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Abstract.  
Due to a widespread number of examples, biological hierarchical structures have been studied for years, 
founding that surface properties are strictly correlated to the surface roughness. Since friction appears to be a 
multiscale phenomenon and hierarchy optimizes the macroscopic mechanical properties of bodies, it may be 
of great interest to develop a model to predict friction of structures with hierarchical surfaces. 
Thus, we propose an analytical model to describe anisotropic friction, adhesion and wear of hierarchical 
surfaces. The model describes friction between two generic rough surfaces in contact, sliding one against the 
other. Then, it has been extended to adhesion, wear and finally to multiple hierarchical levels to obtain the 
global frictional response. 
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1. Introduction 
Although it has been studied for centuries, friction still includes various open questions due to the many 
aspects occurring at the interface between bodies in relative motion.  
Leonardo da Vinci first proposed the “laws of dry friction”, then reformulated and collected by Amontons in 
the so-called four “laws of friction”, which are the basic qualitative concepts related to this very complex 
phenomenon [1,2].  
Despite their simplicity, these laws resulted in the Amontons-Coulomb constitutive laws of friction [3–5], 
summarized as follows: 

• The friction resistance increases or decreases proportionally to the applied pressure; 
• The friction coefficient (which is the ratio between the friction force and the normal load) is 

independent of the sliding velocity, contact area and surface roughness [2,4–6]. 
Coulomb stated that “Friction and cohesion are not active forces like gravity, but only passive forces” [2], 
highlighting that they arise only in the presence of an incipient relative motion (static friction force) or 
during the sliding (dynamic friction force). He also generalized the relationship between the tangential force 
and the applied load, by introducing a cohesive contribution, independent of the normal pressure. 

The frictional stress τ is expressed as follows: � = �� + ��� 
where τ0 is the cohesive component, σN is the normal pressure and μ is the internal coefficient of friction. 
The Coulomb’s law is still considered the basis for the description of dry friction in classical mechanics, 
even though recent studies have proved that some deviations may occur [7–10]. For example, it does not 
consider the presence of anisotropy, i.e. when the friction force depends on the direction of sliding, or how 
the normal load depends on the real contact area. 
Over the years, analytical models have been introduced to study the complicated problem of friction. One of 
the main contact theories was introduced by Hertz [11], which paved the way for the development of more 
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recent models for contact mechanics, such as the one proposed by Greenwood and Williamson (GW) [12], 
the so called multi-asperity model and the related studies by Majumdar and Bhusham [13,14], or alternative 
solutions, such as Persson’s theory [3,15,16]. They presented different approaches to compute the response 
of a rough surface in contact with a flat substrate, due to a normal load. Greenwood and Williamson 
developed the Archard’s studies, assuming a surface formed by n elastic spherical caps with equal radii but 
different heights and provided the solution for the contact area after pressing this multi-asperity surface 
against a rigid plane [12,17,18]. They found that the area of real contact, usually smaller than the apparent 
contact area [6], is proportional to the load, while the average size of micro contacts is independent of the 
load. Indeed, when the load increases, new contact spots are generated. On the contrary, Persson referred to 
surface roughness by defining the power spectral density of the undeformed rough surface and studied the 
contact mechanics between this rough rigid surface and a semi-infinite elastic solid. 
Other models have been developed during the years to study the interaction between the asperities of rough 
surfaces. The one proposed by Caroli and Nozières [19] studied velocity independent friction in a dry system 
and found that it is generated by hysteretic behaviour, while the elastic interactions between the asperities 
play a minor role in solid friction of multicontact interfaces. Mroz and Stupkiewicz [20] reported a friction 
model for anisotropic friction, based on the local validity of the classical Coulomb’s law [6], which considers 
parallel springs to simulate the interaction between rough surfaces and that was also applied more recently in 
[21]. 
However, friction is not only a macroscopic problem, but it also involves several effects that occur at the 
micro and nanoscale, from adhesion to asperity interactions [22,23], which can also influence the mechanical 
properties of materials e.g. toughness for microfibers [24,25]. 
As reported in past and recent works [7–10,20,26–28], contact between rough surfaces is an example of a 
multiscale problem, sometimes leading to hierarchical and fractal geometries [29–33]. Indeed, biological 
structures have efficient ways to minimize or maximize friction or to adapt to different environments 
depending on the goals [34,35]. Usually, these intriguing properties have been developed thanks to a specific 
hierarchical structure. By changing their organization, variations in the mechanical and physical properties 
are possible. For this reason, systems and structures in nature draw a lot of attention thanks to their high 
efficiency and durability [36–38] and to date, the interest in transferring technologies from biological 
systems into engineering applications has been greatly pursued in the field of tribology. 
This being the case, in the proposed paper an analytical model for anisotropic dynamic friction is introduced, 
which directly connects roughness with the friction coefficient. The model has been extended from [20] by 
introducing one-dimensional (1D) and two-dimensional (2D) roughness. Subsequently, other aspects have 
been developed as (i) adhesion, modelled as a tensile force increasing its effects during surfaces separation, 
(ii) wear, introduced to modify the roughness profile, according to Archard’s law [18], and (iii) hierarchy, 
studying the contribution of fractal surfaces to the frictional response of the system [23,39].  

