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A B S T R A C T 

We deduce a microstructure inspired model for humidity and temperature effects on the mechanical response of spider silks, modeled as a 

composite material with a hard crystalline and a soft amorphous region. Water molecules decrease the percentage of crosslinks in the softer 

region inducing a variation of natural length of the macromolecules. The resulting kinematic incompatibility between the regions crucially 

influences the final mechanical response. We demonstrate the predictivity of the model by quantitatively reproducing the experimentally 

observed behavior. 

 

1. Introduction 

Due to their extraordinary properties, spider silks represent one of the most intensively studied materials, also in the spirit of biomimetics (Zhao 

et al., 2014). The availability of more and more sophisticated experimental techniques let in the last decades a deeper understanding – both from a 

chemical and structural point of view – of the complex multiscale, hierarchical material structure at the base of their notable mechanical behavior. 

Nevertheless, due to the complexity of its behavior, many important phenomena regulating its loading history dependence, rate, temperature, and 

humidity effects, remain unclear (Pérez-Rigueiro et al., 2021), especially when multiscale effects are taken in consideration. In this paper we 

propose a model for describing and predicting humidity and temperature effects and with a special focus on a crucial phenomenon known as 

supercontraction effect. Firstly addressed in Work (1977), it consists in a shrinkage of the fiber up to 50% of its initial length, when immersed in 

water or in high humidity environment strongly modifying the mechanical performances. As we show, the comprehension of such striking behavior 

let us deduce a predictive model for the experimental thermohygromechanical behavior of spider silks, starting from a description at the molecular 

scale. 

Spider silks are composed by an amorphous matrix of oligopeptide chains and by pseudo-crystalline regions made up principally of polyalanine 

𝛽-sheets (Elices et al., 2011; Sponner et al., 2007) with dimensions between 1 and 10 nm (Keten and Buehler, 2010), mostly oriented in the fiber 

direction (Jenkins et al., 2013). The cross section of the fiber is highly organized in the radial direction (Li et al., 1994; Eisoldt et al., 2011; Sponner 

et al., 2007). Moreover, the chemical and structural composition varies according with the different silks produced by the different glands (Cranford 

et al., 2014) and of course the different species. Here, to fix the ideas, we focus on the most performant case of dragline silk. 

More in detail, the thread is covered by a skin, with a chemical and physical protection function, that does not play a role in supercontraction 

and mechanical response (Yazawa et al., 2019). We thus neglect it in the model. Next, the core can be schematically decomposed as in Fig. 1. The 

major constituent of the external part are proteins (Major ampullate Spidroin 1, MaSp1, Li et al. 

 

Fig. 1. Cartoon of the silk fiber and its microstructure (a). The outer hard region characterized by crystals of 𝛽-sheets is represented by black chains, the soft region molecules are 

drafted in blue, whereas the embedding elastic matrix is gray. In (b) we schematize the incremental effects of water molecules (added as RH increases) disrupting crystal domains 

(green dots) and inducing entropic recoiling of chains. 

(1994), Brown et al. (2011)) organized into 𝛽-pleated sheets. We refer to this fraction as hard region. The internal part, here referred as soft region, 

is instead mainly constituted by proteins with a proline content preventing the formation of 𝛽-sheet structures (Major ampullate Spidroin 2, MaSp2, 



  

Sponner et al. (2007)). This fraction has a significantly lower crystallinity and macromolecules with weaker crystal domains, typically in the form 

of 𝛼-helix and 𝛽-turns (Sponner et al., 2007; Nova et al., 2010). The different crystallinity is also due to the shear stress at the spinning duct wall 

inducing the formation of harder crystal domains in form of 𝛽-sheets mainly in the outer region (Giesa et al., 2016; Brown et al., 2011). 

Based on the previous description and referred literature, we model the silk fiber as a composite material with a hard external fraction of 

crystalline chains and a soft internal fraction of amorphous chains. Moreover, by following the classical approach for polymeric and biopolymeric 

materials (Flory and Erman, 1982), we suppose that the hard and soft fractions of macromolecules aligned with the fiber axis are embedded in a 

tridimensional elastic matrix, describing the complex macromolecular network with inner and intrachains connections. 

Due to the different crystalline composition, the humidity affects differently the hard and soft fractions. Water hardly breaks the H-bonds of 

the compact 𝛽-sheet domains in the hard fraction (Yazawa et al., 2019). On the other hand, here, we may observe a misalignment of the crystals 

with respect to the fiber direction that increases as the relative humidity (RH) grows (Eles and Michal, 2004). Since the material stiffness grows 

with the alignment of the crystals (Du et al., 2006), water induces a progressive damage in this fraction that we introduce in our model. On the 

contrary, water content strongly influences the crystal percentage in the soft internal core (Du et al., 2006; Elices et al., 2005, 2011), because 𝛼-

helices and 𝛽-turns are much more easily broken by water molecules. In particular, the experiments exhibit a non uniform variation of the silk 

properties with a localized transition at a critical value of RH, hereon indicated as RH𝑐, known as supercontraction threshold (Fu et al., 2009). 

