r, ω) 
 

 

∂x∂y 

∂2 
+ 

∂y2 

1 

D(r, ω) 
∂2w(r, ω) 

∂y2 
+ β(r, ω) 

∂2w(r, ω) 
 

 

∂x2 
− ω2α(rw(r, ω) = 0, (4) 

where the elastic constants D(r, ω), β(r, ω), γ(r, ω), and α = α(r) contain 

the information of both the hard inclusions (DA, βA, γA, αA) and soft matrix 

(iωDB(ω), iωβB(ω), iωγB(ω), αB). Note that once again the term iω multiply- 

ing the properties of the soft matrix (B) arise from the temporal derivative in 

Eq. (2). 

For the SLSM, the temporal part of the elastic constant Ĝ B  (t), omitting the 

spatial dependence, can be written as [50, 55]: 

 

Ĝ B
 

 
(t) = 

1

G∞B

  
+ (G0B 

 

+ G∞B 

 

−   t  

)e 
τ
GˆB 

 
û(t), (5) 

 

where û ( t) is the unit step function, τGˆ
B 
is the relaxation time (τGˆ

B 
= η/G1 

[52], see Fig. 1 (b)), G0B and G∞B are the initial and final states of the elastic 

constants and are related to G1B , G2B (Fig. 1 (b)) as G2B = G∞B , and G1B = 

G0B − G∞B . It should be noted, for a linear viscoelastic isotropic case, that 

Ê B  (t) = 2(1 + νB )ĜB (t), D̂ B  (t) = Ê B  (t)h3/12(1 − ν2 ), βˆ
B (t) = D̂ B  (t)νB, and 

γ̂B(t) = D̂ B  (t)(1 − νB). 

Applying the temporal Fourier transform to Eq. (5), remembering that 

F{û(t)} = πδ(ω) +  1 , ωδ(ω) = 0, and F{e−βtu(t)} =  1  , where δ(ω) is the 
iω 

Dirac delta function, and β > 0, results in: 

β+iω 

 
G (ω) = (G0B − G∞B )τG B̂ − i

 G∞B + G0B ω2τ 2 Gˆ
B , (6) 

B 1 + ω2τ 2 
GB 

 
 

ω(1 + ω2τ 2 ) 
GB 

∀ω /= 0, limω→0 GB(ω) = (G0B − G∞B )τGˆ
B 
, and EB(ω) = 2(1 + νB)GB(ω), 

DB(ω) = EB(ω)h3/12(1−ν2 ), βB(ω) = DB(ω)νB, and γB(ω) = DB(ω)(1−νB). 

Due to the system periodicity, the Bloch-Floquet theorem [48, 49] implies 

that: 

w(r, ω) = eik(ω)·rwk(r), (7) 

where wk(r) is the Bloch wave amplitude and k = k1e1 + k2e2. 

)l l 

)l 

l 
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Expanding wk(r) as space Fourier series on the reciprocal space and consid- 

ering wave propagation in the xy plane (k3 = 0), Eq. (7) can be rewritten as: 

 
 

 
 

where 

 
w(r, ω) = eik(ω)·r 

 

+∞ 

 

g=−∞ 

 

w(g)eig·r = 

 

+∞ 

 

g=−∞ 

 

w(g)ei[k(ω)+g]·r, (8) 

 

g = mb1 + nb2 = (mb11 
+ nb21 

)e1 + (mb12 
+ nb22 

)e2, (9) 

with bi = 2π ei (i = 1, 2) are the primitive vectors in reciprocal space for square 

lattice, bi
1,2 

= ||bi
1,2 

||, and (m, n ∈ Z). The primitive vectors in the real (ai) 

and reciprocal (bi) spaces for the 2-D viscoelastic PnS plate are illustrated in 

Fig. 2 (a, b), respectively, where ai = aei. 

 

⋮ ⋮ 

 
 
 

𝑎2 

⋯ 

 
 
 
 

 
𝑎1 

 

𝑏2 

 
⋯ 

⋯
 

2𝜋⁄𝑎 
 
 
 
 
 

 

⋯ 

𝑏1 

 
 
 
 

 
⋮ 

 

(a) 

 

⋮ 
 

 

(b) 
 

Figure 2: Primitive vectors in the (a) real (ai) and (b) reciprocal (bi) spaces in the infinite 

2-D viscoelastic PnS plate with square hard inclusions in a soft matrix with a square lattice, 

where ai = aei, bi = (2π/a)ei (i = 1, 2). 