2. The Anisotropic Lattice Spring Friction Model (ALSFM) 
 
Suppose to have two rough surfaces in contact, modelled as reported in Figure 1.a, where roughness can be 
expressed by a continuous and differentiable function with a defined periodicity in the form z = f (x,y), here 
called 2D roughness (Figure 1.b). 
Thus, these surfaces are: �	 = 
	��, �� �� = 
���, �� 

where the lower surface is identified by no. 1, while the upper is no. 2. 
The analytical model assumes that the isotropic Coulomb friction law governs the local contact between the 
rough surfaces, already in relative motion, thus it considers only the dynamic friction force. These surfaces 
are assumed to be infinitely rigid, while a set of longitudinal springs, equally spaced and with the same 
stiffness, governs their elastic interaction (Figure 1.a). 
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It has been supposed that the springs are fixed half on the upper surface and slide on the lower, and the other 
half opposite to them, to consider the contributions of both the rough surfaces to the global coefficient of 
friction.  
As a first approach we neglect adhesion, defining that the springs work only when compressed with the same 
longitudinal stiffness ��.  
Firstly, we analyse the force equilibrium at point � (� ∈ ���, ��) due to a single spring interaction (Figure 
1.b-c) on the plane �, tangent to the surface in �: 

�� − ��� ���� + �� − ��� ���� + �� − ��� ���� = 0 

�: 
��, �� − � = 0 

Assume the spring is fixed on the upper asperity (surface ��) and slides on the lower (surface �	); l0 is the 
spring length at rest: the actual spring length l depends on the asperities profile, thus, for point �, its length is 
equal to: 

�� = �����, ��� − �	���, ��  

Due to its length variation during the sliding, the single spring generates an elastic force, expressed as 
follows:  

!"��� = ��� − ����� in case of compression; !"��� = 0 in case of elongation, since the tensile behaviour is neglected; 

From the static equilibrium, # is the normal force acting on the � plane (Figure 1.c) and the tangential force 
is equal to $ = ��#, where �� is the local coefficient of friction (following the isotropic Coulomb law). 
Supposing that the spring displacement ��� − ��� is %, the normal force on � is: 

# = �% &cos *� − �� tan *� cos .
/1 + tan� *�  cos� .12	

 (1) 

. is the projected direction on the �′�′ plane of the sliding velocity vector 40 acting on the � plane, tilted by *� from �′�′ plane, *� is the intersection between the tangent plane in � and the �′�′ plane, as reported in 
Figure 1.c. 
The denominator in Eq. (1) should be different from zero, leading to have *� ≠ 90° and �� ≠ cot *� ∀� ∈ ���, ��. When !" is a compressive force, �% ≥ 0 and cos *� − :; <=> ?@ ABC D/	E<=>F ?@  ABCF D > 0. This means that  

��� − ��� is positive and that the local coefficient of friction �� must be smaller than cot *�. 
This means the more the material displays sharp roughness, the more the local friction coefficient must be 
small and in particular, for φ equal to 45°, μ0 has to be minor than 1. From a physical point of view, Eq. (1) 
implies that the model is suitable for elastomers only when they show a smooth roughness, since they usually 
display dynamic coefficient of friction around 1-2 [40–43]. In addition, in case of sharp-shaped asperities (φ 
= 60° or more), the global coefficient of friction � strongly increases and for φ = 90° tends to an infinite 
value. This condition can model the presence of interlocking when the asperities are sharp, since the friction 
force significantly grows, affecting the sliding and even stopping it. In the �′�′ plane, from the equilibrium, 
the tangential forces are expressed in terms of the normal elastic force  !"���: 

!HI = !" sin *� /1 + tan� *� cos� . + �� cos .
cos *� /1 + tan� *� cos� . − �� tan *� cos . = !"KH���, *� , .� (2) 
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!LI = !" �� sin .
cos *� /1 + tan� *� cos� . − �� tan *� cos . = !"KL���, *� , .� (3) 

Finally, to achieve the reaction forces in the global reference system (!H and !L), Eq. (4) is applied, where M� 
is the rotation of the local reference system in � with respect to the global system, while X and Y are the 
quantities to be led back to the global reference system (i.e. the reaction forces):  

NO�P� Q = R cos M� sin M�−sin M� cos M�S TO′�P′�U (4) 

Consider now a certain number n of springs, which is acting on both asperities. For each spring, the previous 
equations can be adopted and the total normal force V" will be equal to: 

V" = W !"�	� + W !"��� = V"�	� + V"���
 

(5) 

Where V"�	�and V"��� are the sum of all the normal forces acting on the lower surface and on the upper 
surface, respectively. 
The same formulations are obtained for the tangential forces in both x and y directions VH and VL: 

XY�Z� = W [Y�Z�
 (6) 

VL�	� = W !L�	�
 

(7) 

VH��� = W !H���
 (8) 

VL��� = W !L��� 
(9)  

From the previous relationships, in the case of no adhesion, the coefficients of friction �H  , �L and the global 

coefficient of friction � are obtained as follows: 

�H = VH  V"                           �L = VL V"                            � = VH,LV"  

Following the Coulomb’s law, the tangential force is proportional to the normal force applied to the surface. 

2.1 Surfaces with 1D roughness 
We refer to this case when the surfaces are defined as functions of the only variable � and extruded along � 

direction, z = f (x) (Figure 1.d) and thus *� is the inverse tangent of the function ���� in �, reported in 
Figure 1.d.  
Following the previous steps for the 2D case, the force equilibrium at point \ (\ ∈ ]�Y�) due to the spring 
interaction is obtained referring to the tangent plane ̂  in \ (Figure 1.e). β is the projected direction of the 
sliding velocity vector on the xy plane and the tangential forces XY and X_ could be expressed in the 

following forms: 

VH�	� = W !"�	�KH���, *�,	, .  (10) 

VL�	� = W !"�	�KL���, *�,	, .  (11) 

VH��� = W !"���KH���, *�,�, .  (12) 

VL��� = W !"���KL���, *�,�, .  (13)  
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From Eq. (10) to (13), the first part is the elastic contribution, which depends on functions z1 and z2, while 
the second belongs to one of the two asperities, to the velocity orientation . and the local friction coefficient ��. 