Finally, an important effect in the evolution of the natural chain length is induced from the stretch history (see Puglisi et al. (2017) and references 

therein for a theoretical detailed discussion of such phenomenon). Indeed, as the end-to-end distance of the molecules changes, 𝛽-sheets undergo 

unraveling with a corresponding increase of the number of available monomers, here considered in the hard fraction. 

2. Model 

According with classical Statistical Mechanics results (Rubinstein and Colby, 2003), the expectation value of the end-to-end distance for ideal 

chains is 

 𝐿𝑛 
= 
⟨𝑟2⟩1∕2 = 𝑏 𝑛1∕2, (1) 

where 𝑛 is the number of Kuhn segments with length 𝑏. We refer to the end-to-end distance as natural length for the reason that it is the length that 

the chain naturally assumes when no force is applied. As we will detail later 𝑛 depends on humidity in the soft fraction, whereas it depends on the 

maximum attained stretch in the hard fraction. As a result the natural lengths of these fractions, assumed identical after spinning, vary depending 

on the external force and humidity fields, inducing a kinematic incompatibility as detailed in the following. We remark that in the recent paper 

(Cohen et al., 2021), based on this observation, the authors proposed a model with a material undergoing a hard→soft transition reproducing a 

mutation from glassy to rubbery state induced by RH variations, efficiently describing the variations of stiffness and supercontraction length in 

correspondence of the supercontraction threshold. 

 

Fig. 2. (a) Damage parameter 𝑑 representing the percentage of broken links as a function of humidity. (b) Influence of the relative humidity on the number of H-bonds with respect 

to the initial number of H-bond. Here RH𝑐 =80%, �̄� =5.5 and 𝑚𝑓 ∕𝑚𝑜 =0.4. 

 

Fig. 3. Cartoon of a chain of the hard region undergoing a folded → unfolded transition when subjected to a force. 

2.1. Soft region 

To consider the disruption process of H-bonds induced by hydration (Du et al., 2006), let us introduce the function 𝑚 = �̂�(RH) assigning the 

number of links in the generic humidity state, with 𝑚(0) = 𝑚𝑜 and 𝑚(100) = 𝑚𝑓 (initial and permanent number of H-bonds) (Vollrath and Porter, 

2006). To the knowledge of the authors, no direct measurement of �̂� is available, so that we consider a Gaussian probability density of rupture 

events with expected value coinciding with RH𝑐 (see Fig. 2) 

 ̂ 
) = �̂�(RH) − 𝑚𝑜 = ∫ RĤ 1 (RH−RH𝑐)2 dRH. (2) 

 𝑑(RH  

  
    



  

 𝑚𝑓 − 𝑚𝑜 0 2𝜋�̄�2 

Here 𝑑 ∈ (0, 1) is a ‘damage’ type parameter, measuring the percentage of broken links and we indicate by �̄�2 the standard deviation of RH. 

To obtain the corresponding variation of the natural length based on (1), assume that 𝑛𝑠𝑜 is the (mean) number of chain’s free monomers when 

the silk is spun. Here and in the following we indicate by the apexes 𝑠, ℎ, 𝑚, and 𝑡 the soft, hard, matrix and homogenized (total) quantities. If we 

formally identify the number of H-bonds with the number of domains in which the chain is divided (see the scheme Fig. 1(b)), the mean number 

of free monomers in each domain is 𝑛𝑠  corresponding to a (humidity dependent) natural length 

 𝐿𝑠𝑛 . (3) 

We obtain in this way an analytic measure of the shrinkage chain effect induced by humidity. Observe that instead the contour length is fixed: 𝐿𝑠𝑐 
= 𝑛𝑠 𝑏𝑠. 

2.2. Hard region 

As anticipated, following (Du et al., 2006) we assume that the elastic modulus of the crystalline region decreases with RH by considering a 

(phenomenological) damage function in the macroscopic model deduced in Section 2.3. On the other hand, while 𝛽-sheet crystals are affected only 

in their orientation by humidity, large strain can induce important unraveling effects as fully described in Puglisi et al. (2017) with conformational 

transitions inside the secondary structure (Cranford et al., 2014; Giesa et al., 2016) from a coiled configuration (Yarger et al., 2018) to an unfolded 

state (Cranford et al., 2014; Puglisi et al., 2017) (see the scheme in Fig. 3). Thus the mean number 𝑛ℎ of available free monomers depends on the 

maximum attained value of the end-to-end distance so that we assume the existence of a function �̂� such that 𝑛ℎ = �̂�ℎ(𝐿ℎ
𝑚𝑎𝑥). Observe that for 

simplicity we assume that the unfolding is irreversible with 𝑛ℎ monotonically increasing with 𝐿𝑚𝑎𝑥. More general hypotheses could be introduced 

(De Tommasi et al., 2010) and a discussion of this function will be given later. 

