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Abstract.

Due to a widespread number of examples, biolodiedarchical structures have been studied for years
founding that surface properties are strictly datesl to the surface roughness. Since friction apgpm be a
multiscale phenomenon and hierarchy optimizes therascopic mechanical properties of bodies, it bay
of great interest to develop a model to predictifsh of structures with hierarchical surfaces.

Thus, we propose an analytical model to describgotopic friction, adhesion and wear of hierarehic
surfaces. The model describes friction betweengareric rough surfaces in contact, sliding oneresgahe
other. Then, it has been extended to adhesion, amehfinally to multiple hierarchical levels to abt the
global frictional response.

Keywords. Anisotropic friction, hierarchy, roughness, adbaesi

1. Introduction
Although it has been studied for centuries, fricttill includes various open questions due toriany
aspects occurring at the interface between bodissative motion.
Leonardo da Vinci first proposed the “laws of drigtion”, then reformulated and collected by Amamtdn
the so-called four “laws of friction”, which areettbasic qualitative concepts related to this vempmex
phenomenon [1,2].
Despite their simplicity, these laws resulted ie thmontons-Coulomb constitutive laws of friction-8,
summarized as follows:

» The friction resistance increases or decrease®piopally to the applied pressure;

* The friction coefficient (which is the ratio betwee¢he friction force and the normal load) is

independent of the sliding velocity, contact ared surface roughness [2,4—6].

Coulomb stated thatFfiction and cohesion are not active forces like gravity, but only passive forces’ [2],
highlighting that they arise only in the presendean incipient relative motion (static friction fo) or
during the sliding (dynamic friction force). He algeneralized the relationship between the tangjefiotice
and the applied load, by introducing a cohesiverdmrtion, independent of the normal pressure.

The frictional stressis expressed as follows:

T="Ty+ Uoy
wherer, is the cohesive component, is the normal pressure ands the internal coefficient of friction.
The Coulomb’s law is still considered the basis tfog description of dry friction in classical meofcs,
even though recent studies have proved that somiatid&s may occur [7-10]. For example, it does not
consider the presence of anisotropy, i.e. wherfrtbion force depends on the direction of slidimmg,how
the normal load depends on the real contact area.
Over the years, analytical models have been inteditio study the complicated problem of frictiomeQpf
the main contact theories was introduced by Helrt3, [which paved the way for the development of enor
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recent models for contact mechanics, such as tbgpmposed by Greenwood and Williamson (GW) [12],
the so calleanulti-asperity model and the related studies by Majumdar and Bhush&i4], or alternative
solutions, such as Persson’s theory [3,15,16]. Toregented different approaches to compute thenssp
of a rough surface in contact with a flat substralge to a normal load. Greenwood and Williamson
developed the Archard’s studies, assuming a suftaceed byn elastic spherical caps with equal radii but
different heights and provided the solution for ttentact area after pressing this multi-asperitsfase
against a rigid plane [12,17,18]. They found thet &rea of real contact, usually smaller than thpaeent
contact area [6], is proportional to the load, whihe average size of micro contacts is indepenafetite
load. Indeed, when the load increases, new cogfats are generated. On the contrary, Perssomaefer
surface roughness by defining the power spectnasitieof the undeformed rough surface and studied t
contact mechanics between this rough rigid suréacka semi-infinite elastic solid.

Other models have been developed during the yeastutly the interaction between the asperitieoofin
surfaces. The one proposed by Caroli and Nozi&@®sstudied velocity independent friction in a dgstem
and found that it is generated by hysteretic bahayiwhile the elastic interactions between thesetps
play a minor role in solid friction of multicontactiterfaces. Mroz and Stupkiewicz [20] reportedietibn
model for anisotropic friction, based on the logaidity of the classical Coulomb’s law [6], whiclonsiders
parallel springs to simulate the interaction betwemigh surfaces and that was also applied moentigdn
[21].

However, friction is not only a macroscopic probjdamt it also involves several effects that ocdutha
micro and nanoscale, from adhesion to asperitydntmns [22,23], which can also influence the naextal
properties of materials e.g. toughness for micesBlj24,25].