 

The material properties can be expanded as space Fourier series in the re- 

ciprocal space as: 

P (r, ω) = 
+∞ 

 

ḡ =−∞ 

P (ḡ, ω)eiḡ·r, (10) 

where P (r, ω) can be D(r, ω), β(r, ω), or γ(r, ω), ḡ has the same expression of 

g, with ( m̄  , n̄ ∈ Z). Note that ḡ is used instead of g in order to highlight the 



10  

r 

SC 

a a 

ḡ il 

L 

r 

 

 
 

difference between the space Fourier series expansions of material properties and 

the transverse displacement. 

The space Fourier series coefficients, P ( ḡ ,  ω), regarding a square lattice, can 

be computed by: 

P ( ḡ ,  ω) = 
 1  

P (r, ω)e−iḡ·rd2r, (11) 
SC 

where the integration in Eq. (11) is performed over the unit cell and SC = 

||a1 × a2|| is the cross-sectional area of the unit cell. Considering a single unit 

cell of Fig. 1 (a), yields: 

P ( ḡ ,  ω) = P̄ (ω )δ ḡ 0  + [PA − iωPB(ω)](1 − δg¯0)F ( ḡ ) ,  (12) 

where δg¯0 = 1, if ḡ = 0, or δg¯0 = 0, if ḡ /= 0, P¯(ω) = f¯PA + (1 − f¯)iωPB(ω), 

f¯ = SA is the filling fraction, and SA is the cross-sectional area of the inclusion. 

Note that the term iω multiplying PB(ω) arise from the temporal derivative in 

Eq. (2). The structure function, F ( ḡ ) ,  depends on the inclusion geometry, and 

it is defined, for square inclusions, as [57]: 

F (ḡ ) = f̄  sinc(g 1̄l)sinc(g 2̄l), (13) 
 

where g¯1 = ||ḡ 1 ||= 2π m, g¯2 = ||ḡ 2 ||= 2π n, 2l is the length of the square 

inclusions, sinc(g¯il) = sin(g¯il) , ∀g¯i /= 0, and sinc(g¯il) = 1 for g¯il = 0. 

The mass density, ρ, can also be expanded as spatial Fourier series in the 

reciprocal space as: 

ρ(r) = 
+∞ 

 

ḡ =−∞ 

ρ(ḡ )eiḡ · r , (14) 

where ρ(r) is the spatial Fourier series coefficient and it can be computed as: 
 

ρ( ḡ ) = 
 1  

ρ(r)e−iḡ·rd2r, (15) 
SC 

 

which considering the unit cell in Fig. 1 (a), yields: 

 
ρ( ḡ ) = ρ¯δg¯0 + (ρA − ρB)(1 − δg¯0)F ( ḡ ) ,  (16) 

where ρ¯ = f¯ρA + (1 − f¯)ρB. 
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Substituting Eqs. (8), (10), and (14) in Eq. (4), gives: 
 

+∞ +∞  

{[k1(ω) + g1]2[k1(ω) + g1 + ḡ 1 ]2 D( ḡ ,  ω) + [k2(ω) + g2]2[k1(ω) 

g=−∞ g¯=−∞ 
 

+g1 + ḡ 1 ]2 β (ḡ ,  ω) + 2[k1(ω) + g1][k2(ω) + g2][k1(ω) + g1 + g¯1][k2(ω) + g2 

+ ḡ 2 ]γ ( ḡ ,  ω) + [k2(ω) + g2]2[k2(ω) + g2 + ḡ 2 ]2 D(ḡ , ω) + [k1(ω) + g1]2[k2(ω) 

+g2 + ḡ 2 ]2 β(ḡ , ω) − ω2α(ḡ)}w(g)ei[k(ω)+g+ḡ]·r = 0, (17) 

 

where ki = ||ki|| (i = 1, 2). Multiplying Eq. (17) by e−i[k(ω)+g̃]·r/SC , with g̃ 

has the same expression of g, where ( m̃  , ñ ∈ Z), integrating over the unit cell, 

yields: 

+∞ +∞  

{[k1(ω) + g1]2[k1(ω) + g1 + ḡ 1 ]2 D( ḡ ,  ω) + [k2(ω) + g2]2[k1(ω) 

g=−∞ g¯=−∞ 
 

+g1 + ḡ 1 ]2 β (ḡ ,  ω) + 2[k1(ω) + g1][k2(ω) + g2][k1(ω) + g1 + g¯1][k2(ω) + g2 

+ ḡ 2 ]γ ( ḡ ,  ω) + [k2(ω) + g2]2[k2(ω) + g2 + ḡ 2 ]2 D(ḡ , ω) + [k1(ω) + g1]2[k2(ω) 