As a result for the hard fraction the natural and contour lengths are assigned as 

 𝐿 (𝐿𝑚𝑎𝑥) 𝑏ℎ, 𝐿ℎ𝑐 = �̂�ℎ(𝐿𝑚𝑎𝑥) 𝑏ℎ. (4) 

2.3. From single chain to macro laws 

Both in the amorphous and crystalline region we adopt a Worm Like Chain (WLC) energy density (per unit chain contour length 

𝐿𝑐) in the form proposed in De Tommasi et al. (2013) 𝜑𝑒 = 𝜑𝑒(𝐿
, 𝐿

𝑐) = 𝜅
 
𝐿 𝐿𝑐−

2
𝐿 where 𝜅 = 𝑘4

𝐵𝑙𝑝𝑇
 , 𝑇 is the temperature, 𝑘𝐵 the Boltzmann constant 

and 𝑙𝑝 the persistence length measuring the flexibility of the chain (see e.g. Rubinstein and Colby (2003) for 

 

Fig. 4. Dependence of the permanent stretch of the soft region 𝜆𝑠𝑛 from the relative humidity, in blue (assumed parameters �̄� =5.5 and 𝑚𝑓 ∕𝑚𝑜 =0.4). Observe the abrupt decrease 

around the supercontraction threshold RH𝑐 =80%. For comparison, the unstressed stretch of the overall fiber 𝜆𝑡𝑜 is represented in pink (assumed parameters 𝐸𝑠 =1.35 MPa,𝜇 =2.5 

MPa,𝜆𝑠𝑐 =2.62). 

details). This energy respects the limit extensibility condition, lim𝐿→𝐿𝑐 𝜑𝑒(𝐿, 𝐿𝑐) = +∞, and allows for explicit calculations. Moreover, following 

(Trentadue et al., 2021), we extend this function to consider that, as described above, the end-to-end distance 𝐿 can be decomposed in a variable 

(zero force) natural length measured by (1) and the remaining length measuring the elastic elongation 𝐿𝑒 = 𝐿 − 𝐿𝑛. Thus we assume an energy and 

a force–elongation law for a single chain 

 𝜑𝑒 = 𝜅 𝐿𝐿𝑐−2𝑒𝐿 

 [( )2 ] 

(5) 

 𝑓 = 𝜕𝜑𝑒 = 𝜅 𝐿𝑐−𝐿𝑛 − 1 , 



  
 𝜕𝐿 𝐿𝑐−𝐿 

with the force decreasing to zero as the length attains its (history dependent) natural length (𝐿 = 𝐿𝑛 or 𝐿𝑒 = 0). 

Notice that the total energy considering all the chains of the network can be determined as 𝛷 = 𝑁𝑣𝜑𝑒𝐿𝑐 = 𝑁𝑎𝑁𝑙 𝜑𝑒𝐿𝑐 = 𝑁𝑎𝜑𝑒 where for the sake 

of simplicity we consider 𝑁𝑙 𝐿𝑐 = 1, with 𝑁𝑣, 𝑁𝑎, 𝑁𝑙 the number of chains per unit volume, area, length respectively. 

We remark that the proposed model can be inscribed in the theory of Thermodynamics with internal variables (Coleman and Gurtin, 1967) in 

the simple case when there is a single external variable 𝐿 and a single internal variable 𝐿𝑚𝑎𝑥. In our simple setting of the positivity of the dissipation 

rate 𝛤 = 𝑓 �̇� −�̇�𝑒(𝐿, 𝐿𝑚𝑎𝑥) ≥ 0. Since at given RH the only material fraction involved in the dissipation isothermal processes, to verify the 

thermodynamic consistency of the model we consider the Clausius–Duhem inequality, requiring 

energy dissipation rate reduces to 𝑄′(𝐿𝑚𝑎𝑥) = −𝜕𝐿𝑚𝑎𝑥 𝜑𝑒(𝐿, 𝐿𝑚𝑎𝑥). Thus, in view of (5), we obtain 𝛤 = 𝑄′(𝐿𝑚𝑎𝑥)𝐿
̇ 
𝑚𝑎𝑥 ≥ 0 that is is the hard one, 

undergoing unfolding effects and variations of the natural length regulated by 𝐿𝑚𝑎𝑥 according with (4), the internal 

satisfied under our assumption that �̂�ℎ is increasing. 