As reported in past and recent works [7-10,20,2h-@#htact between rough surfaces is an exampke of
multiscale problem, sometimes leading to hieraaihand fractal geometries [29-33]. Indeed, biolabic
structures have efficient ways to minimize or magxanfriction or to adapt to different environments
depending on the goals [34,35]. Usually, thesdguiing properties have been developed thanks peeific
hierarchical structure. By changing their organ@atvariations in the mechanical and physical props
are possible. For this reason, systems and stasgciarnature draw a lot of attention thanks torthéjh
efficiency and durability [36—-38] and to date, timerest in transferring technologies from biol@gic
systems into engineering applications has beerlg@arsued in the field of tribology.

This being the case, in the proposed paper antaralynodel for anisotropic dynamic friction isliatluced,
which directly connects roughness with the frictmwefficient. The model has been extended from [B0]
introducing one-dimensional (1D) and two-dimenslof2®d) roughness. Subsequently, other aspects have
been developed as (i) adhesion, modelled as dddnste increasing its effects during surfacesasgon,
(i) wear, introduced to modify the roughness gegfaccording to Archard’s law [18], and (iii) haechy,
studying the contribution of fractal surfaces te thctional response of the system [23,39].

2. The Anisotropic Lattice Spring Friction Model (ALSF M)

Suppose to have two rough surfaces in contact, ieoldas reported in Figure 1.a, where roughnessean
expressed by a continuous and differentiable fanotith a defined periodicity in the forax f (xy), here
called 2D roughness (Figure 1.b).
Thus, these surfaces are:

z; = f1(x,y)

z; = f,(x,y)

where the lower surface is identified by no. 1, levlthe upper is no. 2.
The analytical model assumes that the isotropidd@wol friction law governs the local contact betwdea
rough surfaces, already in relative motion, thusoitsiders only the dynamic friction force. Theadaces
are assumed to be infinitely rigid, while a setlarigitudinal springs, equally spaced and with thee
stiffness, governs their elastic interaction (Fegira).
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It has been supposed that the springs are fixddhahe upper surface and slide on the lower,thadther
half opposite to them, to consider the contributiah both the rough surfaces to the global coefficiof
friction.

As a first approach we neglect adhesion, defirimag the springs work only when compressed withstrae
longitudinal stiffnes,.

Firstly, we analyse the force equilibrium at pa{P € z(x,y)) due to a single spring interaction (Figure
1.b-c) on the planeg, tangent to the surface i

G

— =0
0z

aG aG
(X—Xp)a+ ()’_J’P)@‘*‘(Z_ZP)
G f(x,y)—z=0

Assume the spring is fixed on the upper asperilyfédsez,) and slides on the lower (surfagg); lqis the
spring length at rest: the actual spring leriglepends on the asperities profile, thus, for pBjtits length is
equal to:

lp =Z (xp: yp) - Zl(xp'yp)

Due to its length variation during the sliding, thimgle spring generates an elastic force, expdease
follows:

F,(P) = (I, — lp)k, in case of compression;
F,(P) = 0 in case of elongation, since the tensile behav®uoeglected,

From the static equilibriundy is the normal force acting on theplane (Figure 1.c) and the tangential force
is equal tdl' = uyN, whereu, is the local coefficient of friction (following thisotropic Coulomb law).
Supposing that the spring displacem@pt— [p) is u, the normal force on is:

tan @p cos
N = ku|cospp — a i £ (1)

J1+tan2 ¢p cos?f8

B is the projected direction on th&/' plane of the sliding velocity vectoy acting on ther plane, tilted by
opp from x'y’ plane,pp is the intersection between the tangent plane @amd thex'y’ plane, as reported in
Figure 1.c.

The denominator in Eqg. (1) should be different fraaro, leading to have, # 90° and p, # cot@p

\/fft;a;(l;P C:zfzﬁ > 0. This means that
P

(I, — lp) is positive and that the local coefficient of fidm 1, must be smaller thatot ¢p.