+g + g¯ ]2β(ḡ , ω) − ω2α(ḡ)}w(g) 
 1  

r 

ei(g+ḡ−g̃)·rd2r = 0. (18) 
2 2 

SC
 

 

Considering the orthogonal property of the complex exponential series 

1 
r 

ei(g+ḡ−g̃)·rd2r = 
1, if ḡ  = g̃ − g 

= δ 
SC  

0, otherwise 

 

 

 

ḡ ,g̃−g 

 
 
, (19) 

 

thus Eq. (18) can be rewritten as 
 

+∞ 

{[k1(ω) + g1]2[k1(ω) + g̃ 1 ]2 D ( g̃  − g, ω) + [k2(ω) + g2]2[k1(ω) + g˜1]2 
g=−∞ 

β ( g̃  − g, ω) + 2[k1(ω) + g1][k2(ω) + g2][k1(ω) + g˜1][k2(ω) + g̃ 2 ]γ ( g̃  − g, ω) 

+[k2(ω) + g2]2[k2(ω) + g̃ 2 ]2 D ( g̃  − g, ω) + [k1(ω) + g1]2[k2(ω) + g˜2]2 

β ( g̃  − g, ω) − ω 2 α(g̃  − g)}w(g) = 0. (20) 

 
The space Fourier series in Eq. (20) should be truncated, in order to obtain 

a finite system. Choosing {m, m̃ , n, ñ }  = [−M, . . . , M ], the total number of 

plane waves is (2M + 1)2. Therefore, Eq. (20) can be written in a matrix form 
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2 

  

i l i l i l 

  

 

 
 

as: 
 
 

[K(ω) − ω2M]w = 0, (21) 
 

where matrices K(ω), M, and the vector w are described at the following equa- 

tions. It should be highlighted that matrix K(ω) should be computed for each 

circular frequency value, because of the viscoelasticity of the soft matrix. Thus, 

the Eq. (21) does not represent a typical generalized eigenvalue problem of 

ω(k), and cannot be solved for values of k scanning the contour of the FIBZ 

(Fig. 1 (c)). 

The matrix K(ω) in Eq. (21) is expressed by: 

 
K(ω) = ( K̄  + G)2D(ω)(K̄ + G̃ )2 + ( K̄  + G)2B(ω)(K̄ + G̃ )2 + 2(K̄  + G)1 

1 1 2 1 

( K̄  + G)2Γ(ω)(K̄ + G̃ )1 (K̃ + G̃ )2 + ( K̄  + G)2D(ω)(K̄ + G̃ )2 + ( K̄  + G)2 
2 2 1 

B(ω)(K̄ + G̃ )2, (22) 

where the matrices K̄ 
i, Gi, and G̃ 

i (i = 1, 2) in Eq. (22) (note that, e.g., 

( K̄  + G)2 = K̄ 2 + 2 K̄  
iGi + G2, i = 1, 2) are given by: 

i i i 
 

K̄ 
i = kiI, (23) 

 
g˜i(−M, −M ) 0 . . . 0  

g˜i(−M + 1, −M + 1) . . . 0 
G̃ 

i = 

 . . 
. . . 

, (24) 

.  

 

and Gi = G̃ 
i. 

0 0 . . . g˜i(M, M ) 

Matrices D(ω), B(ω), and Γ(ω) in Eq. (22) are the matrix form of the 

space Fourier series coefficients, D ( g̃  − g, ω), B ( g̃  − g, ω), and γ ( g̃  − g, ω), re- 

spectively. The dependence of ( g̃  − g) is omitted in Eq. (22) and hereafter for 

brevity. In Eq. (22), the matrices D(ω), B(ω), and Γ(ω), in most cases, can 

be rewritten as 
 1  

−1 

D(g˜−g,ω) 
, 

 1  
−1 

B(g˜−g,ω) 
, and  1  

−1 

Γ(g˜−g,ω) 
, respectively, 

i.e., the inverse of the Toeplitz matrices  1  ,  1  , and  1  . The 
D(g˜−g,ω) B(g˜−g,ω) Γ(g˜−g,ω) 

strategy of rewriting the matrices D(ω), B(ω), and Γ(ω), usually known as im- 

proved plane wave expansion (IPWE) [58] presents higher convergence than the 

0 
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w(g) = 
{   

. 

