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Wave attenuation in viscoelastic hierarchical plates

Vińıcius F. Dal Poggetto1,∗, Edson J. P. Miranda Jr.2,3,4,∗, José Maria C. Dos
Santos4, Nicola M. Pugno1,5

Abstract

Phononic crystals (PCs) are periodic structures obtained by the spatial arrangement
of materials with contrasting properties, which can be designed to efficiently manip-
ulate mechanical waves. Plate structures can be modeled using the Mindlin-Reissner
plate theory and have been extensively used to analyze the dispersion relations of PCs.
Although the analysis of the propagating characteristics of PCs may be sufficient for
simple elastic structures, analyzing the evanescent wave behavior becomes fundamental
if the PC contains viscoelastic components. Another complication is that increasingly
intricate material distributions in the unit cell of PCs with hierarchical configuration
may render the calculation of the complex band structure (i.e., considering both prop-
agating and evanescent waves) prohibitive due to excessive computational workload.
In this work, we propose a new extended plane wave expansion formulation to com-
pute the complex band structure of thick PC plates with arbitrary material distribution
using the Mindlin-Reissner plate theory containing constituents with a viscoelastic be-
havior approximated by a Kelvin-Voigt model. We apply the method to investigate
the evanescent behavior of periodic hierarchically structured plates for either (i) a
hard purely elastic matrix with soft viscoelastic inclusions or (ii) a soft viscoelastic
matrix with hard purely elastic inclusions. Our results show that for (i), an increase
in the hierarchical order leads to a weight reduction with relatively preserved attenu-
ation characteristics, including attenuation peaks due to locally resonant modes that
present a decrease in attenuation upon increasing viscosity levels. For (ii), changing
the hierarchical order implies in opening band gaps in distinct frequency ranges, with
an overall attenuation improved by an increase in the viscosity levels.
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1. Introduction

Hierarchical materials present a structured composition across multiple length
scales and have long been a subject of study [1] since their occurrence in nature is
associated with excellent static [2] and dynamic characteristics [3]. Such properties
may be harnessed to design novel materials through the selection of constituents in
a proper multi-level structuring [4]. Although the static properties of hierarchical
structures have been thoroughly exposed in different contexts [5–7], their application
to obtain interesting dynamic properties remains to be fully explored. In particular,
hierarchical periodic structures can be used to attenuate waves in a particularly broad
manner [8–10], which has been demonstrated both theoretically and experimentally
with the use of dissipative elastic metamaterials [11].

Periodic structures, which can be obtained by the repetition of a representative
unit cell, are known for their ability to manipulate waves [12], leading to applications
in mechanical systems such as vibration attenuation, imaging, and cloaking [13, 14].
A remarkable feature that can be found in a specific class of periodic structures named
phononic crystals (PCs) [15] is that impedance mismatches achieved, for instance, by
using spatial modulations in single-phase materials [16–19] or by combining materials
with contrasting elastic properties [20–22] can lead to the occurrence of frequency
ranges named band gaps (BGs). Such frequency ranges are typically created in PCs
by the destructive interference of waves (Bragg scattering) [23], thus prohibiting free
wave propagation due to the resulting purely evanescent behavior of waves [24, 25].
In the case of locally resonant PCs [26], Fano-like interference mechanisms can also
occur in the sub-wavelength scale [27], thus typically leading to low-frequency BGs.
Although the opening of BGs is evident in the case of purely elastic materials, the
inclusion of damping leads to complications in the determination of BGs, since spatial
attenuation becomes inherent in such cases [28–30].

Band diagrams can be used to conveniently analyze the dispersion relation (i.e.,
the relation between the wavenumber and frequency) of periodic structures and can
be obtained through a variety of techniques. Although finite element (FE)-based
techniques are widely employed [31–34], these methods usually suffer from disadvan-
tages in terms of computational burden, which may render their use prohibitive when
distinct orders of hierarchy are considered due to the inherently detailed modeling
which is required. Dispersion relations can also be computed using the plane wave
expansion (PWE) method, which typically results in a reduced computational effort
[35–37]. On the other hand, the PWE method usually requires the use of analytical
expressions for the shape of the scatterers included in the PC matrix material, which
limits the applicability of the method. Also, the conventional PWE method does not
offer information about the evanescent behavior of waves [25, 38], which is necessary
to characterize the complex band structure of damped systems. A solution to this
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limitation is proposed by the extended plane wave expansion (EPWE) method [39],
which yields both propagating and evanescent parts of the wave vectors for a given
frequency of interest at the expense of a greater computational cost.

Recent advances in the experimental observations of guided waves in biological
structures such as the human skull [40] have revealed the propagation of Lamb waves
[41, 42], which motivates the analysis of the wave propagation in structured media
using plate theories [43]. Plates have been thoroughly explored as versatile structures
in the field of metamaterials and PCs using the Kirchhoff plate theory [44] with
periodic arrays of embedded resonators [45, 46], periodic arrays of local resonators
[47, 48], the inclusion of point defects [49], or the Mindlin plate theory [50] with
embedded [37, 51] or attached resonators [52, 53]. The use of plate theories for the
computation of dispersion relations seems thus to be the most common solution when
compared to the use of solid models with stress-free boundaries [54] or equivalent
low impedance surrounding media [55]. Although the Kirchhoff-Love plate theory
can be considered under the assumption of negligible shear strain and rotational
inertia in the low-frequency range, its use may require additional refinements of the
kinematic model or adjustments to properly include inertial terms [56, 57]. On the
other hand, the Mindlin-Reissner plate theory already accounts for shear strain and
rotational inertia terms, although requiring larger computational models, being also
more suited to analyze structures which operate in higher frequency ranges, which is
the case of PCs. Previous works have computed the dispersion relation considering
the viscoelastic material behavior for the SH-wave of two-dimensional PCs [58] and
quasi-periodic lattices [59]. The investigation of the effects of hierarchical structuring
on plates, however, especially when considering the complex band structure necessary
to fully understand the implications of components that present damping, remains
largely unexplored.

In this work, we propose the numerical investigation of the evanescent behavior
of viscoelastic hierarchical plate PCs with the use of the EPWE method applied
using the Mindlin-Reissner plate theory. This paper is organized as follows: Section 2
presents the considered plate theory, the material behavior, and the application of the
EPWE method to plates with discrete geometries. Section 3 presents the obtained
results, and Section 4 presents our concluding remarks.