2.2 Surfaces with 1D wedge asperities roughness 
By adopting the surface profile as formed by tilted planes (saw tooth shape, Figure 2), the expressions of the 

friction forces simplify. Since the average spring displacement is equal to 
∑ ∆bcdce  , the average normal (elastic) 

force on one tilted plane π is V"f = gh ∑ ∆bcdce = ∑ gh∆bcdc e = ∑ ijcdce  (thanks to the same spring stiffness). When the 

whole asperity is considered, the normal elastic force Rz is the sum of the average elastic forces generated by 
the spring compression on each tilted plane, weighted by their area of competence by introducing ψ and δ, 
reported in Eq. (14). The coefficient ½ remembers that the springs are fixed half on the upper and half on the 
lower surfaces.  

V" = 12 l1 + l V"�	� + 12 11 + l V"��� + 12 m1 + m V"�n� + 12 11 + m V"�o�
 p = qrs tuqrs tZ m = tan *otan *n (14) 

V"�	�, V"���, V"�n�and V"�o�are the average normal force, acting on the tilted plane by φ1, φ2, φ3 and φ4, 
respectively. 

If  . = 0 the sliding motion is only along the � direction, �L = 0 and  

�H =
12 l1 + l V"�	�KH���, *	, .� + 12 m1 + m V"�n�KH���,  *n, .� + 12 11 + l V"���KH���, − *�, .� + 12 11 + m V"�o�KH���, −*o, .�

V"  

 

=
12 l1 + l V"�	� �� + tan *	1 − �� tan *	 + 12 m1 + m V"�n� �� + tan *n1 − �� tan *n + 12 11 + l V"��� �� − tan *�1 + �� tan *� + 12 11 + m V"�o� �� − tan *o1 + �� tan *oV"  

(15) 

On the contrary, if . = 90°, �H = 0 and  

�L =
12 l1 + l V"�	�KL���, *	, .� + 12 m1 + m V"�n�KL���, *n, .� + 12 11 + l V"���KL���, − *�, .� + 12 11 + m V"�o�KL���, −*o, .�

V"

=
12 l1 + l V"�	� ��cos *	 + 12 m1 + m V"�n� ��cos *n + 12 11 + l V"��� ��cos *� + 12 11 + m V"�o� ��cos *oV"  

(16) 

 
Eqs (15) and (16) simplify when: 

• *	 = *� = *, *n = *o = 0 and l = m = 1 (Figure 2.a) 

When . = 0, �L = 0 and �H becomes: 

�H =
14 V"�	� �� + tan *1 − �� tan * + 14 V"�n��� + 14 V"��� �� − tan *1 + �� tan * + 14 V"�o���V" = ���2 − sin� * �1 + ���� 2�1 − sin� * �1 + ����  

 

(17) 

On the contrary, if . = 90°, �H = 0 and  
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�L =
14 V"�	� ��cos * + 14 V"��� ��cos * + 14 V"�n��� + 14 V"�o���V" = 12 �� N 1cos * + 1Q (18) 

• *	 = *� = *n = *o = * and l = m = 1 (Figure 2.b) 

In this particular configuration, the same expressions obtained in [14] are recovered. 
If  . = 0 the sliding motion occurs in x direction, �L = 0 and: 
 

�H =
14 V"�	� �� + tan *1 − �� tan * + 14 V"�n� �� + tan *1 − �� tan * + 14 V"��� �� − tan *1 + �� tan * + 14 V"�o� �� − tan *1 + �� tan *V"= ��1 − sin� * �1 + ���� 

(19) 

 
On the contrary, if  . = 90° , �H = 0 and  

�L =
14 V"�	� ��cos * + 14 V"�n� ��cos * + 14 V"��� ��cos * + 14 V"�o� ��cos *V" = ��cos * (20) 

 

The coefficients found in Eqs (17) and (18) are similar to the friction coefficients described by Eqs (19) and 
(20), but smaller. This is reasonable, because when one profile has no roughness, there is a lower 
contribution to enhance the global friction coefficient.  

 
3. Adhesion, wear and hierarchy 
3.1 Introducing adhesion in the ALSFM 
Many times adhesion is neglected, due to the presence of surface roughness [44,45], which can remove the 
adhesive forces. However, even if roughness could vanish the adhesion contribution, the area of real contact 
is still affected by its presence [6]. In addition, adhesion must be considered if the surface is characterized by 
a smooth roughness and a soft material. 
The most common analytical models developed to study adhesive contacts are the Johnson-Kendall-Roberts 
(JKR) model and the Derjaguin-Muller-Toporov (DMT) model, with related studies [46–49]. JKR model 
assumes an elastic sphere in contact with a flat substrate with a free energy per unit area, which occurs when 
the contact is reached [6,47]. Due to this energy, a contact spot with finite radius remains even if the external 
load is zero and this contact breaks at a critical pull-out force. The model gives the values of the contact 
force and the minimum contact radius at which a mechanical instability breaks the bond. If no free surface 
energy is present, the model collapses into the Hertz’s model [6,11,47]. The JKR model is accurate for soft 
materials and high surface energy, otherwise the DMT model must be applied, which has been formulated 
for adhesion between hard spheres [6]. 
Due to a wide interest in bioinspired applications, in the last decades there has been an increase in research 
on adhesion [50–57]. For example, further developments of the DMT theories have shown that adhesion 
generates an additional load around each asperity [33]. Other works investigated the adhesion hysteresis 
contribution to friction [58], adhesion between surfaces with smooth roughness [45], or simulating the gecko 
seta in contact with rough surfaces to obtain the efficiency of the attachment [52,56].  
In the ALSFM, adhesion is introduced by adding the contribution of tensile springs, which can elongate to a 
length lt, larger than the rest length l0. Thus, when the applied normal load L decreases, some springs can 
elongate when the distance between the two sliding surfaces is bigger than the spring rest length, due to the 
shape of a rough profile (from Figure 3.a to Figure 3.b the load L is reduced). This generates a portion of the 
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contact area subjected to tensile elastic forces, i.e. adhesion forces. Since the real area of contact determines 
the sliding friction force, adhesion, where present, can affect and modify the global frictional behaviour. 