Eventually, to obtain the macroscopic behavior of the thread we consider, following (Grubb and Ji, 1999), the classical affinity hypothesis 

(Rubinstein and Colby, 2003) that identifies the macroscopic stretches with the macromolecular ones. We then first evaluate the following stretch 

measures of the different fractions 

 𝜆𝑖 = 𝐿 𝐿𝑖𝑜 total stretch, 

 𝜆𝑖𝑒 = 𝐿𝐿𝑖𝑜𝑖𝑒 elastic stretch, 

𝑖 

 𝜆𝑖𝑛 = 𝐿𝐿𝑖𝑛𝑖𝑜 permanent stretch, = ℎ, 𝑠, 𝑚, 𝑡, (6) 

 𝜆𝑖𝑐 = 𝐿𝐿𝑖𝑐𝑖𝑜 contour stretch, 

with 𝐿𝑖𝑜  denoting the initial natural length of the chains. In particular, the permanent stretch measures the variation of the natural length, 

having the same role of plastic stretch in classical non linear plasticity theories (see De Tommasi et al. (2015) for a detailed theoretical discussion). 

For the soft region, it can be deduced using Eqs. (3) and (6), 

√ 

 𝜆𝑠𝑛 =  𝑚𝑜

 . (7) 

If we consider a Gaussian distribution for the breaking rate of the bonds as in Eq. (2) we get the following evolution of the permanent stretch as 

RH varies √ ( ) 

 𝑠 𝑚𝑓 

 𝜆𝑛 = 1 + 𝑑(RH) 𝑚𝑜 − 1 . (8) 

A typical variation of the damage function and number of domains under our Gaussian probability choice is represented in Fig. 2, whereas the 

variation of the permanent stretch of the soft fraction is reported in Fig. 4. We remark that the parameters needed to compute the variation of the 

permanent stretch as a function of humidity are 𝑚𝑓∕𝑚𝑜, together with RH𝑐 and �̄� assigning the Gaussian distribution function. On the other hand, 

the corresponding expression for the contour length is 𝐿𝑠𝑐 = 𝑚 𝑛𝑚𝑠𝑜 𝑏𝑠 = 𝑛𝑠𝑜𝑏𝑠, so that the contour stretch of the amorphous part is constant √ 

 𝑠 𝐿𝑠𝑐 𝑛𝑠𝑜 𝑏𝑠 𝑛𝑠𝑜 

 𝜆𝑐 = 𝐿𝑠𝑜 = √𝑛𝑠𝑜 𝑚𝑜 𝑏𝑠 = 𝑚𝑜 . (9) 

Under an additive assumption and given the number of chains per unitary reference area 𝑁𝑎𝑠, the (Piola, engineering) stress using Eqs. (5)2 and 

(6) is given by 

 𝑠 𝑠 ⎡⎢( 𝜆𝑠𝑐 − �̂�𝑠𝑛(RH))2 ⎤⎥ 

 𝜎 = 𝐸  − 1 , (10) 

 ⎢⎣ 𝜆𝑠𝑐 − 𝜆𝑠 ⎥⎦ 

   
   

 

 
         
 

       
 

    



  

where the permanent and contour stretches are given by Eqs. (8) and (9), whereas 𝐸𝑠 = 𝑁𝑎𝑠𝜅𝑠 is the elastic modulus of the soft fraction. 

For the hard region, the contour and permanent stretches are calculated by using Eqs. (4) and (6). Let 𝑛ℎ
𝑜 be the initial number of available free 

monomers, the initial natural length 𝐿  can be used to calculate the contour stretch as 

 𝐿ℎ𝑐 𝑛ℎ𝑏ℎ 𝑛ℎ �̂�ℎ(𝜆𝑚𝑎𝑥) 

 𝜆  =

 = = (11) 

𝐿 

and the permanent stretch as 

𝐿) 

 𝜆   . (12) 

𝐿 

Since the effective stretch-induced unfolding depends on the unknown size and strength crystals distribution, following (Trentadue et al., 2021) we 

assume a simple power law 

 𝜆ℎ𝑐 = 𝑐1(𝜆ℎ𝑚𝑎𝑥)𝑐2 . (13) 

On the other hand, since by Eq. (4) the permanent and contour stretches are related by 𝜆 𝜆𝑐𝑜  , where 𝜆ℎ
𝑐𝑜 ≡ 𝑐1 is the initial contour 

stretch, by Eq. (13) the permanent stretch is given by 
𝑐2 

ℎ ℎ 

 𝜆𝑛 = (𝜆𝑚𝑎𝑥) 2 . (14) 

It is important to stress that, thanks to previously described microstructure based analysis of the permanent and contour stretches, they are 

analytically related, so that in this fraction the permanent stretches are directly related to damage, both measured by the unknown function �̂�ℎ. 