 . . 

 

 
 

traditional PWE method. However, very recently, Dal Poggetto et al. [33] have 

shown that the IPWE method cannot be applicable for the computation of all 

matrices, in the context of viscoelastic phononic thick plates when the matrix 

is hard and inclusions are soft (this is not the case of this study, see Fig. 1 (a)). 

In order to propose a general EPWE formulation, i.e., able to handle also the 

case proposed by Dal Poggetto et al. [33] (hard matrix and soft inclusions), the 

matrices D(ω), B(ω), and Γ(ω) are written in the traditional form hereafter. 

The matrix form of the space Fourier series coefficients D(ω), B(ω), and 

Γ(ω) in Eq. (22) can be expressed by: 

 

P( g̃  − g, ω) = P¯I + [PA + iωPB(ω)](J − I) ◦ F ( g̃  − g), (25) 

 

where ◦ represents the Hadamard product, I is the identity matrix, J is a matrix 

of ones, and the matrix form of the structure function Eq. (13), F ( g̃  − g), is 

given by: 

 

F ( g̃  − g) = 
 
F [g̃ (−M, −M ) − g(−M, −M )] . . . F [ g̃ (M, M ) − g(−M, −M )]  

. . .
 

 

F [g̃ (−M, −M ) − g(M, M )] . . . F [g̃ (M, M ) − g(M, M )]  

Matrix M in Eq. (21) is expressed by: 

. (26) 

 

M = ρ( g̃  − g) = P¯I + (PA + PB)(J − I) ◦ F( g̃  − g). (27) 

 
Vector w in Eq. (21) is given by: 

 
T 

w[g(−M, −M )]  w[g(−M + 1, −M + 1)]  . . .  w[g(M, M )] 

(28) 

From this point on Eq. (21) should be rewritten in the EPWE formu- 

lation, i.e., k(ω). First, the Bloch wave vector can be computed as k(ω, φ¯) = 

k(ω) cos φ̄e1+k(ω) sin φ¯e2 (see Fig. 1 (c)). Thus, the terms ( K̄  + G)2, ( K̄  + G)2, 
1 2 
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q 

1 1 1 1 

2 

 

 

and ( K̄  + G)1 (K̄ + G)2 of Eq. (22) can be rewritten as: 

( K̄  + G)2 = 
1 

{[k(ω)a cos(φ̄)]2I + [k(ω)aε 

 
 
 
]I + ε 

 
 

I}, (29) 
 

 

1 a2 11 01 

( K̄  + G)2 = 
1 

{[k(ω)a sin(φ̄)]2I + [k(ω)aε 
2 a2 12]I + ε02 I}, (30) 

(K̄  + G)1(K̄ + G)2 = 
 1 

{[k(ω)a cos(φ¯) sin(φ̄ )]2I + [k(ω)aε 
a2 13 

]I + ε03 I}, 

(31) 

where 

ε11 = 2(mb1 + nb2 )a cos(φ¯), ε01 = [(mb1 + nb2 )a]2,  (32) 

ε12 = 2(mb1 + nb2 )a sin(φ¯), ε02 = [(mb1 + nb2 )a]2,  (33) 

ε13 = [(mb12 
+ nb22 

) cos(φ¯) + (mb11 
+ nb21 

) sin(φ¯)]a, (34) 

ε03 = (mb1 + nb2 )(mb1 + nb2 )a2. (35) 

Moreover, the terms ( K̄  + G)2D(ω)(K̄ + G̃ )2, ( K̄  + G)2B(ω)(K̄ + G̃ )2, 2 ( K̄  + 
1 1 2 1 

G)1(K̄ + G)2Γ(ω)(K̄ + G̃ )1 (K̃ + G̃ )2, ( K̄  + G)2D(ω)(K̄ + G̃ )2, and ( K̄  + G)2 
2 2 1 

B(ω )(K̄ + G̃ )2 of Eq. (22) can be rewritten as: 

( K̄  + G)2 D(ω)(K̄ + G̃ )2 = 
1 

{[k(ω)a]4D (ω, φ¯) + [k(ω)a]3D (ω, φ¯) + [k(ω)a]2 
1 1 a4 1 2 

D3(ω, φ¯) + k(ω)aD4(ω, φ¯) + D5(ω)}, 

D1(ω, φ¯) = cos(φ̄)2D(ω) cos(φ̄)2 , D2(ω, φ¯) = cos(φ̄)2D(ω)ε11 + ε11D(ω) cos(φ̄)2 , 