If no adhesion occurs, V" = ∑ !"��� is equal to the normal load L (Figure 3.a), otherwise: 

w = W !"��� + W !"�x� (21) 

Where ∑ !"��� > 0 is the sum of all the compressive forces and ∑ !"�x� < 0 is the sum of the tensile forces, 
which have opposite directions.  
Springs are defined with different compressive and tensile behaviours, respectively �� and �x = �� 2⁄ . With 
this assumption, the model takes into account a larger compression resistance than the tensile one. For a 
single spring in point P, the elastic force can be: 

!"��� = ��� − ����� > 0 in case of compression; 

!"��� = ��� − �x,� �x < 0 in case of elongation; 

It is assumed that the stretched springs do not generate a friction force by sliding, so that, the apparent 
coefficient of friction is expressed as follows: 

�{ = VH,L�
w = 
 |V"���}

w  (22) 

Where Rx,y 
c indicates that the tangential force Rx,y on the xy plane is generated only by the compressed 

springs and f indicates that Rx,y is determined only by the Rz
(c) elastic forces. This implies that the apparent 

coefficient of friction increases due to the presence of adhesion. 

3.2 The effect of wear in the ALSFM 
Among the various tribological phenomena related to sliding friction, one of the most significant is wear. As 
for friction, wear involves different physical and chemical processes occurring over different time and length 
scales. Several empirical models have been developed, from the well-known Archard’s model to recent 
works  as experimental studies of wear track observations with Scanning Electron Microscope or Atomic 
Force Microscope, or even numerical simulations to obtain the surface evolution during the sliding 
[6,18,33,59,60].  
In this paper, wear is considered as a process affecting the contact surface as a function of time and is 
modelled following the Archard’s wear law [18]: 

~� = � wK 
(23) 

Where V is the total wear (transferred) volume, � is the sliding distance, w is the normal load, K is the 
surface hardness and � is the wear coefficient. 
It is assumed that the shape of the asperities is reduced from the initial amplitude until zero (i.e. flat) after a 
certain time $�, which is the estimated time to completely smooth the surfaces with a wear rate W = V/S and 
a constant applied load, which does not change during the wear process (Figure 4). 
In the presence of 2D roughness, defining � = 4� and the wear rate � = ~/�, the total transferred volume 
is: 

∆~ = � ���, �� ��
H�,L�

H;,L;
�� − � � ���, �� ��

H�,L�

H;,L;
�� = �4∆� 

(24) 
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� = 1 − �4∆�
∬ ���, �� ��H�,L�H;,L; �� (25) 

B is a reduction coefficient for the roughness amplitude and varies between 0 and 1. B = 1 means that wear 
has not modified the roughness yet and the transferred volume is zero. On the contrary, B = 0 implies that the 
rough surfaces became flat. 
When 1D roughness is considered, Eqs (24) and (25) change as follows: 

∆~ = ∆� ∙ P = P ∙ T� �����
{ �� − � � �����

{ ��U = �4H∆� 
(26) 

� = 1 − �4H∆�
P ∙ � �����{ �� (27) 

P is the asperity depth (along y direction), ∆� refers to the total transferred volume per unit depth. 
In the presence of 1D wedge asperities, wear reduces the slopes of the asperities from the initial tilt angles φ0 
to zero (flat surfaces, Figure 4.b). The total wear volume can also be expressed as a function of the wedge 
asperity angles, finding the following relationship: 

� ��� *�� = − 2�4���P  
 

3.3 Hierarchy 
When friction involves rough surfaces, the multiscale nature of their profiles can significantly affect the 
global coefficient of friction. For this reason, Archard proposed an hierarchical approach to describe friction 
in the presence of rough self-affine surfaces [61]. Hierarchical profiles and fractals have been adopted to 
describe also fractures in rock mechanics [62], to give an overall characterization of surface roughness 
[13,29,63] and to model friction and contact [13,14,30,32,64]. 
In this work, the 1D and 2D-ALSFM are extended to study the effects of rough surfaces characterized by a 
hierarchical structure. In this mechanical formulation, n levels of hierarchy are identified, since it is assumed 
that each asperity presents multiple levels of roughness, one inside the other, where the upper level 
characteristics depend on the previous ones (Figure 5). By applying the Hierarchical ALSFM (H-ALSFM) 
and assuming the isotropic Coulomb friction model to be valid in every sublevel i, �� depends on its local 
friction coefficient ��2	 as reported in Eq. (29). �� is the local coefficient of friction for the lowest 1-level, �	 = 
	���, �	, ��, .� is the global coefficient of friction at the 1-level and appears to be also the local 
coefficient of friction in the 2-level, and similarly for the others. By adopting a profile formed by some 
hierarchical self-similar levels, the surface is expressed as follows: 