If then, as anticipated, we consider a damage taking care of the described humidity-induced crystal misalignment, the stress–stretch relation for 

the hard part by using Eqs. (5) and (6) is 

 ℎ ̂ ℎ(RH)⎡⎢( 𝜆 ̂ℎ(𝜆ℎ𝑚𝑎𝑥) − �̂�ℎ𝑛(𝜆ℎ𝑚𝑎𝑥))2 − 1⎤⎥ (15) 

𝑐 

 𝜎 = 𝐸  

 ⎢⎣ 𝜆 ̂ℎ𝑐 (𝜆ℎ𝑚𝑎𝑥) − 𝜆ℎ ⎥⎦ 

with 

 𝐸
̂ ℎ(RH) = (1 − 𝛼 RH)𝐸𝑜

ℎ, (16) 

where 𝐸𝑜
ℎ = 𝑁𝑎

ℎ𝜅ℎ is the modulus in the dry condition and 𝛼 measures the humidity-induced damage rate. 

This macroscopic constitutive damage assumption is based on the experimental observation, recalled above, of a crystal misalignment induced 

by humidity. Indeed, the Wide-Angle X-ray Scattering (WAXS) measurements reported in Fig. 5(a) and reproduced from (Yazawa et al., 2020), 

indicate a linear dependence of the Full Width at Half Maximum (the statistical measure of the orientation of crystalline 𝛽-sheets adopted in Yazawa 

et al. (2020)) from RH, indicating a lower orientation of the nano crystals at higher RH values. Such misalignment affects the elastic modulus as 

described in Du et al. (2006). The resulting modulus variation assumed in (16) is represented in Fig. 5(b). 

Eventually, by following (Flory and Erman, 1982), we consider a matrix embedding hard and soft fractions describing the complex 

macromolecular network composing the spider thread, with inter and intrachains connections. The total free energy is then calculated as the sum 

of the energy of ideally isolated hard and soft chains described above and elongated along the fiber direction plus an energy term taking care of 

chains interactions. Under a simple Neo-Hookean assumption (corresponding at the molecular scale to harmonic network chains (Rubinstein and 

Colby, 2003)) for incompressible material, the matrix stress for a uniaxial extension is ( ) 

 𝑚 ℎ 1 

 𝜎 = 𝜇 𝜆 −  , (17) 

(𝜆ℎ)2 



  

 

Fig. 5. (a) WAXS measurements of dragline silk fibers at different RHs are used to calculate the orientation of crystalline 𝛽-sheets with respect to the fiber axis (Yazawa et al., 2020) 

with the result that FWHM linearly increases with RH. This proves a reduced orientation of the nano crystals under higher values of RH as schematized by the cartoons. (b) 

Corresponding damage function in (16): the reduction of the elastic modulus of the hard part is associated to the lack of orientation of the crystal as the humidity increases. Here we 

assume 𝛼 =0.007. 

 

Fig. 6. Outer and inner regions have different natural lengths (a) leading to a prestretch of the internal amorphous part (b). 

 

Fig. 7. Scheme of the evolution of the configurations of the different composing phases and of the whole fiber: (a) dry natural configuration, (b) humid condition without external 

forces where selfstresses (reported in (c)) are induced by kinematic compatibility, (d) non zero external force configurations. 

with 𝜇 the material shear modulus. Observe that we assume that the matrix natural length coincides with the hard fraction initial one, so that 𝜆𝑚 = 

𝜆ℎ. 

We are now in the position of deducing, based on all the microstructure based assumptions and the affinity hypothesis, the macroscopic behavior 

of the spider thread. Our deduction is based on the main assumption that the spun initial length of the fractions are the same: 𝑛ℎ𝑏ℎ = 𝑛𝑠𝑏𝑠 (initial 

kinematic compatibility). After exposition to humidity the soft region chains reduce their natural length (see Fig. 6). The kinematic compatibility 

then imposes that the different regions undergo the same stretch 𝜆𝑡𝑜 at zero overall initial thread force. On the other hand, when the fiber is subjected 

to a force 𝐹 > 0, it undergoes a stretch 𝜆𝑡, starting from the new natural configuration 𝜆𝑡𝑜. Observe also that 𝜆𝑡 represents the experimentally 

measured overall thread stretch. As a final result, the stretches for the soft region (that varies its permanent stretch according to humidity), hard 

region and matrix starting from the spun initial length (see the scheme in Fig. 7) are given by 𝜆𝑠 = 𝜆ℎ = 𝜆𝑚 = 𝜆𝑡𝜆𝑡𝑜, where 𝜆𝑡 represents the 

experimentally measured stretch. 