2. Models and methods

In this section, we present the analytical derivations regarding the calculation of
dispersion curves for periodic PC structures using the Mindlin-Reissner plate theory,
which considers non-negligible rotational inertia and transverse shear strain [60]. The
related dynamic equations are expressed considering periodic solutions for both dis-
placements and rotations, and also periodic material properties. Then, a Kelvin-Voigt
viscoelastic model is included to represent the dissipative behavior of constituents,
which is considered when formulating the equations that allow to compute the com-
plex band structure of the unit cell.
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2.1. Wave propagation in periodic plates using the Mindlin-Reissner plate theory

Plate theories can be employed for the analysis of structural elements with one
dimension (thickness) considerably smaller than the other two ones [61]. Considering
the Mindlin-Reissner plate theory, the equation that describes the dynamic behavior
in the time domain (t) of an isotropic plate lying in the xy plane without applied
loads is given by

∂
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where uz = uz(x, y, t) is the plate out-of-plane displacement, ψx = ψx(x, y, t) and
ψy = ψx(x, y, t) represent the rotations of the plate midplane normal direction, κ
is the plate shear correction factor [62], µ = µ(x, y) is the material shear modulus,
ν = ν(x, y) is the material Poisson’s ratio, ρ = ρ(x, y) is the material mass density, h
is the plate thickness, and D =D(x, y) is the plate flexural stiffness, given by

D(x, y) = E(x, y)h3
12(1 − ν2(x, y)) , (2)

where E = E(x, y) is the material Young’s modulus. If the plate material proper-
ties are periodic, the resulting displacement and rotation solutions present the same
periodicity [63], which can be used to obtain the dispersion curves of the periodic
medium.

To properly analyze the propagation of elastic waves in periodic plates, the PWE
method requires the expression of displacements, rotations, and material properties
considering their respective spatial periodicity. Let us denote the position vector r in
terms of its Cartesian components, i.e., r = x̂i + yĵ. Considering a Bloch solution [63]
for the displacements uz(x, y, t) = uz(r, t), one has

uz(r, t) = uzk(r)e−iωt , (3)

where uzk(r) is a spatial function, and ω is the considered angular frequency. Ac-
cording to Bloch’s theorem, uzk(r) must obey

uzk(r) = eik⋅r uz0(r) , (4)

where k is the two-dimensional wave vector, which can be written in terms of its
Cartesian components as k = kxî + ky ĵ, and uz0(r) is a periodic function with the
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same periodicity as the medium. Thus, uz0(r) can be represented as a Fourier series
using

uz0(r) =∑
G

ûz(G)eiG⋅r , (5)

where ûz(G) denotes a Fourier coefficient for the representation of the out-of-plane
displacements, which must be summed for infinite reciprocal lattice vectors of the form
G = Gxî+Gy ĵ. For a square lattice unit cell of side length a, Gx = nx

2π
a and Gy = ny

2π
a

for {nx, ny} ∈ Z. Thus, for −N ≤ {nx, ny} ≤ N , N ∈ N, a total of nG = (1+ 2N)2 plane
waves is considered.

The expression of displacements in the periodic medium can thus be obtained by
combining Eqs. (3)-(5) in the form

uz(r, t) = e−iωt∑
G

ûz(G)ei(k+G)⋅r , (6)

which presents a form appropriate for its application in the PWE method.
An analogous procedure can be applied to the rotations ψx(r, t) and ψy(r, t),

allowing to write
ψx(r, t) = e−iωt∑

G

ψ̂x(G)ei(k+G)⋅r ,

ψy(r, t) = e−iωt∑
G

ψ̂y(G)ei(k+G)⋅r ,
(7)

where ψ̂x(G) and ψ̂y(G) denote the Fourier coefficients for the representation of the
midplane rotations ψx and ψy, respectively.

The wave vector k and its components can be classified according to its real and
imaginary parts, assumed to be co-linear [64]: purely real wave vectors yield prop-
agating waves, purely imaginary wave vectors yield evanescent waves, and complex
conjugate solutions yield decaying propagating waves.

2.2. Material properties

Let us consider a square unit cell with a side length of a, divided in a set of
square elements (pixels) used to describe its spatial configuration. Each pixel can be
described by the x- and y-coordinates of its center, denoted as xc and yc, respectively,
its side length lc, and a corresponding material property pc (Figure 1). Although the
pixels do not necessarily form a regular grid, they cover the entire area A of the unit
cell, i.e., ∑A l

2
c = a2. Furthermore, a four-fold symmetry is assumed so that the band

structure of the medium can be investigated by analyzing a reduced region of the unit
cell [65].

The PWE method also requires that the material properties be written in terms
of their Fourier series. Thus, a general expression can be stated for a given material
property p using

p(r) =∑
G

p̂(G)eiG⋅r , (8)

where p̂(G) denotes a Fourier series term for the representation of the corresponding
material property, which theoretically must be summed for an infinite number of
reciprocal lattice vectors G.
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Figure 1: Square plate with side length L, uniformly divided in pixels with constant property pc for
each corresponding domain x ∈ (xc − lc/2, xc + lc/2), y ∈ (yc − lc/2, yc + lc/2).

By considering the description of the unit cell as an ensemble of square pixels, as
previously described, the term p̂(G) can be computed as [66, 67]

p̂(G) =∑
A

( lc
a
)
2

sinc(Gxlc
2
) sinc(Gylc

2
)pc e−iGxxce−iGyyc , (9)

which must be summed over the whole unit cell, i.e., for {xc ± lc/2, yc ± lc/2} ∈
[−a/2, a/2].

The process of construction of the hierarchical structure starts from a square unit
cell composed of a matrix material with the inclusion of another material correspond-
ing to a 1/9 area filling fraction (shown in blue and yellow, respectively, in Figure
2a). This initial structure is further divided in a 3 × 3 grid (dashed lines in Figure
2b), where each matrix pixel is substituted by a scaled version of the initial unit cell
(Figures 2c and 2d), while for inclusion pixels no substitutions are made. This proce-
dure is applied to each of the 9 substructures, thus obtaining a self-similar Sierpinski
carpet fractal structure [68] with an increased order (Figure 2e) [69, 70]. This process
can be repeated indefinitely. The first presented structure is here considered as the
0-th order hierarchical structure, since the inclusion and matrix materials present the
same orders of magnitude. It is also important to note that the resulting unit cell
presents a structure which is especially suited to be used in combination with Eq. (9),
thus allowing to compute the corresponding representation of the periodic material
properties.