� = �{ ∗ sin N2��H ���Q ∗ sin T2��L ���U (28) 

Where A, B and C are the coefficients that modulate the shape of the surfaces, while a, b and c depend on the 
level of roughness. In these studies it has been assumed that A = B = C and b = c = (n - i) while a = - (n-
i),with n number of levels, i number of the actual level (i = 1 is for the innermost, and then it increases until 
n). 
At the i-level, with ��2	 as the local coefficient of friction: �� = 
����2	, �	, ��, .� = ��
	���, �	, ��, .�� (29) 

!H = !" sin *� /1 + tan� *� cos� . + ��2	 cos .
cos *� /1 + tan� *� cos� . − ��2	 tan *� cos . = !"KH���2	, *� , .� (30) 
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!L = !" ��2	 sin .
cos *� /1 + tan� *� cos� . − ��2	 tan *� cos . = !"KL���2	, *� , .� (31) 

!" = ��% (32) 

In particular, in the presence of 1D wedge asperities, if . = 90° these expressions can be simplified into: 

��
��e = ��2e R lcos * + 1Se              *	 =  *�      *n =  *o = 0

�e = ���cos *�e                                    *	 =  *� = *n = *o
 

(33) 

(34) 

3.4 Coupling the effect of hierarchy and wear 
In the work of Whitehouse and Archard in 1970 [17], it was found that from the profile of a rough surface 
after a single passage of a lubricated slider, the fine roughness (i.e. the roughness associated to the smaller 
levels) was removed, while the main roughness was preserved. Following the concept of such experiments, 
the effect of hierarchy is coupled with wear mechanisms, by assuming that the first consumed level is the 
innermost one. When its roughness is removed, the second begins to be subjected to wear and the coefficient 
of friction of the innermost level tends to its local coefficient of friction ��, followed by the others until the 
external level is worn: �e → �e2	 → ⋯ → �	 → �� 

After a time equal to $� (� = 0, �� = 0), the global coefficient of friction of a certain level i is reduced to its 
local coefficient of friction ��2	 and the total number of hierarchical levels decreases from n to n-1.  
In the presence of 2D roughness, the time needed to wear away a certain level i is: 

$�,� = ∬ ���, �� ��H�,L�H;,L; ��
�4  (35) 

obtained from the expression of the reduction coefficient B, when the latter is equal to zero. 

4. Results and Discussion 
Referring to the ALSFM, results for 1D and 2D roughness are shown in Figure 6 and Figure 7, respectively, 
where values of � are normalized by ��, the local coefficient of friction used in the isotropic Coulomb 
friction model. Six different roughness configurations are analysed by varying the sliding direction ., which 
strongly modifies non-linearly the coefficient of friction �. In Figure 6, generic 1D roughness (where *	, *�, 
etc., are the average slopes of the surfaces �	and ��) has globally a higher friction coefficient than the 
equivalent wedge asperities. The largest coefficient of friction is reached when both the surfaces are rough 
and, in particular, when the first slope is greater than the following, which is the case of asymmetrical 
roughness (red stars in Figure 6.a-b) with respect to the rough-flat surface contacts. When β tends to 90°, 
some reported cases tend to the same result, since for φ1 = φ3 > φ2 = φ4 and φ1 = φ3 < φ2 = φ4 the sliding 
configuration is the same when β is 90°. The same occurs for φ1 > φ2  φ3 = φ4 = 0 and φ1 < φ2  φ3 = φ4 = 0, 
where the roughness asymmetry becomes negligible when the sliding is along the y direction. 

Referring to 2D roughness (Figure 7), when �	 and �� are equal and symmetric, the coefficient of friction 
along both x and y directions is the same if one surface is sliding with . equal to 0° or . equal to 90°, as it 
was expected. In addition, in this situation, the coefficient of friction does not vary as much as it does in the 
1D case with respect to the sliding direction. This is due to the different shape of the surfaces, where the 
succession of summits and valleys both along x and y directions generates smaller frictional forces and thus 
the coefficient of global friction appears to be almost constant with respect to β.  
More changes may occur if the wavelength of the asperities is modified (Figure 8). The coefficient of friction 
can increase or decrease by considering several combinations of wavelength in x and y directions, 
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respectively λx and λy. Globally, 25 combinations are reported, varying the sliding direction β from 0° (Figure 
8.a), 45° (Figure 8.c) to 90° (Figure 8.b). 
Figure 8.a and b are symmetrical and display the maximum coefficient of friction for the smallest 
wavelengths (λx = λy = π). In addition, the bigger coefficient of friction is reached if the smaller wavelength is 
the one in the direction of sliding. For example, in Figure 8.a, when λx = π and the direction of sliding is 
along the x axis (β = 0) the bigger coefficient of friction is reached and appears to be slightly affected by 
variations in λy, while varies significantly by changing λx. Opposite results are observed in Figure 8.b, due to 
β = 90°. 
These insights may suggest that the wavelength that mainly governs the coefficient of friction is the one in 
the same direction as β, because the asperities that the surfaces are facing are predominant in influencing the 
coefficient of friction. The increase in wavelength perpendicular to the motion slightly affects the values of 
μ, reaching the minimum value for both the largest wavelengths. If the direction of sliding β is equal to 45°, 
the coefficient of friction shows a symmetrical behaviour with respect to the diagonal middle values. This is 
reasonable because both the wavelengths play the same role in enhancing or decreasing the global coefficient 
of friction. 