This means the more the material displays sharghmeess, the more the local friction coefficient mioes
small and in particular, fap equal to 45°, has to be minor than 1. From a physical pointiefw Eq. (1)
implies that the model is suitable for elastomeny avhen they show a smooth roughness, since theglly
display dynamic coefficient of friction around 140—43]. In addition, in case of sharp-shaped atspei(p
= 60° or more), the global coefficient of frictignstrongly increases and fer= 90° tends to an infinite
value. This condition can model the presence @friotking when the asperities are sharp, sincérittéon
force significantly grows, affecting the slidingdaaven stopping it. In the'y’ plane, from the equilibrium,
the tangential forces are expressed in terms afithmal elastic force, (P):

VP € z(x,y). WhenF, is a compressive forcéu > 0 andcos ¢p —

sin@p /1 + tan? gp cos? B + pg cos

= FH, (o, ¢p, B) 2)
cos @p+/1 + tan? gp cos? B — o tan @p cos §

F,=F




sin
F, = F, Ho B
cos @p+/1 + tan? gp cos? B — o tan @p cos

= FzHy(llo: ®p, B) (3)

Finally, to achieve the reaction forces in the glaieference systent(andF,), Eq. (4) is applied, where,
is the rotation of the local reference systen?iwith respect to the global system, whieandY are the
quantities to be led back to the global refererystesn (i.e. the reaction forces):

(Xp> _ [ cosap sin afp] <X'p> )

Yp —sinap cosap|\Y'p

Consider now a certain numbeof springs, which is acting on both asperities. &ach spring, the previous
equations can be adopted and the total normal Ryeell be equal to:

e DA 4 3 =R R ®

WhereRgl)and R§2> are the sum of all the normal forces acting on ltdweer surface and on the upper
surface, respectively.
The same formulations are obtained for the tangkfatices in bothkx andy directionsR,. andR,,:

RO =) R ©)
R =28 7)
RY = > E? ®)
R =2.h ©)

From the previous relationships, in the case dddtieesion, the coefficients of frictigny , 1, and the global
coefficient of frictionu are obtained as follows:

=
R
=

R
—aX ——— _ Ty
e =1 My =g h=0

z
Following the Coulomb’s law, the tangential foregroportional to the normal force applied to thdece.

2.1 Surfaces with 1D roughness

We refer to this case when the surfaces are defisddnctions of the only variabieand extruded along
direction,z = f (X) (Figure 1d) and thusp, is the inverse tangent of the functia(x) in P, reported in
Figure 1.d.

Following the previous steps for the 2D case, tied equilibrium at poinP (P € z(x)) due to the spring
interaction is obtained referring to the tangeminglr in P (Figure 1.e)p is the projected direction of the
sliding velocity vector on thety plane and the tangential forc& and R, could be expressed in the

following forms:

Ra(cl) = 2 Fz(l)Hx (10, ¥p1,B) (10)
Ry = Z O Hy (o, @p,1. B) (11)
Ra(cZ) = Z Fz(Z)Hx (Ho: ®p2, ﬁ) (12)
R = > EPH, (0, 90.2,5) (13)



From Eqg. (10) to (13), the first part is the ekastontribution, which depends on functiansandz,, while
the second belongs to one of the two asperitigthewelocity orientatiog and the local friction coefficient

Ho-

2.2 Surfaces with 1D wedge asperities roughness
By adopting the surface profile as formed by tilptanes (saw tooth shape, Figure 2), the expressibtihe

friction forces simplify. Since the average spraigplacement is equal gé% , the average normal (elastic)

force on one tilted planeis R} = kaTi AL _ L ]:chli = E"nFZ (thanks to the same spring stiffness). When the

whole asperity is considered, the normal elastice®, is the sum of the average elastic forces genetsted
the spring compression on each tilted plane, wedlty their area of competence by introduaingndo,
reported in Eq. (14). The coefficient ¥2 remembbkeg the springs are fixed half on the upper antidrathe
lower surfaces.