The inclusion filling fraction for the n-th hierarchical order, ϕn, is given by

ϕn = 1 − (
8

9
)
n+1
, (10)

where we consider n = 0 as the first order. The equivalent specific mass density is

6



  

(b) (c)(a) (d) (e)

n=0 n=1
substructuring

Figure 2: Hierarchical plate structuring. (a) The initial unit cell, with a 1/9 filling fraction of the
inclusion material (yellow) over the matrix material (blue), (b) is further divided in a 3 × 3 regular
grid, (c) where each matrix pixel is (d) substituted by a scaled version of the initial unit cell, while
for inclusion pixels, no substitutions are made. (e) The resulting self-similar structure represents a
hierarchical structure of a higher order.

given by

ρn = ρm(
8

9
)
n+1
+ ρi[1 − (

8

9
)
n+1
] , (11)

where ρm and ρi refer, respectively, to the matrix and inclusion material mass densi-
ties.

2.3. Viscoelastic material behavior

The real part of wave vectors shown in band diagrams are commonly computed
considering a purely elastic material behavior. However, viscoelastic behavior is ob-
served in several components typically used in mechanical systems [71]. The frequency
dependence of the material shear modulus can be approximated by simple models
analogous to spring and dashpot elements [72]. The Kelvin-Voigt viscoelastic model
can be used to describe the material dissipation proportional to the excitation, relat-
ing the shear stress, τ(r, t), and the shear strain, γ(r, t), through the time-dependent
relation

τ(r, t) = µ′(r)γ(r, t) + µ′′(r)∂γ(r, t)
∂t

, (12)

where µ′(r) is the shear storage modulus and µ′′(r) represents a velocity-proportional
viscoelastic dissipative term. When assuming the single-frequency time functions
τ(r, t) = e−iωtτ(r, ω) and γ(r, t) = e−iωtγ(r, ω) this equation can be represented in the
frequency domain, as

τ(r, ω) = µ∗(r, ω)γ(r, ω) , (13)

where µ∗(r, ω) = µ′(r) − iωµ′′(r) is the complex shear modulus of the Kelvin-Voigt
material; henceforth, the (⋅)∗ superscript is used to denote a viscoelastic quantity.
The imaginary part of the complex shear modulus is also often referred to as shear
loss modulus. It is important to notice that the negative sign in the imaginary part
of µ∗(r, ω) is a consequence of assuming time functions of the form e−iωt, i.e., with
the same form as the displacement function given by Eq. (3).
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For simplification, let us assume that the Poisson’s ratio of the structure materials
have a constant value over the considered frequency range. Although the frequency
dependence of the Poisson’s ratio may present a rather complex behavior, which is
often ignored [73], this simplifying hypothesis seems to yield reasonable experimental
results [74, 75]. Thus, this allows to write the Young’s modulus of a given material
as

E(r, t) = 2(1 + ν(r))µ(r, t) , (14)

which yields the frequency domain relation

E∗(r, ω) = E′(r) − iωE′′(r) , (15)

where E′(r) = 2(1 + ν(r))µ′(r) and E′′(r) = 2(1 + ν(r))µ′′(r). Consequently, the
spatial- and frequency-dependent plate flexural stiffness, D∗(r, ω), can be computed
as

D∗(r, ω) = E∗(r, ω)h3
12(1 − ν2(r)) =D

′(r) − iωD′′(r) , (16)

where D′(r) = E′(r)h3

12(1−ν2(r)) , D
′′(r) = E′′(r)h3

12(1−ν2(r)) . We also define the auxiliary quantities

α∗(r, ω) and β∗(r, ω), which will be present in the PWE derivations, as

α∗(r, ω) =D∗(r, ω)ν(r) = α′(r) − iωα′′(r) ,

β∗(r, ω) = D
∗(r, ω)(1 − ν(r))

2
= β′(r) − iωβ′′(r) ,

(17)

where α′(r) = E′(r)h3ν(r)
12(1−ν2(r)) , α

′′(r) = E′′(r)h3ν(r)
12(1−ν2(r)) , β

′(r) = E′(r)h3

24(1+ν(r)) , and β
′′(r) = E′′(r)h3

24(1+ν(r)) .
For purely elastic materials, some wave vectors can be expected to be purely real

(propagating waves). However, if one also considers the damping owing to viscoelastic
effects, all waves can be expected to present some degree of decay, and the analysis
of the real part of wavenumbers is no longer sufficient to completely describe the
computed band diagrams. In these cases, the EPWE method can be employed to
obtain the evanescent behavior of waves.

2.4. Extended plane wave expansion method

The Fourier representations of spatial- and frequency-dependent material proper-
ties µ∗(r, ω) (see Eq. (13)), D∗(r, ω) (see Eq. (16)), α∗(r, ω), β∗(r, ω) (see Eq. (17)),
and ρ(r) can be expressed using Eq. (8) and summarized as

p∗(r, ω) =∑
G

p̂∗(G)eiG⋅r =∑
G

(p̂′(G) − iωp̂′′(G))eiG⋅r , (18a)

ρ(r) =∑
G

ρ̂(G)eiG⋅r , (18b)

where p∗(r, ω) may refer to µ∗(r, ω), D∗(r, ω), α∗(r, ω), or β∗(r, ω); p̂′(G), p̂′′(G),
and ρ̂(G) denote the Fourier components for the spatial expressions of p′(r), p′′(r),
and ρ(r), respectively.
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Substituting the out-of-plane displacement (Eq. (6)), rotations (Eq. (7)), and
material expressions (Eq. (18)) in the plate first dynamic equation (Eq. (1a)), one
may write

∑
H

∑
G

{[κµ̂∗(H)h((kx +Gx)(kx +Gx +Hx) + (ky +Gy)(ky +Gy +Hy)) − ω2ρ̂(H)h]ûz(G)

+ iκµ̂∗(H)h(kx +Gx +Hx)ψ̂x(G) + iκµ̂∗(H)h(ky +Gy +Hy)ψ̂y(G)}ei(k+G+H)⋅r = 0 .