In order to validate the proposed 2D-ALSFM we compared its predictions with experimental data taken from 
[21], where three rough steel pins were tested against a flat ice surface. The pins profiles are modelled as 
reported in Figure 9, starting from the average roughness Ra and the root mean square of the slope profiles 
Rdq obtained from the profilometer. A symmetric surface morphology has been assumed in both x and y 
directions, and since the experimental sliding direction β is random, we considered the two extreme 
situations found in Figure 7, i.e. β = 0° and β = 30°. As inferred before, for 2D symmetric profiles the 
coefficient of friction is more affected by the profile morphology rather than the siding direction (circle- and 
diamond-shaped markers for β = 0° and 30° respectively). Furthermore, we found a good agreement between 
the experiments and the model predictions, where the contribution of the surface roughness is clearly shown 
(Figure 9.c).  

When adhesion is introduced (Figure 10), several situations may occur: if all the springs are compressed 
(high loads), the sum of all the elastic forces balance the applied normal load w. Then, if the load decreases, 
some springs may be elongated generating tensile forces, which are balanced by the remaining compressed 
springs. In Figure 10.a for 1D roughness the variation in time (normalized by the period of the functions $) 
of tensile springs (�x) with respect to the total number of springs (�x�x) is shown, from blue to red curves. 
The more the load reduces, the more the springs are elongated, until w = 0, in which the sum of the 
compression forces is equal in modulus to the sum of the tensile forces (opposite direction). By applying a 
negative load (tensile force), some springs could still be compressed (negative part of the graph in Figure 
10.b). 
When there is no spring elongation, the tangential force VH,L is linearly dependent on the normal force V", 

while if some springs start to elongate, the behaviour becomes non linear, due to adhesion effects. Moreover, 
adhesion appears to have a significant role only for small normal loads, as also reported in experimental 
works e.g. [40]. 
The presence of adhesion generates an (apparent) enhancement of the friction coefficient (or even a negative 
value, when the load has the opposite direction), as reported by Eq. (22). 
When the surfaces are described by the same function, so that z1(x) = z2(x) and the sliding direction . is 
equal to 90°, the springs do not modify their length along the sliding. In particular, if they are in phase at t = 
0, adhesion does not influence the frictional behaviour (orange curve reported in Figure 10.b). 
The anisotropic roughness clearly influences the frictional response, as the curves in Figure 10.b show and 
the sliding direction that mainly contributes in enhancing the effects of adhesion is β = 0°. 
The effect of adhesion is different if we assume a 2D roughness with sinusoidal function in both x and y 
directions (Figure 10.c-d). By displaying the tangential force Rx,y with respect to the applied normal load L it 



11 

 

is evident that there is no significant dependence on the direction of sliding. Furthermore, adhesion equally 
affects x and y directions of sliding (blue line and yellow dashed line). Figure 10.d shows an enlargement on 
the graph close to zero. When the load L is equal to zero, a frictional force is still noticeable, due to some 
springs that are compressed and thus generate friction. 

In Figure 11 the effect of abrasive wear is introduced and discussed. As stated previously, 2D-ALSFM 
predictions for the global coefficient of friction are slightly affected by the direction of sliding, especially for 
symmetric asperities. This is clear in Figure 11.c, where the first point of each curve represents the global 
coefficient of friction (normalized by the local coefficient) without wear effects. These values are similar 
and, by adopting the same local coefficient of friction μ0, the results are equal to the ones reported in Figure 
7. Then, when the wear mechanism starts modifying the shape of surfaces, the coefficient of friction 
decreases non-linearly, until it reaches the value of the local coefficient μ0, meaning that the surfaces became 
flat. 
By supposing a certain wear rate � (order of magnitude 102n mmn m⁄ , as reported in [59] for metals), after 
a time equal to TW, the surfaces become flat and the friction coefficient tends to the local friction coefficient ��. The influence of the sliding direction β is more evident by comparing Figure 11.a-b with Figure 11.c. 

Thanks to the introduction of hierarchy, the H-ASLFM firstly computes the friction coefficient of the inner 
level (on the smallest scale), and then the coefficient of the others. Changing a level means hypothetically 
changing the scale of the problem (we have assumed that the physics and the geometry of the problem are 
preserved). As in the previous cases, these results are obtained for distinct values of β, for both 2D and 1D 
roughness (wedge asperities or generic shape). 
Hierarchy enhances non-linearly the friction coefficient and the coefficient of each level depends on the 
previous ones. By defining hierarchical sublevels in both upper and lower surfaces, the friction coefficient 
increases faster than in the case of only one hierarchical surface and a second single-level surface.  
The effects of hierarchy in the presence of 1D sinusoidal asperities (Figure 12.a-b) and wedge asperities 
(Figure 12.c-d) are studied, both in the case of rough-rough or rough-flat sliding. For wedge asperities it is 
possible to compare the numerical results with Eqs (33) and (34). By adopting the same simplified solution 
in the case of sinusoidal roughness (φ is assumed to be the average of the slopes), it is possible to make a 
qualitative prediction of the variation of the friction coefficient in a hierarchical surface, even if 
underestimated (red curves in Figure 12.a-b), due to the slope approximation. In Figure 13 the variation of 
the friction coefficient between two 2D symmetric or asymmetric self-similar hierarchical asperities is 
reported. Three different directions of sliding (β) are considered (Figure 13.a) and for surfaces with 2D 
symmetric roughness, the same behaviour is found with relative sliding along x and y directions, proving 
again that the frictional response is symmetric. However, similar results are obtained also for other β, e.g. 
45°, meaning that the sliding direction is not the preponderant factor modifying the friction coefficient, even 
in the presence of hierarchical surfaces. On the contrary, if asymmetric asperities are adopted (Figure 13.b), 
the frictional response varies with respect to β. In particular, the results obtained for β equal to 0° or 45°, 
with surfaces characterized by λx = 2π and λy = 3π, or by λx = 3π and λy = 2π show that the difference among 
the sliding directions is more significant, while the results for β = 45° are the same.  