  

 

Fig. 8. Theoretical stress–stretch curves at different humidity conditions (continuous lines correspond to loading and dashed to unloading curves). Three points of the curve RH 

=85% are marked to illustrate different regimes schematically illustrated on the right: 𝑃1 hard phase is unloaded, 𝑃2 hard phase in its natural configuration, 𝑃3 hard phase in traction. 

Here 𝐸𝑜
ℎ =2.16 GPa, 𝐸𝑠 =18 MPa, 𝜇 =0.14 MPa, 𝑐 ,RH𝑐 = 

80%,𝜆𝑙𝑖𝑚 =1.34. 

The overall stress–stretch relation is 

 𝑡 𝑡 ℎ 𝑡 𝑡 ℎ ⎢⎡( 𝜆𝑐ℎ − 𝜆ℎ𝑛 )2 ⎥⎤ 𝑠 
[( 
𝜆𝑠𝑐 − 𝜆𝑠𝑛 )2 ] 

( 
𝑡 𝑡 1 ) 

 𝜎 (𝜆 ) = 𝛩(𝜆𝑛 − 𝜆 𝜆𝑜)(1 − 𝛼 RH)𝐸𝑜 
⎢⎣ ℎ − 𝜆𝑡𝜆𝑡𝑜− 1⎦⎥ + 𝐸𝜆 𝑠𝑐 − 𝜆𝑡𝜆𝑜𝑡 − 1 + 𝜇 𝜆 𝜆𝑜 − ( 𝜆𝑡𝜆𝑜𝑡 )2

 (18) 

𝜆𝑐 

where 𝛩 is the step function considering that the hard fraction chains are not able to sustain any compressive force (𝜎ℎ = 0 if 𝜆ℎ < 𝜆ℎ
𝑛). Observe that 

from this equation at 𝜆𝑡 = 1 and 𝜎𝑡 = 0 we determine 𝜆𝑡𝑜. 

In Fig. 8 we describe the behavior of the model here proposed, representing the stress–stretch curves for different humidity conditions (RH = 

0%, 70%, 85%, 90%, 100%). In the dry condition (RH = 0%) the natural length of the hard and soft fraction coincide (𝜆ℎ
𝑛 = 𝜆𝑠𝑛) and the hard 

fraction participates to the mechanical response from the beginning. Consequently the force is carried mainly by the much stiffer hard fraction for 

all the elongation set. The behavior is similar for RH < RH𝑐 where a lower stiffness is due to the hard domain disorder inducing a damage according 

with Fig. 5 and Eq. (12) (see the curve RH = 70%). Once RH > RH𝑐, the role played by the amorphous fraction becomes much more relevant 

because its natural length 𝜆𝑠𝑛 undergoes a significant decrease (see Fig. 4). This leads to a consequent substantial decrease of the initial (zero force) 

length of the total fiber 𝜆𝑡𝑜. Thus, as long as the fibrils of the hard region do not reach again their natural length, the mechanical response is given 

only by the amorphous phase and the matrix (see e.g. point 𝑃1 in Fig. 8). Then, as soon as the hard region starts to be stretched (point 𝑃2) the force 

starts again to be mainly sustained by the stiffer crystalline phase (see e.g. point 𝑃3). We point out that in this way we give a theoretical interpretation 

of the ‘localized’ material hardening observed in spider threads (see Fig. 9). The behavior is similar also for higher values of the humidity (RH = 

90%), with different values of 𝜆𝑡 distinguishing the two regimes. At extreme humidity conditions (last curve at RH = 100%) the mechanical behavior 

may be given by the only amorphous phase and matrix if the ultimate stretch of the fiber is lower than the transition threshold. 

Even though in this paper we are focused on humidity effects on monotonic stress–stretch curves, in Fig. 8 we also show through dashed lines 

the system behavior when subjected to unloading. This figure let us show that, based on the microstructure interpretation, the proposed model is 

able to describe not only the fundamental macroscopic damage effect, but also the experimentally observed presence of residual stretches (Vehoff 

et al., 2007). Interestingly, permanent deformations are not deduced as usually independently from damage, e.g. through the introduction of new 

variables, whereas both damage and residual stretches descend from the unfolding of the hard domains. 

A comment about a second important aspect of the variable mechanical behavior is now in order: temperature effects. Indeed, when the 

temperature at fixed RH is increased, the silk undergoes an effect of link scissions as described for humidity (Plaza et al., 2006). Moreover, also 

temperature growth is accompanied by fiber contraction (Glišović and Salditt, 2007) and again the experiments show the existence of a critical 

value where such effects of link scission and length variation are strongly localized. In analogy with polymer mechanics this value is indicated as 

glass transition temperature 𝑇𝑔. In particular, in Fu et al. (2009) the authors obtained an experimental linear relation between 𝑇𝑔 and RH. Of course 

such a relation would ask a theoretical description that by itself appears to be very interesting, but it is out of the aims of this paper. Instead, to 

show that our model can reproduce also the experimental temperature effects, we phenomenologically assume a Gaussian dependence of the number 

of links from temperature in Eq. (2) (where RH is substituted by 𝑇 ) and then we modify correspondingly the constitutive equation Eq. (18). 