(19)

The orthogonality property of the complex exponential [76, 77] can be used to
obtain, substituting H =Gi −Gj and G =Gj, for every r, the set of linear equations
i = 1, . . . , nG written as

∑
Gj

[κµ̂∗ijh((kx +Gxj)(kx +Gxi) + (ky +Gyj)(ky +Gyi)) − ω2ρ̂ijh]ûz(Gj)

+ iκµ̂∗ijh(kx +Gxi)ψ̂x(Gj) + iκµ̂∗ijh(ky +Gyi)ψ̂y(Gj) = 0 ,
(20)

where µ̂∗ij = µ̂′(Gi −Gj) − iωµ̂′′(Gi −Gj) and ρ̂ij = ρ̂(Gi −Gj). In this case, each
material property p(r) represented in terms of its Fourier series (i.e., µ′, µ′′, and ρ)
can be associated with a symmetric matrix p, with terms given by [p]ij = p(Gi−Gj),
which can be computed with the use of Eq. (9) for G =Gi −Gj.

It is important to mention a particularity associated with the use of Fourier series
for the analysis of discontinuous structures [78]. In most usual cases, the terms hj =
∑j fi−jgj present in the last equation (e.g., ∑Gj

µ̂′(Gi −Gj)ûz(Gj)) are in the form
of Laurent’s rule. This is commonly used to justify the formulation named improved
plane wave expansion (IPWE) [79] to improve the convergence of the PWE method,
formulated by substituting the previous sum by the inverse rule hj = ∑j[1/f]−1i−jgj,
where [f]−1 denotes the inverse of the Toeplitz matrix [f]ij = fi−j. In the present
case, the use of Eq. (9) to compute the Fourier expansion of material properties
considering p(Gi−Gj) does not lead to a Toeplitz matrix, which may possibly hinder
the improvement yielded by the IPWE. Also, since some of the components may be
purely elastic and thus present p′′ = 0, the IPWE method is not applicable for the
computation of all matrices, being restricted to the matrices associated with µ′, D′,
α′, and β′.

The same reasoning use to obtain Eq. (20) from Eq. (1a) can be applied to the
plate dynamic equation given by Eq. (1b) to obtain

∑
Gj

[D̂∗ij(kx +Gxj)(kx +Gxi) + β̂∗ij(ky +Gyj)(ky +Gyi) + κµ̂∗ijh − ω2ρ̂ijh
3/12]ψ̂x(Gj)+

[α̂∗ij(ky +Gyj)(kx +Gxi) + β̂∗ij(kx +Gxj)(ky +Gyi)]ψ̂y(Gj) − iκµ̂∗ijh(kx +Gxj)ûz(Gj) = 0 ,
(21)

where D̂∗ij = D′(Gi −Gj) − iωD′′(Gi −Gj), α̂∗ij = α′(Gi −Gj) − iωα′′(Gi −Gj), and
β̂∗ij = β′(Gi −Gj) − iωβ′′(Gi −Gj), computed with the use of Eq. (9).
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Analogously, the same procedure can be applied to Eq. (1c), allowing to write

∑
Gj

[D̂∗ij(ky +Gyj)(ky +Gyi) + β̂∗ij(kx +Gxj)(kx +Gxi) + κµ̂∗ijh − ω2ρ̂ijh
3/12]ψ̂y(Gj)+

[α̂∗ij(kx +Gxj)(ky +Gyi) + β̂∗ij(ky +Gyj)(kx +Gxi)]ψ̂x(Gj) − iκµ̂∗ijh(ky +Gyj)ûz(Gj) = 0 .
(22)

By writing the Cartesian components of the wave vector in terms of the azimuth
angle ϕ, i.e., kx = k cosϕ and ky = k sinϕ, Eqs. (20)–(22) can be used, considering a
finite set of reciprocal lattice vectors G1, G2, . . ., GnG

, to obtain a set of equations
that can be formulated as the polynomial eigenproblem

(k2A2(ω,φ) + kA1(ω,φ) +A0(ω,φ) − ω2B)V = 0 , (23)

where matrices A2(ω,φ), A1(ω,φ), A0(ω,φ), and B are described in Appendix A.
Equation (23) can be solved by rearranging it as a second-order polynomial eigen-

value problem in a companion matrix form [80], leading to the k = k(ω) formulation
stated as

[ 0 I
A0(ω,φ) − ω2B A1(ω,φ)

]{ V
kV
} = k [ I 0

0 −A2(ω,φ)
]{ V

kV
} , (24)

which can be solved to obtain complex values of k for every specified value of ω and
ϕ, thus characterizing a k = k(ω) method and allowing to obtain the complex band
structure of the periodic unit cell.

In the case of purely elastic media, since p′′ = 0 for each property (µ′′, D′′, α′′,
and β′′), matrices A2, A1, and A0 become frequency-independent (see Appendix A),
and the eigenproblem can be reduced to the generalized eigenvalue problem

(k2A2(φ) + kA1(φ) +A0(φ))V = ω2BV . (25)

This formulation is equivalent to the general procedure commonly found in liter-
ature [16], which can be applied as a ω = ω(k) approach for the purely elastic case.
Although this method does not allow to obtain the complex band structure of the unit
cell, it requires a considerably reduced computational effort, since it allows to obtain
a representative dispersion curve by scanning the contour of the irreducible Brillouin
zone (IBZ) [65]. In the case of a square unit cell of side length a, the IBZ is defined
as the triangular region delimited by the high-symmetry points Γ (kx = ky = 0), X
(kx = π/a, ky = 0), and M (kx = ky = π/a).

3. Results

For the numerical computations, two different materials are considered to create
the hierarchical plate PCs using a hard (purely elastic behavior) and a soft phase
(viscoelastic behavior), chosen as lead and rubber, respectively. Such materials were
also chosen due to the large mismatch between their mechanical properties. Lead
properties are given by: shear storage modulus µ′1 = 14.9 GPa, Poisson’s ratio ν1 =
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0.3699, and specific mass density ρ1 = 11600 kg/m3. Rubber properties are given
by: shear storage modulus µ′2 = 0.71 MPa, Poisson’s ratio ν2 = 0.4998, and specific
mass density ρ2 = 1260 kg/m3 [29]. These materials are combined in two distinct
configurations, here named as type A and type B. The type A configuration consists of
a hard matrix (lead) with soft inclusions (rubber); the type B configuration consists of
a soft matrix (rubber) with hard inclusions (lead). Increasing levels of shear viscosity
are considered for the soft phase, using the values of µ′′2 = 5, 10, and 25 Pa⋅s [29].