D3(ω, φ¯) = cos(φ̄)2D(ω)ε01 + ε11D(ω)ε11 + ε01D(ω) cos(φ̄)2 , 

D4(ω, φ¯) = ε11D(ω)ε01 + ε01D(ω)ε11, D5(ω) = ε01D(ω)ε01, (36) 

 

 
( K̄  + G)2 B(ω)(K̄ + G̃ )2 = 

1 
{[k(ω)a]4B (ω, φ¯) + [k(ω)a]3B (ω, φ¯) 

2 1 a4 1 2 

+[k(ω)a]2B3(ω, φ¯) + k(ω)aB4(ω, φ¯) + B5(ω)}, 

B1(ω, φ¯) = sin(φ̄)2B(ω) cos(φ̄)2 , B2(ω, φ¯) = sin(φ̄)2B(ω)ε11 + ε12B(ω) cos(φ̄)2 , 

B3(ω, φ¯) = sin(φ̄)2B(ω)ε01 + ε12B(ω)ε11 + ε01B(ω) sin(φ̄)2 , 

B4(ω, φ¯) = ε12B(ω)ε01 + ε02B(ω)ε11, B5(ω) = ε02B(ω)ε01, (37) 

2 2 2 2 

1 1 2 2 
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2(K̄ + G) (K̄  + G) Γ(ω)(K̄ + G̃ ) (K̃ + G̃ ) = 
2 

{[k(ω)a]4Γ (ω, φ¯) 
1 2 1 2 

a4 1 

+[k(ω)a]3Γ2(ω, φ¯) + [k(ω)a]2Γ3(ω, φ¯) + k(ω)aΓ4(ω, φ¯) + Γ5(ω)}, 

Γ1(ω, φ¯) = cos(φ¯) sin(φ̄)Γ(ω) cos(φ¯) sin(φ¯), 

Γ2(ω, φ¯) = cos(φ¯) sin(φ̄)Γ(ω)ε13 + ε13Γ(ω) cos(φ¯) sin(φ¯), 

Γ3(ω, φ¯) = cos(φ¯) sin(φ̄)Γ(ω)ε03 + ε13Γ(ω)ε13 + ε03Γ(ω) cos(φ¯) sin(φ¯), 

Γ4(ω, φ¯) = ε13Γ(ω)ε03 + ε03Γ(ω)ε13, Γ5(ω) = ε03Γ(ω)ε03, (38) 

 
 

( K̄  + G)2 D(ω)(K̄ + G̃ )2 = 
1 

{[k(ω)a]4D (ω, φ¯) + [k(ω)a]3D (ω, φ¯) 
2 2 a4 6 7 

+[k(ω)a]2D8(ω, φ¯) + k(ω)aD9(ω, φ¯) + D10(ω)}, 

D6(ω, φ¯) = sin(φ̄)2D(ω) sin(φ̄)2 , D7(ω, φ¯) = sin(φ̄)2D(ω)ε12 + ε12D(ω) sin(φ̄)2 , 

D8(ω, φ¯) = sin(φ̄)2D(ω)ε02 + ε12D(ω)ε12 + ε02D(ω) sin(φ̄)2 , 

D9(ω, φ¯) = ε12D(ω)ε02 + ε02D(ω)ε12, D10(ω) = ε02D(ω)ε02, (39) 

 
 

( K̄  + G)2 B(ω)(K̄ + G̃ )2 = 
1 

{[k(ω)a]4B (ω, φ¯) + [k(ω)a]3B (ω, φ¯) 
1 2 a4 6 7 

+[k(ω)a]2B8(ω, φ¯) + k(ω)aB9(ω, φ¯) + B10(ω)}, 

B6(ω, φ¯) = cos(φ̄)2B(ω) sin(φ̄)2 , B7(ω, φ¯) = cos(φ̄)2B(ω)ε12 + ε11B(ω) sin(φ̄)2 , 

B8(ω, φ¯) = cos(φ̄)2B(ω)ε02 + ε11B(ω)ε12 + ε01B(ω) sin(φ̄)2 , 

B9(ω, φ¯) = ε11B(ω)ε02 + ε01B(ω)ε12, B10(ω) = ε01B(ω)ε02. (40) 

 
Substituting Eqs. (36)-(40) in Eq. (22), Eq. (21) can be rewritten as: 