When the effect of wear is introduced within the H-ASLFM, the global coefficient of friction decreases 
depending to the number of sublevels. In Figure 14, the coupled friction-wear behaviour between two 2D 
rough hierarchical surfaces is reported. TW is the time needed to wear away the innermost level (level 1). As 
stated before, each outer level is linked to the previous ones and influences the following. A change in the 
friction coefficient at a certain level i affects all the upper levels, as it is clearly visible in Figure 14. After a 
time equal to TW, the innermost level has become flat and �e reduced to �e2	. 
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5. Conclusions 
We proposed a theoretical model for anisotropic dynamic friction, which considers the interactions and 
effects of two rough surfaces in contact, during their relative sliding. By developing the analytical model for 
1D and 2D surface roughness (the Anisotropic Lattice Spring Friction Model), the parameters that influence 
the frictional behaviour of the model are the local friction coefficient, the direction of sliding, the amplitude 
and wavelength of the surfaces. The friction coefficient strongly depends on the roughness of the surfaces 
involved and on the sliding direction β. Generic 1D roughness displays higher friction coefficient rather than 
the saw tooth shape, with a reduction up to 40%, moving from β = 0° to 90°. By introducing 2D roughness, 
the results of this investigation highlight that symmetrical surfaces seem to be more influenced by their 
shape, rather than the direction of sliding, while with non-symmetrical surfaces (different wavelength in the x 
and y directions), the sliding direction affects up to 30-40% the dynamic friction coefficient when β varies 
from 0° to 90°. We also validated the model predictions with some experimental results taken from a 
previous work. 
Then, adhesion is introduced by imposing that the springs governing the interaction at the interface can be 
subjected also to tensile forces. This aspect causes an increase in both the total compression force acting on 
the asperities and in the apparent friction coefficient. Results show that, when adhesion affects the sliding, a 
tangential force is still present even if there is no normal load. 
Wear is adopted as a process that reduces the friction coefficient in time and smooths the asperities. The 
effect is more evident if the sliding is along the profile with sharper roughness (e.g. β equal to 0 for 1D 
roughness). If hierarchical self-similar levels are present, they contribute in enhancing the friction coefficient 
in a non-linear way. The effect of wear in the presence of hierarchical surfaces provides the model with the 
prediction of the friction coefficient, which decreases in time due to sliding wear. 
This being the case, the present work could serve as a guide for future investigations to analyse more deeply 
the effects of surface topology and hierarchy in the friction response of multilevel surfaces and for the design 
of their tribological properties. 
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Figures 

 

Figure 1: a) 2D roughness visualization. A set of longitudinal springs governs the interaction at the interface. b) Detail of one surface 
with 2D roughness: we consider the force equilibrium at point \ (\ ∈ ¡�Y, _�) due to the spring interaction. To obtain each force 
contribution, the tangent plane (^) in \ is considered. c) Force decomposition on ^ with respect to the local system YI_′] in \. To 
obtain the final reactions in the global reference system Y_], the rotation matrix must be applied (¢). £¤ identifies the direction of 
the sliding velocity vector ¥¤ on the ̂  plane, tilted by t from Y′_′ plane, while ¥ is the projected sliding velocity and £ the 
projection of £¤ on the Y′_′ plane. d) Detail of one surface with 1D roughness (along Y direction): we consider the force equilibrium 
at point \ (\ ∈ ¡�Y�) due to the spring interaction. To obtain each force contribution, in this case the tangent plane (^) in \ is 
considered as well. e) Force decomposition on ^ with respect to the local system Y_] in \ is considered. In this situation, no rotation 
matrix is needed. £¤ identifies the direction of the sliding velocity vector ¥¤ on the ̂  plane, tilted by t from Y_ plane, while ¥ is the 
projected sliding velocity and £ the projection of £¤ on the Y_ plane. 

 

Figure 2: Particular cases of 1D wedge asperities roughness: a) One flat surface sliding on a rough surface with symmetric wedge 
asperities. b) Two rough surfaces with the same symmetric wedge asperities. 



16 

 

 

Figure 3: A 2D schematization of half model in various situations in the presence of adhesion, with decreasing L from a to d. a) All 
the springs are compressed and the normal load is equal to the sum of all the spring axial forces. b) If some springs are elongated and 
L is the applied normal load, the sum of the compressive forces is larger than the load. c) In case of no external load, the sum of 
tensile and compressive forces on the springs is zero. d) In the case of a tensile load some compressed springs still generate friction. 

 

Figure 4: a) A schematization of the surface levelling after the wear process. z0 is the initial surface shape, while zi is the surface 
profile after a certain time ti. At the end of the wear mechanism, the surface will be flat. b) A scheme of the surface levelling in case 
of 1D wedge asperities; φ0 is the initial surface tilt angle, while φi is the smoothed surface after a certain time ti.  c) Surface roughness 
changing in time. 
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Figure 5: How to model different levels of roughness. 