The results are presented considering the normalized frequency with respect to
the matrix material for each configuration, given by ωi = ωa/ci, where ci =

√
µ′i/ρi is

the transverse wave speed (non-dispersive) corresponding to the i-th matrix material,
thus yielding c1 = 1133 m/s for lead (type A matrix) and c2 = 23.7 m/s for rubber
(type B matrix). For the maximum frequency fmax = 2 kHz and thickness h = 3
mm, the smallest wavelength of flexural waves for each medium are given by λmin =
min( 4

√
D1/ρ1h

√
2π/fmax,

4
√
D2/ρ2h

√
2π/fmax) = 11.4 mm. We also select a square

lattice of side a = 100 mm, which ensures h << a, thus indicating the applicability of
plate theories. The normalized frequencies are shown for ω1 ∈ [0,1] (corresponding to
[0,1.8] kHz) and ω2 ∈ [0,8] (corresponding to [0,302] Hz), to consider approximately
the same number of propagating branches for each PC type.

The considered structures present increasing orders of hierarchy, and consequently,
inclusion filling fractions (see Eq. (10)), namely, no hierarchy (ϕ0 = 0.1111), first-order
hierarchy (ϕ1 = 0.2099), and second-order hierarchy (ϕ2 = 0.2977).

A brief comparison between the band diagrams obtained using distinct plate the-
ories is given in Appendix B to justify the use of the Mindlin-Reissner plate theory.
A comparison between the results obtained using the FE and the PWE solutions with
the ω = ω(k) approach is given in Appendix C. The next sections present results
computed using the PWE methods. First, the main characteristics of the dispersion
diagrams are analyzed for the purely elastic case using the ω = ω(k) approach, which
allows to investigate the contour of the IBZ. Finally, the effects of increasing viscos-
ity levels and hierarchical orders are analyzed considering the dispersion diagrams
obtained using the k = k(ω) formulations.

3.1. Purely elastic case

Let us initially consider the type A configuration (hard matrix and soft inclu-
sions). Several flat bands (zero group velocity [81], ∂ω

∂k = 0) are computed for the
hierarchical order n = 0 (Figure 3a), with no full band gaps opened at their corre-
sponding frequencies. However, partial band gaps (i.e., for specific directions) are
observed and highlighted in green. The partial band gap opened in the frequency
range ω1 ∈ [0.1334,0.1438] is associated with wave modes A1 and A2. Two wave
modes are chosen to illustrate the flat branches, namely A3 (ω1 = 0.2892) and A4

(ω1 = 0.7086), representing wave modes with a strong energy concentration at the
soft inclusion, thus indicating distinct locally resonant modes.

With an increase in the unit cell hierarchical order to n = 1 (Figure 3b), it is
possible to notice that the frequencies of the represented wave modes, B1 and B2

(which correspond, respectively, to the previous modes A3 and A4) present a slight
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decrease, to ω1 = 0.2874 and ω1 = 0.7020, while the partial band gap is now located
at ω1 ∈ [0.1250,0.1335] Also, although not noticeable using the normalized presented
color scales, it is possible to verify an effect associated with the soft phase inclusions
in this hierarchical order, which is highlighted by adjusting the color threshold and
representing 1/9 of the unit cell as the enlarged version of each wave mode. Thus, it
is possible to notice, for modes B1 and B2, corresponding first-order and second-order
resonant mode at the soft inclusions, although these effects are not significant when
compared to the locally resonant mode at the central inclusion.

Finally, for the structure with n = 2 (Figure 3c), the indicated wave modes, C1

(ω1 = 0.2868) and C2 (ω1 = 0.6989), respectively corresponding to A3 (B1) and A4

(B2), confirm the previously observed effect of the increase in the hierarchical order,
i.e., flat bands present slightly decreased frequencies, while the partial band gap is
now located at ω1 ∈ [0.1215,0.1298]. No locally resonant mechanisms particularly
associated with the smallest inclusions were noticed, even when considering higher
frequency ranges (not shown here for the sake of brevity).

For the type B configuration (soft matrix and hard inclusions), the band diagram
computed for the structure with n = 0 (Figure 3d) shows a full band gap (i.e., for
all wave vectors) highlighted in light blue, opened for ω2 ∈ [0.88,0.98]. This band
gap is associated with the wave modes indicated as D1 and D2, both corresponding
to the high-symmetry point X, showing that most part of energy is concentrated at
the matrix material, thus indicating the formation of a Bragg-type band gap. Many
other partial band gaps are highlighted in green.

For an increased hierarchical order of n = 1 (Figure 3e), the band gap which was
previously observed for n = 0 is no longer present, and instead, new band gaps are
formed in the frequency range ω2 ∈ [5.76,6.03], associated with the high-symmetry
point Γ, and ω2 ∈ [7.00,7.63], associated with the wave vector k = 0.45π/a î. The wave
modes associated with the edges of these band gaps, denoted respectively as E1/E2

and E3/E4, indicate a noticeable concentration of energy at the matrix material,
where no scatterers are present.

These effects continue to be observed for the hierarchical order n = 2 (Figure 3f),
where a band gap is now opened in the frequency range ω2 ∈ [5.88,6.33], with wave
modes at the edges denoted as F1 and F2, respectively, associated with the wave vector
k = 0.60π/a î. Although wave mode F1 is similar to wave mode E1, wave mode F2

presents a displacement profile of a higher order, with more points of energy maxima
localized between the scatterers included in this hierarchical order.
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Figure 3: Computed dispersion relations obtained considering the type A PC (hard matrix, soft
inclusions) for orders (a) n = 0, (b) n = 1, and (c) n = 2, and type B PC (soft matrix, hard
inclusions) for orders (d) n = 0, (e) n = 1, and (f) n = 2. Wave modes of interest are indicated
for each band diagram with the corresponding captions. The colorbar represents normalized out-
of-plane displacements. Enlarged regions of the unit cells are also indicated with a modified color
threshold.
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3.2. Complex band structures

In this section, we present the complex band diagrams for both type A and type
B PCs, obtained using the EPWE formulation (Eq. (24)). Since Figure 3 indicates
that all wave modes associated with the edges of band gaps lie in the ΓX direction,
we restrict the analysis to φ = 0, and show the corresponding results using diagrams
with positive (negative) numbers corresponding to the real (imaginary) part of the
complex k values. As the real part of the wave vector is restricted to the first Brillouin
zone, Re(k)a/π is contained in the [0,1] interval. For the imaginary part, Im(k)a/π
is arbitrarily shown in the [0,2] interval. Wave modes corresponding to the branch
with the smallest imaginary part (least attenuated waves) for frequencies of interest
are computed using Eq. (6) and shown for three consecutive unit cells.