Accordingly RH𝑐 is substituted by 𝑇𝑔. The efficacy of these assumptions are well supported by the experimental comparison considered in the 

following section. 

The final aspect of the model regards the humidity and temperature dependence of the limit stretch: to this hand we need a fracture criterion. 

Based on the considerations in Yazawa et al. (2020) we here assume that the fracture is regulated by the hard fraction and in particular that the 

fracture condition is 𝜆ℎ = 𝜆𝑙𝑖𝑚, where 𝜆𝑙𝑖𝑚 is a given constitutive parameter. As we show in the following section, this criterion is successful with the 

exception of the fully dry condition where the breakage is known to be induced by localized damage defects (Yazawa et al., 2020). 



  

 

Fig. 9. Theoretical (continuous lines) vs experimental (dots, reproduced from (Elices et al., 2005)) stress–stretch curves for Argiope trifasciata spider fibers at different RH and 𝑇 = 

20◦C. Here 𝐸𝑜
ℎ = 2.2 GPa, 𝐸𝑠 = 13.5 MPa, 𝜇 = 0.14 MPa, 𝑐1 = 1.3, 𝑐2 = 0.87, 𝛼 = 0.0094, �̄� = 8.5, 𝑚𝑓 ∕𝑚𝑜 = 0.12, 𝜆𝑐𝑠 = 1.62, 𝜆𝑙𝑖𝑚 = 1.34, RH𝑐 =85%. 

 

Fig. 10. Theoretical (continuous lines) vs experimental (dots) curves for the initial elastic modulus (a), initial (zero force) stretch (b), limit stretch (c) and assumed Gaussian 

distribution of broken links (d) as a function of RH for Argiope trifasciata fibers (Plaza et al., 2006). Here 𝐸𝑜
ℎ = 4.05 GPa, 𝐸𝑠 = 39.6 MPa, 𝜇 =0.2 MPa, 𝑐1 =1.4, 𝑐2 =0.75, 𝛼 =0.0065, 

𝑠 ̄ =0.6, 𝑚𝑓 ∕𝑚𝑜 =0.23, 𝜆𝑠𝑐 =2.05, 𝜆𝑙𝑖𝑚 =1.26, and RH𝑐 =80,66,50% for 𝑇 =20,55,90◦C, respectively. 

3. Experimental validation 

In this final section we verify the effectiveness of the proposed model in predicting the mechanical behavior of spider silks by quantitatively 

comparing the main experimental effects induced by humidity and temperature variations on different silks with the theoretical behavior. 

Consider first the tensile response under variable RH for a highly stretchable silk (Argiope trifasciata fibers, reproduced by Elices et al. (2005)). 

As shown in Fig. 9 this silk exhibits a remarkable dependence of the mechanical response on humidity. We may observe two different regimes in 

accordance with the silk experimental response: for RH<RH𝑐 the behavior is almost linear and this is due in our model to the dominance of the 

hard fraction; for RH>RH𝑐 we have two regimes. Initially the silk is highly stretchable, with high deformations at very low forces. In this regime 

the numerical simulations show that the hard region is shorter than its natural length, so it does not contribute to the fiber stiffness. When this length 

is attained, the fiber exhibits a sudden hardening. In Fig. 9 it is possible also to verify the efficacy of the introduced fracture criterion. Indeed, we 

calibrated the hard fraction limit stretch to reproduce the experimental limit at RH = 70% and then we predicted the RH = 90% and 100% cases 

with errors of only 0.17% and 1.49%, respectively. As anticipated the prediction is less accurate for very low humidities. Observe the possibility 

of predicting damage, hardening localization and fracture strain at very different values of the humidity with fixed parameters. 

To further test the efficiency of the model, we show the possibility of predicting the influence of humidity and temperature on other important 

material parameters, such as elastic modulus, supercontraction stretch of unrestrained fibers and limit stretches (Fig. 10). It is important to remark, 

regarding the predictivity properties of the model, that in this prediction of the experiments we fixed the material parameters and changed only 

RH𝑐 at different temperatures using the experimental values in Plaza et al. (2006). In Fig. 10 we also reproduce the limit stretch for the available 

testing temperature (55◦C). 