R, = — =_—r2 = 14
Z 214y * 21+y 7 2146 7 2146 7 tan @4 tan ¢ (14)

R, RP R®andrare the average normal force, acting on the tifahe byg:, ¢ @3 and ga,
respectively.

1 1 1 14 11 tan tan
T Y O RS Y ¢ B S 1 ©) BN S Y O _tang, . _tang,

If B =0 the sliding motion is only along thedirection,u,, = 0 and

1 1 4§ 1 1 1
E%Rgl)l_{x(ﬂo' D1, ﬁ) + ?mRS)Hx(HO' (pSJﬁ) + EﬁREZ)Hx(HO' - (pZJﬁ) + ?mRy)Hx(HO' _(p4'ﬁ)
Hx = R
(19
1 vy R _Ho T tang, 1.4 R® Mo T tangs 1 1 R@ _Ho —tang, 1.1 RW Ho —tan g,
_21+y 7 1—pptangy;  21+86 2 1—pgtangps;  21+¢P 2 1+pytang, 21+6 %2 1+ pytang,
= T
On the contrary, i = 90°, u,, = 0 and
1 1 6 1 1 1 1
E%Rél)Hy(llo» ©1,P8) + §1+_5R§3)Hy(.“0' ©3,B) + meg)Hy(MO' - @B+ me§4)Hy(llo» —94,B)
Uy =
e (16)
1 ¥ ,o_n 1 6 ,3_Hn 1 1 ,@_H 1 1 ,w_p
21+ 1,[)RZ cosoq0:l taTre ks coso<p3 t2TF 1,[1RZ coso<p2 t2Tre ks cosoq)4
= z
Egs (15) and (16) simplify when:
* P1=¢2=¢,¢3=¢,=0andy=5=1(Figure 2.a)
Whenpg = 0, u,, = 0 andu, becomes:
1, #ottang 1,03 1,2 po—tang 1,
L = zR: 1 —uotan<p+4RZ Ho+ Rz 7 +u0tan<p+4RZ Ho _,uo(Z —sin? ¢ (1 + o))
* R, 2(1—-sin2@ (1+ue®)) (17

On the contrary, i = 90°, u,, = 0 and



lpm to lp@ #o ,1pm), -\ 1

4 4 4 413(4)“0 1 1
Z z z
cos @ cos ¢ o ( 1)

by = R, 2" \cos @ (18)
* P =@, =@3 =@, =@andy=35§=1(Figure 2.b)
In this particular configuration, the same expr@ssiobtained in [14] are recovered.
If p = 0 the sliding motion occurs xdirection,u, = 0 and:
1,0 pottang 1,3 puottang 1, po—tang 1,4 po—tang
p _ZRZ 1—pgtang tzR7q — Up tan @ tR + Up tan @ tzR + Yo tan @
X = Rz
_ Ho (19)
" 1—sin2¢ (14 ue?)
On the contrary, ifg = 90°, u,, = 0 and
1o o 1, #He 1,00 Mo 1,0 Mo
_4RZ cos<p+4RZ cos<p+4RZ cos<p+4RZ cos@ Mo (20)
Hy = R, " cosg

The coefficients found in Eqs (17) and (18) areilsimo the friction coefficients described by Hd®) and
(20), but smaller. This is reasonable, because wdmem profile has no roughness, there is a lower
contribution to enhance the global friction coeéit.

3. Adhesion, wear and hierarchy

3.1 Introducing adhesion in the ALSFM

Many times adhesion is neglected, due to the peesehsurface roughness [44,45], which can rembee t
adhesive forces. However, even if roughness coatisth the adhesion contribution, the area of reatact

is still affected by its presence [6]. In additiaalhesion must be considered if the surface isactenized by

a smooth roughness and a soft material.