1 
{[k(ω)a]4A (ω, φ¯) + [k(ω)a]3A (ω, φ¯) + [k(ω)a]2A (ω, φ¯) + k(ω)aA (ω, φ¯) 

a4 1 2 3 4 

+A5(ω, φ¯)}w = 0, 

Ai(ω, φ¯) = Di(ω, φ¯) + Bi(ω, φ¯) + 2Γi(ω, φ¯) + D5+i(ω, φ¯) + B5+i(ω, φ¯), 

A5(ω, φ¯) = D5(ω, φ¯) + B5(ω, φ¯) + 2Γ5(ω, φ¯) + D10(ω) + B10(ω) − ω2a4M, 

(41) 
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1 

 = k 

P(g˜−g,ω) 

 

 
 

where i = 1, . . . , 4. 

Multiplying Eq. (41) by A1(ω, φ̄)−1/a4 , yields, 

[k̄4I + k̄3A6(ω, φ )̄ + k̄2A7(ω, φ )̄ + k̄A8(ω, φ )̄ + A9(ω, φ )̄]w = 0, 

Ai(ω, φ¯) = Ai−4(ω, φ¯), A9(ω, φ¯) = A−1(ω, φ̄)A5(ω , φ¯), (42) 

where k¯ = k(ω)a and i = 6, . . . , 8. 

Thus, it is possible to rewrite the Eq. (42) as a standard eigenvalue problem 

of k(ω, φ¯): 
 

−A6(ω, φ¯) −A7(ω, φ¯) −A8(ω, φ¯) −A9(ω, φ¯) 

 
 k̄ 3w  

  

k̄3w 

 

 
I 0 0 0 

 
  k̄2w  

¯ 
 

k̄2w 
 

.

 

0 I 0 0 

0 0 I 0 
 
 k̄w 

w 

  k̄w 

w 

 

(43) 

For a given frequency ω and an azimuth angle φ¯ of k(ω, φ¯), there are 4(2M + 

1)2 eigenvalues k̄ .  It should be highlighted that the complex values of k, i.e., 

the evanescent wave behavior, are obtained only by EPWE, which is not yielded 

when using the PWE and IPWE. 

 

 
3. Simulated Example 

 
The viscoelastic phononic thin plate geometry and material properties used 

for the simulation are presented in Table 1. It is composed by steel square 

inclusions (A) in an epoxy matrix (B) with a square lattice (see Fig. 1 (a)). 

It should be highlighted that the thin plate theory (i.e., ||k||h « 1, h/a « 1, 

[17] or h < λmin/6 [60], where λmin = m i n{
J
4  ||DB(ωmax)||/ρBh

J
2π/fmax, 

J
4 DA/ρAh

J
2π/fmax}) is fulfilled, since h/a = 0.005, λmin = 0.0487 m, and 

h < 0.0081 (λmin/6) m. 

The complex band structure calculated by the improved EPWE formulation 

(i.e., considering the inverse of the Toeplitz matrices  1  , see Eq. (25)) is 

ordered using the model assurance criterion (MAC) [61]. The MAC estimates 
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B 

 

 

 
Table 1: Geometry and material properties of the viscoelastic phononic thin plate composed 

by steel square inclusions (A) [59] in an epoxy matrix (B) [50, 51] with a square lattice. 

Geometry/Property Value 
 

Lattice parameter (a) 0.11 m 

Plate thickness (h) 0.005a m 

Filling fraction (f¯) 0.1 

Mass density (ρA, ρB) 7.835 × 103 kg/m3, 1.18 × 103 kg/m3 

Young’s modulus (EA, E0 ) 210.3 × 109 Pa, 3.4918 × 109 Pa 

Shear modulus (GA, G0 ) 81.65 × 109 Pa, 1.58 × 109 Pa 

Poisson’s ratio (νA, νB) 0.2878 , 0.105 
 

 

the correlation among the Bloch wave mode shapes obtained by the EPWE 

approach. Furthermore, the integers m, m̃ , n, and ñ are limited to the interval 

[−3, 3], i.e., 49 plane waves were used for the spatial Fourier series expansion, 

in order to reduce the computational time. Moreover, we underline that the 

convergence of spatial Fourier series is not investigated in this study, since it 

depends on frequency (because of the viscoelastic effect) and filling fraction. 