Type A PC

We begin by showing the results for both the purely elastic cases, computed with
the ω = ω(k) approach (Eq. (25)), as presented in last section (and thus yielding
only real branches), and the complex band diagrams, computed with the k = k(ω)
approach (Eq. (24)), for increasing hierarchical orders n (Figure 4a). The k = k(ω)
approach yields more bands than the ω = ω(k) approach, which is not able to fully
describe the complex band structure due to the assumption of real wave vectors
[25, 82]. It is also interesting to notice that, although the k = k(ω) approach fails
to match the ω = ω(k) results for the real part of the flat branches (see Appendix
C), the corresponding imaginary part of such branches demonstrates evidence of the
presence of flat branches in the form of swift changes in its derivative (∂ω∂k ), with the
most noticeable example occurring near ω1 = 0.5 for all hierarchical orders. Although
the real part of the computed branches presents noticeable variations between n = 0
and n = 1, the same cannot be said between n = 1 and n = 2, which reinforces the
observations made regarding Figures 3a–c. The same can be said with respect to
the imaginary part of the computed branches, which present slight variations close to
ω1 = 0.5.

Figure 4b presents the minimum of the imaginary part of the computed wave
vectors for n = 0, comparing distinct viscosity levels µ′′2 , showing also the wave modes
corresponding to the least attenuated wave for µ′′2 = 25 Pa⋅s. The highlighted green
region indicates the previously computed partial band gap (see Figure 3a), while the
vertical dashed lines indicate flat branches. The wave modes corresponding to the
peaks shown at ω1 = 0.29 and ω1 = 0.71 correspond to the wave modes labeled as C1

and C2 in Figure 3c. In the vicinity of these frequencies, an increase in the viscosity
level of the inclusions imply in a decrease in the peak attenuation level, which is a
well known property when considering simple locally resonant systems [83]. On the
other hand, the attenuation levels are increased upon an increase in viscosity level for
frequency regions between peaks corresponding to flat branches, while the attenuation
associated with the partial band gap remains constant. This observation is also true
for regions which present local peaks which are not associated with flat branches,
as in the wave mode illustrated at ω1 = 0.53, which lies between the flat branches
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localized at ω1 = 0.46 and ω1 = 0.56. Thus, one may conclude that an increase in the
viscosity level of the inclusions is detrimental for the frequencies associated with flat
branches, but beneficial for frequencies comprised between flat branches.

The influence of increasing orders of hierarchy for fixed viscosity levels on the
smallest attenuated waves is highlighted in Figure 4c. The most noticeable effect is
the shifting of peaks to lower frequencies as the structural hierarchy order is increased,
which is most easily noticeable in the range ω1 ∈ [0.4, 0.6]. From the presented results,
it becomes clear that an increase in the hierarchical order of this type of structure
does not lead to an improvement in the resulting levels of attenuation. However, due
to the increasing filling fractions (see Eq. (10)) of inclusions with lower densities when
compared to the matrix material, the specific mass densities of these configurations,
computed as ρ

(A)
0 = 10444 kg/m3, ρ

(A)
1 = 9417 kg/m3, and ρ

(A)
2 = 8504 kg/m3 for the

type A PC, indicate that it is possible to significantly decrease the resulting structure
weight while practically keeping the same attenuation levels.
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Figure 4: Complex band structures for the type A PC considering (a) increasing shear viscosity
levels for the inclusions (µ′′2 ) and increasing orders of hierarchy (n). (b) Smallest attenuation for the
ΓX direction considering the first hierarchical order (n = 0) with increasing shear viscosity levels. (c)
Comparison between smallest attenuation for increasing hierarchical orders at fixed shear viscosity
levels. Green regions denote partial band gaps and vertical dashed lines indicate the frequencies of
flat branches. The colorbar represents normalized out-of-plane displacements.
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Type B PC

In a similar manner, the complex band diagrams obtained for the type B PC are
shown in Figure 5, with partial band gaps in the ΓX direction highlighted in green.
The shown wave modes are computed at the central frequency of partial band gaps.
Some dispersion branches may be found even within frequency ranges considered as
band gaps by the ω = ω(k) approach (i.e., with no real part), which implies that,
when using a k = k(ω) approach, band gaps must be defined as frequency ranges
where the imaginary part of all waves present a non-zero value. This interpretation
yields a more robust definition of band gap, which can be regarded as a viable metric
for many applications, including structural optimization [84].

For the structure with hierarchical order n = 0 (Figure 5a), the imaginary part
of the complex band diagram presents increasingly differences for ω2 > 5. More
interestingly, the least attenuated waves computed for the ΓX direction present a
monotonic non-decreasing behavior with the increase of viscosity levels. For the
partial band gaps with central frequencies indicated as ω2 = 0.93 (which is also part
of a full band gap) and ω2 = 1.96, the increase in viscosity levels do not lead to a
decrease in attenuation, keeping a constant level of attenuation, thus presenting the
opposite behavior as the type A PC. For frequency ranges between partial band gaps,
the levels of attenuation are typically increased. The wave modes associated with the
indicated frequencies show the formation of band gaps due to Bragg scattering, as
previously stated regarding Figure 3.

Similar observations can be made with respect to the hierarchical orders n = 1
(Figure 5b) and n = 2 (Figure 5c). For the hierarchical order n = 1 (n = 2), the
imaginary part of the complex band diagram presents increasing differences for ω2 > 3
(> 2). The same monotonic behavior is observed for the least attenuated waves for
increasing levels of viscosity, with the wave modes associated with partial band gaps
shown at frequencies ω2 = 5.90 and ω2 = 7.31 (ω2 = 2.92 and ω2 = 6.10).