The most common analytical models developed toyshatthesive contacts are the Johnson-Kendall-Roberts
(JKR) model and the Derjaguin-Muller-Toporov (DMiodel, with related studies [46—49]. JKR model
assumes an elastic sphere in contact with a flagtsate with a free energy per unit area, whichuocevhen
the contact is reached [6,47]. Due to this eneagyontact spot with finite radius remains evemd éxternal
load is zero and this contact breaks at a crifedll-out force. The model gives the values of tatact
force and the minimum contact radius at which alraatcal instability breaks the bond. If no freeface
energy is present, the model collapses into thézidemodel [6,11,47]. The JKR model is accuratedoft
materials and high surface energy, otherwise thel Dhbdel must be applied, which has been formulated
for adhesion between hard spheres [6].

Due to a wide interest in bioinspired applicatidinsthe last decades there has been an increassdarch

on adhesion [50-57]. For example, further develogmef the DMT theories have shown that adhesion
generates an additional load around each asp&®ly Dther works investigated the adhesion hysieres
contribution to friction [58], adhesion betweenfaaes with smooth roughness [45], or simulatinggéeko
seta in contact with rough surfaces to obtain ffieiency of the attachment [52,56].

In the ALSFM, adhesion is introduced by adding ¢batribution of tensile springs, which can elongate
lengthl,, larger than the rest length Thus, when the applied normal loaddecreases, some springs can
elongate when the distance between the two sligimtaces is bigger than the spring rest length,tdube
shape of a rough profile (from Figure 3.a to FigBie the load. is reduced). This generates a portion of the



contact area subjected to tensile elastic forcesadhesion forces. Since the real area of cod&etmines
the sliding friction force, adhesion, where presean affect and modify the global frictional beivaw.

If no adhesion occur®, = Y FZ(C) is equal to the normal lodd(Figure 3.a), otherwise:

Where); FZ(C) > 0 is the sum of all the compressive forces Eh@‘t) < 0 is the sum of the tensile forces,
which have opposite directions.

Springs are defined with different compressive tamsile behaviours, respectivdty andk; = k./2. With
this assumption, the model takes into account gefacompression resistance than the tensile oneaFo
single spring in poinP, the elastic force can be:

E,(P) = (I — lp)k, > 0 in case of compression;
E,(P) = (ly — l;p )k, < 0 in case of elongation;

It is assumed that the stretched springs do nogrgém a friction force by sliding, so that, the agmt
coefficient of friction is expressed as follows:

Rey® _ [ (R) (22)
L L

Ha =

WhereR,, ¢ indicates that the tangential foré, on thexy plane is generated only by the compressed
springs and indicates thaR,, is determined only by the,© elastic forces. This implies that the apparent
coefficient of friction increases due to the preseaf adhesion.

3.2 The effect of wear in the ALSFM

Among the various tribological phenomena relateglitting friction, one of the most significant isar. As
for friction, wear involves different physical andemical processes occurring over different time langth
scales. Several empirical models have been dew&ldpem the well-known Archard’s model to recent
works as experimental studies of wear track olaems with Scanning Electron Microscope or Atomic
Force Microscope, or even numerical simulationsotdain the surface evolution during the sliding
[6,18,33,59,60].

In this paper, wear is considered as a processtaethe contact surface as a function of time &nd
modelled following the Archard’s wear law [18]:

v L (23)
s=5u

WhereV is the total wear (transferred) volunmg,is the sliding distancd, is the normal loadH is the

surface hardness aiidis the wear coefficient.

It is assumed that the shape of the asperitiesdisced from the initial amplitude until zero (iflat) after a

certain timeTy,, which is the estimated time to completely smdbthsurfaces with a wear raté= V/Sand

a constant applied load, which does not changegtlie wear process (Figure 4).

In the presence of 2D roughness, defining vt and thewear rate W = V/S, the total transferred volume

is:

Xpyf Xpyf
AV = ﬂ z(x,y)dxdy — B 'U z(x,y) dx dy = WvAt (24)
X0.Yo X0.Yo



WvAt (25)

B=1-—
Yf
ffxo.yo z(x,y) dx dy

B is a reduction coefficient for the roughness araght and varies between 0 andl= 1 means that wear
has not modified the roughness yet and the traresfeolume is zero. On the contraBy= 0 implies that the
rough surfaces became flat.