It should also be mentioned that the complex band structures in this study 

are computed along the ΓX direction (i.e., φ¯ = 0) since this is a commonly 

assumed direction to analyze the evanescent behavior of wave dispersion in 

PnSs using a k(ω) approach [30, 33, 62]. Unlike in the k(ω) approach, the 

wave dispersion relations can be obtained scanning the contour of the FIBZ 

using an ω(k) approach [33]. In addition, the influence of different viscosities 

and relaxation times on the complex band structure using the EPWE and the 

SLSM is not investigated, since it was recently reported by Oliveira et al. [38] 

for 1-D PnSs. 

Figure 3 shows the complex band structure of the phononic thin plate with- 

out viscoelastic effects. Hereafter, a discretization of 0.1 Hz is considered when 

using the EPWE approach. The real part of the normalized wave number 

(ka/2π) is illustrated in the Fig. 3 (a), the normalized frequency is given by 



18  


 

 
 

Ω = ωa/2πctB , where ctB = 
J
G0B /ρB is the transverse shear wave velocity in 

the epoxy matrix, and the band structure is computed by the improved PWE 

(black circles) [50] and the proposed EPWE (coloured points) approaches. 

 
0.04 0.04 

0.035 0.035 

0.03 0.03 

0.025 0.025 

0.02 0.02 

0.015 0.015 

0.01 0.01 

0.005 0.005 
 

0 
0 0.1 0.2 0.3 0.4 0.5 

(k)a/2 

0 
0 0.5 1 1.5 2 

(k)a/2 
 

(a) (b) 
 

Figure 3: Complex band structure of the phononic thin plate with steel inclusions in a epoxy 

matrix (without viscoelasticity) computed by (a) PWE (black circles) and (a) − (b) EPWE 

(coloured points) approaches, where Ω = ωa/2πctB and ctB =
  

G0 /ρB. 

 

A good matching between the PWE and EPWE methods is observed in 

Fig. 3 (a), however, some modes captured by the proposed EPWE are not 

obtained directly by the PWE, because these modes are complex and the PWE 

only identifies pure propagating (real) modes [31]. The evanescent Bloch waves 

cannot propagate within the phononic thin plate, since their amplitudes decrease 

with an attenuation distance determined by the imaginary part of k in Fig. 3 

(b). In Fig. 3 (b), only the positive evanescent wave modes (symmetric negative 

wave modes exist) are illustrated until S'{k}a/2π = 2 (higher values exist). 

This typical evanescent wave dispersion behavior in Fig. 3 (b) has already been 

reported for PnSs without viscoelastic effect [30–32]. 

Figure 4 illustrates the complex band structure of the phononic thin plate 

with viscoelasticity, considering the SLSM (Fig. 1 (b)), τGˆ
B

 = 1 × 10−4 s, and 

G∞B = G0B /5. 


 

B 
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Figure 4: Complex band structure of the phononic thin plate with steel inclusions in a epoxy 

matrix (with viscoelasticity considering the SLSM, τGˆ
B

 = 1 × 10−4 s, and G∞ = G0B /5) 

computed by (a) PWE (black circles, without viscoelasticity) and (a) − (b) EPWE (coloured 

points) approaches, where Ω = ωa/2πctB and ctB =
  

G0 /ρB. 

 
It can be observed that the PWE (black circles) cannot obtain the correct 

real part of wave modes (Fig. 4 (a)), since all Bloch wave modes are complexes 

because of the viscoelasticity, even for lower frequencies. Moreover, the unit cell 

wave attenuation (i.e., S'{k}a) is reported in the Fig. 4 (b). In Fig. 4 (b), it 

should be mentioned that some wave modes are shifted from the origin, which 

is a typical behavior of the viscoelastic PnSs [40]. 

In Fig. 5, it is shown the imaginary part zoom of the complex band structure 

of the phononic thin plate without (a) and with (b) viscoelasticity (considering 

the SLSM, τGˆ
B

 = 1 × 10−4 s, and G∞ = G0B /5) computed by the EPWE 

(coloured points) approach. It can be seen in (b) that the wave modes are 

shifted from the origin. 

Another interesting issue related to the complex band structure behavior is 

the influence of the filling fraction (f¯). The effect of f¯ on the Bragg scattering 

band gap formation (considering only the propagating waves) is well-known 

[17, 46, 63]. However, its influence on the evanescent behavior of viscoelastic 


 

B 

B 

B 



20  


 

B 

 

 

 

 

  
0 0.1 0.2 0.3 0.4 0.5 

(k)a/2 
0 0.1 0.2 0.3 0.4 0.5 

(k)a/2 
 

(a) (b) 
 

Figure 5: Imaginary part zoom of the complex band structure of the phononic thin plate 

with steel inclusions in a epoxy matrix, (a) without and (b) with viscoelasticity (considering 
−4 

the SLSM, τGˆ
B 

= 1 × 10 s, and G∞ = G0B /5) computed by EPWE (coloured points) 

approach, where Ω = ωa/2πctB and ctB =
  

G0 /ρB. 

 
phononic thin plates has not been reported yet. First, it is illustrated in Fig. 