 

Figure 6: a) Coefficient of friction of the six case studies reported in the box in the presence of two wedge asperity surfaces. These 
coefficients are calculated by assuming different direction of sliding .. b) Coefficient of friction of the six case studies reported in 
the box for friction between 1D general rough surfaces, by assuming different direction of sliding .. μ0 is set equal to 0.3. 

 

Figure 7: Variation of the coefficient of friction between two 2D rough surfaces with respect to the direction of sliding β. The upper 
and lower surfaces are the same, with symmetric roughness, thus the coefficient of friction μ varies between 0° and 45°. The blue line 
shows how the coefficient of friction changes between 0° and 90°, with a step ∆. equal to 5°, while the red line is the friction 
coefficient obtained for smaller steps. μ0 is set equal to 0.3. 
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Figure 8: Changes in the friction coefficient by varying both wavelength in x and y directions (from λ = π to λ = 3π) and sliding 
direction β from 0° (a) then 45° (c) and finally 90° (b). As expected, a and b are symmetrical and show the maximum coefficient of 
friction for the smallest wavelengths and this trend is preserved in the direction of sliding. Instead, the minimum value is reached for 
the biggest wavelengths. With β equal to 45°, the coefficient of friction is symmetrical with respect to the middle values. μ0 is set 
equal to 0.3. 

 

Figure 9: Comparison of the 2D model with experimental data taken from [21]. a) The pin surface are modelled assuming the 
average roughness Ra and the root mean square of the slope profile Rdq obtained from the profilometer, reported in table b). c) 
Comparison between the experiments (cirle-shaped markers) and the 2D-ALSFM (square-shaped and diamond-shaped markers). 
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Figure 10: Effect of adhesion between 1D rough surfaces. a) Variation of springs elongation in time for 1D roughness, normalized 
by the function period T. The number of stretched springs nt depends on the normal load. For each circular dot in b, a curve in a is 
obtained. In the reported case, until the ratio L/Lmax is major than 0.3, the springs are all compressed (blue line in a), corresponding to 
zero for each time interval). After that value, some springs are elongated, and lines from blue to red show when and how many 
springs display a tensile force during the sliding. When the upper and lower surfaces are both described by the same function, and 
they are in phase, the number of elongated springs is described by lines with shades of blue, which refer to L>0. On the contrary, 
lines with shades of red describe the number of elongated springs once the load reduces and becomes tensile (L<0). b) Effect of 
adhesion between 1D rough surfaces. Tangential force Rx,y with respect to the applied normal load L. When no adhesion occurs, the 
coefficient of friction is the ratio between the two; on the contrary, when some springs become tensile, a non-linear curve describes 
this relationship. In the presence of 1D roughness, adhesion does not affect the sliding with β=90°, because there is a swift transition 
from compressed to tensile springs along the y direction. c) Effect of adhesion between 2D rough surfaces. Tangential force Rx,y with 
respect to the applied normal load L, both normalized with respect to the maximum load Lmax. In the presence of 2D symmetrical 
roughness, adhesion equally affects x and y directions of sliding (blue line and yellow dashed line). An enlargement on the graph 
close to the origin is reported in d. With other sliding directions, e.g. β = 45°, the behaviour is close to the previous cases. 

 

Figure 11: a) Variation in time of the friction coefficient between two wedge asperities. Three different directions of sliding (.) have 
been considered. After a time equal to $� the surfaces become flat, thus the friction coefficient tends to the local friction 
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coefficient ��. b) Variation in time of the friction coefficient between two asperities with generic 1D roughness. Also here, three 
different directions of sliding (.) have been considered. After a time equal to $� the surfaces become flat, and, as in the previous 
case, the friction coefficient tends to the local friction coefficient ��. c) Variation in time of the friction coefficient between 2D rough 
symmetrical asperities. Five different directions of sliding (β) have been considered, from 0° to 45° (from 45° to 90° the behavior is 
the same, due to symmetry).  After a time equal to TW the surfaces become flat, so that the friction coefficient tends to the local 
friction coefficient μ0. μ0 is set equal to 0.3. 
 

 

Figure 12: Hierarchical friction. The theoretical prediction, which is the exact solution in case of wedge asperities and β=90°, is 
reported (red curves) for all the cases. a) Variation of the friction coefficient between two sinusoidal hierarchical asperities. Three 
different directions of sliding (β) are considered. b) Variation of the friction coefficient between a sinusoidal hierarchical surface and 
a flat surface. Three different directions of sliding (β) are reported. c) Variation of the friction coefficient between one hierarchical 
wedge asperities and a flat surface. Three directions of sliding (β) have been reported. d) Variation of the friction coefficient between 
hierarchical wedge asperities. Three different directions of sliding (β) have been considered. 
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Figure 13: Hierarchical friction for 2D roughness. a) Variation of the friction coefficient between two symmetric self-similar 
hierarchical asperities. Three different directions of sliding (β) are considered. b) Variation of the friction coefficient between two 
asymmetric self-similar hierarchical asperities. Two different directions of sliding (β) have been considered, compared with two 
different asymmetric profiles. If the asperities are not symmetric, the frictional response varies in a more significant way with respect 
to β. 

 

Figure 14: Variation of the global coefficient of friction as a function of wear and roughness levels for 2D roughness. Every outer 
level is influenced by the inner one, so that wear induces a reduction of each global coefficient of friction associated to a certain level 
i. After a time equal to TW the innermost level becomes flat, so that the coefficient of friction of each level at the end of this wear 
cycle tends to its local friction coefficient. Level 0 is the local coefficient of friction. 

 

 