When 1D roughness is considered, Eqgs (24) andct2h)ge as follows:

AV =AA-Y=Y" <Jbz(x) dx — B Jbz(x) dx) = Wv, At (26)

Wv, At (27)

B=1-——7F"—"—
Y- [ z(x)dx

Y is the asperity depth (aloyglirection),AA refers to the total transferred volume per ungtde

In the presence of 1D wedge asperities, wear radiesslopes of the asperities from the initialaiiglesy®

to zero (flat surfaces, Figure 4.b). The total wealume can also be expressed as a function ofvduge

asperity angles, finding the following relationship

dtang  2Wv

dt Sizy

3.3 Hierarchy
When friction involves rough surfaces, the multiscaature of their profiles can significantly affebe
global coefficient of friction. For this reason,ohard proposed an hierarchical approach to desfridtion
in the presence of rough self-affine surfaces [Eligrarchical profiles and fractals have been aebpo
describe also fractures in rock mechanics [62]gitee an overall characterization of surface roughkne
[13,29,63] and to model friction and contact [1331432,64].
In this work, the 1D and 2D-ALSFM are extended tiady the effects of rough surfaces characterized by
hierarchical structure. In this mechanical formiolatn levels of hierarchy are identified, since it isamned
that each asperity presents multiple levels of hoegs, one inside the other, where the upper level
characteristics depend on the previous ones (FigurBy applying the Hierarchical ALSFM (H-ALSFM)
and assuming the isotropic Coulomb friction moaebé valid in every subleveél u; depends on its local
friction coefficienty;_, as reported in Eq. (29), is the local coefficient of friction for the lowes-level,
u = f1(uo, 21, 22, B) is the global coefficient of friction at the 1-Elvand appears to be also the local
coefficient of friction in the 2-level, and similgrfor the others. By adopting a profile formed sgme
hierarchical self-similar levels, the surface ipmssed as follows:
21 2m
z = A% * sin (— Bbx) * sin <— Ccy> (28)
Ay Ay
WhereA, B andC are the coefficients that modulate the shapeesthifaces, while, b andc depend on the
level of roughness. In these studies it has besumnaed thah = B= Candb=c= (n-i) whilea= - (n-
i),with n number of levelsi, number of the actual level £ 1 is for the innermost, and then it increased unt
n).
At thei-level, withy;_; as the local coefficient of friction:
i = fi(io1, 21,22, 8) = v[f1(ko, 21,22, B)] (29)

sin @p /1 + tan? @p cos? B + p;_, cos 8
F=F, , = EHy(ti—1, 9, B) (30)
cos @p /1 + tan? gp cos? B — y;_q tan @p cos B




Hi—1sinp
E,=F = F,Hy(ui—1, p, B) (31)
cos @p+/1 + tan? @p cos? B — y;_q tan @p cos

FZ = Kiu (32)

In particular, in the presence of 1D wedge aspeyiif 3 = 90° these expressions can be simplified into:

o[ ¥ "
{(ﬂn = Z—E[COS ot 1] Q1= @2 Q3= @3 =0 (33)
Ho
\Hn = (cos o)™ P1= Q2 =@3 =0, (34)

3.4 Coupling the effect of hierarchy and wear

In the work of Whitehouse and Archard in 1970 [li7jyas found that from the profile of a rough swé
after a single passage of a lubricated slider fitteeroughness (i.e. the roughness associatecetasrtialler
levels) was removed, while the main roughness wesepved. Following the concept of such experiments
the effect of hierarchy is coupled with wear medsians, by assuming that the first consumed levéhes
innermost one. When its roughness is removed,dbensl begins to be subjected to wear and the cieffi

of friction of the innermost level tends to its &coefficient of frictionu,, followed by the others until the
external level is worn:

Hp 2 HUp—1 2> " 2 U1 2 Ho
After a time equal t@,, (B = 0,t, = 0), the global coefficient of friction of a certdigveli is reduced to its
local coefficient of frictiory;_; and the total number of hierarchical levels deseedronm to n-1.
In the presence of 2D roughness, the time neededao away a certain leveis:
Xpyf
_ .57 2(x, y) dx dy (35)
wit Wv

obtained from the expression of the reduction ¢oefit B, when the latter is equal to zero.