6 the complex band structure (only the second mode is shown, since it is the 

least attenuated wave mode in Fig. 4 (b)) of the phononic thin plate with 

viscoelasticity, considering the SLSM (Fig. 1 (b)), τGˆ
B

 = 1 × 10−4 s, and 

G∞B = G0B /5. 

It should be highlighted that wave modes corresponding to the branch with 

the smallest imaginary part of k (least attenuated waves, i.e., the second wave 

mode in Fig. 4 (b)) contribute the most to the evanescent behavior [33, 64]. In 

Fig. 6 (b), it can be observed a frequency region with a peak of unit cell wave 

attenuation (S'{k}a/2π = 0.1696) around Ω = 0.0071, considering a fixed value 

of f¯ = 0.1. In Fig. 6 (b), it can also be seen that this wave mode is shifted from 

the origin and it increases with frequency. 

In Fig. 7, it is shown the imaginary part (||S'{k}||a/2π, color bar) of the 

complex band structure (only the second mode is shown) of the phononic thin 
−4 

plate with viscoelasticity considering the SLSM, τGˆ
B 

= 1 × 10 s, G∞ = 


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Figure 6: Real (a) and imaginary (b) parts of the complex band structure (only the second 

mode is shown) of the phononic thin plate with steel inclusions in an epoxy matrix (with 
−4 

viscoelasticity considering the SLSM, τGˆ
B 

= 1 × 10 s, and G∞ = G0B /5) computed by 

EPWE, where Ω = ωa/2πctB and ctB =
  

G0 /ρB. 

 

G0B /5, ranging with filling fraction (0.01 ≤ f¯ ≤ 0.99), and Ω. It can be seen 

that the wave attenuation increases with Ω for lower values of filling fraction, 

which is a typical behavior of viscoelastic periodic systems [40]. Moreover, there 

are interesting regions of filling fraction in lower (0.78 ≤ f¯ ≤ 0.94, Ω < 0.006) 

and higher (0.10 ≤ f¯ ≤ 0.74, Ω ≥ 0.006) frequencies that present high wave 

attenuation. The highest wave attenuation region is found around f¯ = 0.37 for 

higher frequencies (0.03 ≤ Ω ≤ 0.039). 
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Figure 7: Imaginary part (||S{k}||a/2π, color bar) of the complex band structure (considering 

only the second mode) of the phononic thin plate with steel inclusions in a epoxy matrix (with 

viscoelasticity considering the SLSM, τGˆ
B

 = 1 × 10−4 s, and G∞ = G0B /5) computed by 

EPWE ranging with filling fraction (0.01 ≤ f¯ ≤ 0.99) and Ω = ωa/2πctB , where ctB = 
  

G0
 

/ρB. 

 
 

4. Conclusions 

 
The EPWE formulation is proposed to compute the complex band structure 

of a viscoelastic phononic thin plate, considering the SLSM. This k(ω) approach 

is important because the evanescent behavior of wave dispersion in viscoelastic 

periodic structures still has knowledge gaps and it has a considerably lower 

computational cost compared to other approaches, such as the finite element 

method. The traditional PWE cannot compute the correct Bloch wave modes 

of the viscoelastic phononic thin plate, even for lower frequencies. Only the 

proposed EPWE can compute the correct complex Bloch wave modes and also 

the unit cell wave attenuation for viscoelastic periodic thin plate structures 

considering the SLSM. 

A good agreement between the PWE and EPWE methods is observed for 

the case without viscoelasticity, however, some wave modes captured by the pro- 

posed EPWE are not obtained directly by the PWE, because these wave modes 

are complex and the PWE only identifies pure propagating wave modes. The 

B 

B 
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viscoelastic effet influences the unit cell wave attenuation in periodic thin plate 

structures. The higher unit cell wave attenuation of the viscoelastic phononic 

thin plate is found around f¯ = 0.37 (0.03 ≤ Ω ≤ 0.039), considering the least 

attenuated wave mode. Furthermore, the k(ω) approach proposed in this study 

can be extended to other plate theories and also to different viscoelastic models. 
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