In the case of the type B structure, the equivalent specific mass densities for
the type B PCs are given, for increasing hierarchical orders, as ρ

(B)
0 = 2356 kg/m3,

ρ
(B)
1 = 3383 kg/m3, and ρ

(B)
2 = 4296 kg/m3. Thus, although increasing the structure

hierarchical order may be useful to manipulate the band gap distribution, this also
implies in an increase in the overall mass density of the unit cell.
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Figure 5: Complex band structures for the type B PC and wave modes corresponding to the least
attenuated branches at the indicated normalized frequencies for the hierarchical orders (a) n = 0,
(b) n = 1, and (c) n = 2, with increasing levels of matrix material shear viscosity (µ′′2 ). Green regions
denote partial band gaps. The colorbar represents normalized out-of-plane displacements.
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4. Conclusions

In conclusion, we have presented a PWE formulation for the computation of the
complex band structure of plate PCs using the Mindlin-Reissner plate theory and the
Kelvin-Voigt model to represent viscoelastic effects, which were used to investigate the
influence of increasing levels of viscosity and hierarchical structuring. The proposed
PWE method presents a very good agreement with the FE-based method with a
considerable reduction in the dimension of the problem.

For the PC configuration of a hard purely elastic matrix with soft viscoelastic in-
clusions (type A), many flat bands are computed, and although no considerable band
gaps are opened due to these flat bands, they are associated with localized increases
in attenuation when considering the least attenuated waves for the complex wave
vector in a given direction. Also, due to the locally resonant mechanisms associated
with these flat bands, an increase in the viscosity level of the soft inclusions leads to
a decrease in the attenuation at these peaks and an increase in the attenuation in the
frequency ranges between peaks. Although an increase in the structure hierarchical
order does not lead to significant changes in the unit cell attenuation, it can be used
to reduce the unit cell specific mass density.

For the PC constituted by a soft viscoelastic matrix with hard purely elastic
inclusions (type B), Bragg scattering band gaps are opened for every considered hi-
erarchical order (not necessarily preserved between consecutive hierarchical orders),
with wave modes indicating a distributed energy profile at the matrix material. Al-
though increasing the hierarchical order may be used to tune the band gaps location,
it also implies in an increase in the unit cell specific mass density. For this type of PC,
an increase in the viscosity levels of the soft phase does not hinder the attenuation of
waves inside partial band gaps, while monotonically enhancing (non-decreasing) the
attenuation in frequency regions outside of band gaps.

Overall, for the type A PC, hierarchical structuring can be harnessed as a strategy
of mass reduction. If the type B PC is preferred, hierarchical structuring can be used
to manipulate the opening of band gaps at distinct frequency ranges at the cost of
an increase in mass.
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Appendix A. Eigenproblem matrices

After truncating the total number of reciprocal lattice vectors in Eqs. (20)–(22) for
a total of nG plane waves, these equations can be written in the form of a polynomial
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eigenvalue problem as

(k2A2 + kA1 +A0 − ω2B)V = 0 , (A.1)

where matrices A2, A1, A0, and B can be partitioned as

A2 =
⎡⎢⎢⎢⎢⎢⎣

A2zz 0 0
0 A2xx A2xy

0 A2yx A2yy

⎤⎥⎥⎥⎥⎥⎦
,A1 =

⎡⎢⎢⎢⎢⎢⎣

A1zz A1zx A1zy

A1xz A1xx A1xy

A1yz A1yx A1yy

⎤⎥⎥⎥⎥⎥⎦
,

A0 =
⎡⎢⎢⎢⎢⎢⎣

A0zz A0zx A0zy

A0xz A0xx A0xy

A0yz A0yx A0yy

⎤⎥⎥⎥⎥⎥⎦
,B =

⎡⎢⎢⎢⎢⎢⎣

Bzz 0 0
0 Bxx 0
0 0 Byy

⎤⎥⎥⎥⎥⎥⎦
,

and the eigenvector V represents

V = { ûz(G1) . . . ûz(GnG
) ψ̂x(G1) . . . ψ̂x(GnG

) ψ̂y(G1) . . . ψ̂y(GnG
) }T .
(A.2)

The terms of the matrices that form A2 are given by

[A2zz]ij = κ(µ̂′ij − iωµ̂′′ij)h ,
[A2xx]ij = (D̂′ij − iωD̂′′ij) cos2φ + (β̂′ij − iωβ̂′′ij) sin2φ ,

[A2yy]ij = (D̂′ij − iωD̂′′ij) sin2φ + (β̂′ij − iωβ̂′′ij) cos2φ ,
[A2yx]ij = [A2xy]ij = (α̂′ij − iωα̂′′ij + β̂′ij − iωβ̂′′ij) sinφ cosφ ;

(A.3)

for the terms that form A1, one may write

[A1zz]ij = κ(µ̂′ij − iωµ̂′′ij)h(cosφ(Gxi +Gxj) + sinφ(Gyi +Gyj)) ,
[A1xx]ij = (D̂′ij − iωD̂′′ij) cosφ(Gxi +Gxj) + (β̂′ij − iωβ̂′′ij) sinφ(Gyi +Gyj) ,
[A1yy]ij = (D̂′ij − iωD̂′′ij) sinφ(Gyi +Gyj) + (β̂′ij − iωβ̂′′ij) cosφ(Gxi +Gxj) ,

[A1zx]ij = −[A1xz]ij = iκ(µ̂′ij − iωµ̂′′ij)h cosφ ,
[A1zy]ij = −[A1yz]ij = iκ(µ̂′ij − iωµ̂′′ij)h sinφ ,
[A1xy]ij = [A1yx]ji = (α̂′ij − iωα̂′′ij)(sinφGxi + cosφGyj) + (β̂′ij − iωβ̂′′ij)(cosφGyi + sinφGxj) ;

(A.4)
while the submatrices of A0 are given by

[A0zz]ij = κ(µ̂′ij − iωµ̂′′ij)h(GxiGxj +GyiGyj) ,
[A0xx]ij = (D̂′ij − iωD̂′′ij)GxiGxj + (β̂′ij − iωβ̂′′ij)GyiGyj + κ(µ̂′ij − iωµ̂′′ij)h ,
[A0yy]ij = (D̂′ij − iωD̂′′ij)GyiGyj + (β̂′ij − iωβ̂′′ij)GxiGxj + κ(µ̂′ij − iωµ̂′′ij)h ,

[A0zx]ij = −[A0xz]ji = iκ(µ̂′ij − iωµ̂′′ij)hGxi ,

[A0zy]ij = −[A0yz]ji = iκ(µ̂′ij − iωµ̂′′ij)hGyi ,

[A0xy]ij = [A0yx]ji = (α̂′ij − iωα̂′′ij)GxiGyj + (β̂′ij − iωβ̂′′ij)GyiGxj ;
(A.5)
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and finally, matrix B is partitioned as

[Bzz]ij = ρ̂ijh ,
[Bxx]ij = [Byy]ij = ρ̂ijh3/12 .