  

 

Fig. 11. Theoretical (continuous lines) vs experimental (dots) stress–stretch curves for Argiope trifasciata spider fibers at different temperature at fixed RH = 50% (reproduced from 

(Plaza et al., 2006)). Here 𝑇𝑔 = 84◦C, 𝐸𝑜
ℎ = 3.83 GPa, 𝐸𝑠 = 32.7 MPa, 𝜇 = 2 MPa, 𝑐1 = 1.36, 𝑐2 = 1.25, 𝛼 = 0.00995, �̄� = 4.5, 

𝑚𝑓 ∕𝑚𝑜 =0.345, 𝜆𝑠𝑐 =1.49, 𝜆𝑙𝑖𝑚 =1.27. 

 

Fig. 12. Theoretical (continuous lines) vs experimental (dots) stress–stretch curves for Nephila clavata fibers at different humidity and 𝑇 = 25◦C (reproduced from the experiments 

at strain rate of 3.3×10−3 𝑠−1 in Yazawa et al. (2020)). Here 𝐸𝑜
ℎ = 5.6 GPa, 𝐸𝑠 = 1.47 GPa, 𝜇 = 1.1 MPa, 𝑐1 = 1.35, 𝑐2 = 1.46, 𝛼 = 0.009, 

𝑚𝑓 ∕𝑚𝑜 =0.878, 𝑠 ̄ =3, 𝜆𝑠𝑐 =4.6,𝜆𝑙𝑖𝑚 =1.25, RH𝑐 =80%. 

Furthermore, we consider the effects induced by variable temperature at fixed RH in Plaza et al. (2006). We evaluated 𝑇𝑔 at given RH=50% 

using the relation reported in the same paper. The results exhibited in Fig. 11 show again an accurate reproduction of the experiments. We remark 

that a comparison of the values of 𝐸 at 𝑅𝐻 = 50% and different temperatures lead to different values of the elastic moduli estimated by Figs. 10 

and 11, thus showing that the data refers to different silks so that different parameters have been used in the two figures. 

In addition to the Argiope trifasciata spider fibers (Fig. 9), we consider tensile tests performed on a Nephila clavata spider fiber under various 

RHs (0%, 75%, 97%) reproduced from (Yazawa et al., 2020). In Fig. 12 we report the comparison between the experimental results and the 

theoretical model. Despite this silk shows a remarkably different response to the humidity variations, the proposed model is once again significantly 

successful in quantitatively predicting the observed experimental behavior. In Fig. 12 we also test the above described rupture hypothesis for the 

Nephila clavata fibers by using the value corresponding to the experimental break at RH = 75% to predict the breaking strain at RH = 97% with 

an error of 0.22%. This remarkable small error confirms the plausibility of the proposed rupture criterion. Observe anyway that this hypothesis in 

this silk cannot be applied to the fully dry case where the breakage is typically induced by localized defects (Yazawa et al., 2020). 

As a last comparison with experimental results, in Fig. 13 we show the possibility of predicting with remarkable accuracy the complex 

mechanical response of a dragline silk in dry condition (reproduced from (Gosline et al., 1999)). Notice that here, the thread is produced by a third 

species of spider, the Araneus diadematus. 

4. Discussion 

A comment is in order. As anticipated previously, in the recent paper (Cohen et al., 2021) the authors proposed a different model well 

reproducing with 8 parameters the experiments in Fig. 10(a),(b). Our model, being based on a more detailed description of the microstructure, 

considering the two different fractions and stretch induced unfolding effects, ends up with 10 parameters. On the other hand, the proposed model 

is able to reproduce the whole stress–strain curves as function of both temperature and humidity, with unloading, increasing damage, fracture and 

residual stretches. It is important to observe that the most diffuse models efficiently describing damage and residual stretches in soft polymeric 

materials (without any temperature and humidity effects) adopt 7–8 parameters (see De Tommasi et al. (2019) and references therein). 



  

 

Fig. 13. Theoretical (continuous lines) vs experimental (dots) stress–stretch curves for Araneus diadematus spider fibers (reproduced from (Gosline et al., 1999)). 

Here 𝐸𝑜
ℎ =6.75 GPa, 𝐸𝑠 =13.6 MPa, 𝜇 =1 MPa, 𝑐1 =1.005, 𝑐2 =1.979, 𝛼 =0, 𝑚𝑓 ∕𝑚𝑜 =0.13, 𝑠 ̄ =4.5, 𝜆𝑐𝑠 =1.25, RH𝑐 =84%. 

5. Conclusions 

The described ability of the proposed model of predicting the experimental behavior of different mechanical properties make us confident that 

it well reproduces the humidity and temperature effects at the molecular scales. This is supported even more by predicting the behavior of different 

silks and environmental conditions. We strongly believe that this is a consequence of our microstructure deduction of the material response function. 

The physical meaning of all the adopted (microscopic) parameters opens up the possibility of applying the proposed model not only to other protein 

materials with similar structures (Puglisi et al., 2017), but also in the design of bioinspired materials employing chosen specific proteins (Greco et 

al., 2021; Liu et al., 2019). 
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