(A.6)

The solution of Eq. (A.1) can be performed considering both a k = k(ω) approach,
for the viscoelastic case (EPWE method), or a ω = ω(k) approach, for the purely
elastic case (PWE method).

Appendix B. Band diagrams obtained using distinct plate theories

In this section, we compare the band diagrams obtained using the FE method
considering both the Kirchhoff and Mindlin plate theories. The band diagrams are
computed considering elastic structures, with stiffness and mass matrices obtained for
Kirchhoff and Mindlin plate elements [62]. Periodic boundary conditions are enforced
[32] using the implementation as given in [10]. Due to the symmetry of the unit cells,
we restrict our analysis to the contour of the first Brillouin zone [65], obtaining the
values ω = ω(k) of propagating frequencies. The number of elements used in the
FE models is increased until no significant changes are observed in the dispersion
diagrams, which is achieved with 6,561 elements, corresponding to 20,172 degrees-
of-freedom for both the Kirchhoff (C1 continuity) and Mindlin plate elements (C0

continuity), yielding eigenproblems with an associated dimension of 19,683.
Initially considering the type A configuration (hard matrix and soft inclusions,

Figure B.1a), it is possible to notice that the differences between the results ob-
tained considering each plate theory are especially related with the flat bands for the
structure with n = 0. Also, as the order of hierarchy increases to n = 1 and n = 2,
it is possible to notice that a large number of branches is revealed by the Mindlin
model but not by the Kirchhoff model, especially for ω1 > 0.5. The differences in the
branches with non-zero group velocities [81], however, are not significant.

For the case of the type B configuration (soft matrix and hard inclusions, Figure
B.1b), no flat branches are computed considering either plate theory. On the other
hand, the differences between the obtained band diagrams become noticeable in the
frequency ranges ω2 > 3 for n = 0, ω2 > 2 for n = 1, and ω2 > 1 for n = 2. These
results indicate that not only the Mindlin plate theory becomes necessary for higher
frequencies, but also for configurations of higher fractal order. Thus the Mindlin plate
theory should be preferred for both configurations.
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Figure B.1: Comparison between the band diagrams computed for the ω = ω(k) formulation using
the FE method considering the Kirchhoff and Mindlin plate formulations. Results are shown for the
(a) type A and (b) type B configurations, with increasing hierarchical orders (n = 0, 1, and 2).

Appendix C. Validation of the PWE method

In this section, we compare the results obtained using the ω = ω(k) formulation
computed using the FE and PWE methods (Eq. (25)). The band diagrams are not
analyzed with respect to band gap formation and associated wave modes, restrict-
ing ourselves to the consideration of convergence between different methods. For the
FE method, band diagrams are computed considering purely elastic materials using
Mindlin plate elements, following the same procedure as presented in Appendix B,
thus leading to eigenproblems with an associated dimension of 19,683. The PWE re-
sults are computed with an increasing number of plane waves for both the conventional
(PWE) and improved (IPWE) formulations, reaching a total of 961 plane waves, with
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eigenproblems of dimension 2,883, thus representing a reduction of around 85% with
respect to the FE formulation.

For the type A configuration (hard matrix and soft inclusions, Figure C.1a), the
band diagram computed for the structure with n = 0 shows an excellent agreement
between the branches with non-zero group velocity (derivative of each branch with
respect to the wavenumber, ∂ω

∂k [81]) computed using the FE and the PWE, with
a slight underestimation of the propagating frequencies by the IPWE. Several flat
bands (zero group velocity, ∂ω

∂k = 0) are computed using the FE method, with no
associated band gaps. A disagreement is noticed for the frequencies of such flat
bands computed using the PWE, while the IPWE presents a considerably better
agreement. With an increase in the unit cell hierarchical order to n = 1, it is possible
to notice a very good agreement between the results obtained with the PWE and
the FE formulations, while the frequencies of flat bands are incorrectly estimated. In
this case, the IPWE underestimates the branches with non-zero group velocity, while
correctly estimating the frequencies of the flat bands. Finally, for the structure with
n = 2, the results obtained by the PWE maintain the previous trend, presenting a
very good agreement for the non-zero group velocity branches and poor agreement
for the flat bands. At this hierarchical order, the results obtained with the IPWE
method show a poor agreement with the FE-based results, largely underestimating
the propagating frequencies. It is important to notice that the computation of flat
bands is possible when considering a ω = ω(k) method; however, if one considers the
k = k(ω) approach for the computation of the complex band structure, these flat bands
will only be revealed if their exact frequencies are considered in the computation, thus
not necessarily always being computed.

For the type B configuration (soft matrix and hard inclusions, Figure C.1b), the
band diagram computed for the structure with n = 0 shows an excellent agreement
between the FE and the IPWE, while the PWEmethod overestimates the propagating
frequencies. For an increased hierarchical order of n = 1, the IPWE method still
presents a good agreement with the FE-based results, while the PWE considerably
overestimates the propagating frequencies. Finally, for the hierarchical order n = 2,
only the IPWE yields results with a reasonable agreement with the ones obtained
using the FE method, although slightly underestimating the propagating frequencies.

It is interesting to note that the PWE presents a better correlation with the FE
for the type A PC, while the IPWE presents a better correlation for the type B PC.
For this reason, the PWE is considered for the computations involving the type A
PC, while the IPWE is used for the type B PC.
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Figure C.1: Comparison between the band diagrams computed for the ω = ω(k) formulation using the
FE, PWE, and IPWE methods. Results are shown for the (a) type A and (b) type B configurations,
with increasing hierarchical orders (n = 0, 1, and 2).
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