4. Results and Discussion

Referring to the ALSFM, results for 1D and 2D ronghks are shown in Figure 6 and Figure 7, respégtive
where values oft are normalized by, the local coefficient of friction used in the tisgpic Coulomb
friction model. Six different roughness configuosis are analysed by varying the sliding direcfiorvhich
strongly modifies non-linearly the coefficient oiction u. In Figure 6, generic 1D roughness (whege,,
etc., are the average slopes of the surfagand z,) has globally a higher friction coefficient thanet
equivalent wedge asperities. The largest coeffiaidririction is reached when both the surfacesratagh
and, in particular, when the first slope is gredtean the following, which is the case of asymnoetri
roughness (red stars in Figure 6.a-b) with resfethe rough-flat surface contacts. Whetends to 90°,
some reported cases tend to the same result, f&inge = g3 > ¢, = ¢4 ande; = p3 < @, = @4 the sliding
configuration is the same whegns 90°. The same occurs faf > ¢, @3 = ¢4 =0 andp; < @, p3= @4 =0,
where the roughness asymmetry becomes negligibda wie sliding is along thedirection.

Referring to 2D roughness (Figure 7), whgnandz, are equal and symmetric, the coefficient of fanti
along bothx andy directions is the same if one surface is slidinthyi equal to 0° o8 equal to 90°, as it
was expected. In addition, in this situation, tbeficient of friction does not vary as much adades in the
1D case with respect to the sliding direction. Tikislue to the different shape of the surfaces,revitiee
succession of summits and valleys both alwmagdy directionsgenerates smaller frictional forces and thus
the coefficient of global friction appears to bmakt constant with respectfo

More changes may occur if the wavelength of the@disps is modified (Figure 8). The coefficientfattion
can increase or decrease by considering severabinations of wavelength inx and y directions,
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respectivelyl, and/,. Globally, 25 combinations are reported, varying sliding directiorf from 0° (Figure
8.a), 45° (Figure 8.c) to 90° (Figure 8.b).

Figure 8.a and b are symmetrical and display theimmam coefficient of friction for the smallest
wavelengthsX= 1, = x). In addition, the bigger coefficient of frictios reached if the smaller wavelength is
the one in the direction of sliding. For example Figure 8.a, when, = 7= and the direction of sliding is
along thex axis ¢ = 0) the bigger coefficient of friction is reacheddasmppears to be slightly affected by
variations int,, while varies significantly by changirig Opposite results are observed in Figure 8.b,tdue
£ =90°.

These insights may suggest that the wavelengthnthatly governs the coefficient of friction is tee in
the same direction gk because the asperities that the surfaces argface predominant in influencing the
coefficient of friction. The increase in wavelengtérpendicular to the motion slightly affects treues of
u, reaching the minimum value for both the largeavelengths. If the direction of slidinyis equal to 45°,
the coefficient of friction shows a symmetrical betour with respect to the diagonal middle valudss is
reasonable because both the wavelengths play ithe kde in enhancing or decreasing the global aoefit

of friction.

In order to validate the proposed 2D-ALSFM we coregdts predictions with experimental data takemfr
[21], where three rough steel pins were testednagai flat ice surface. The pins profiles are miedeas
reported in Figure 9, starting from the averagegghmessR, and the root mean square of the slope profiles
Ry Obtained from the profilometer. A symmetric sugamorphology has been assumed in bo#ndy
directions, and since the experimental sliding diom g is random, we considered the two extreme
situations found in Figure 7, i.8.= 0° andp = 30°. As inferred before, for 2D symmetric prddiléne
coefficient of friction is more affected by the fite morphology rather than the siding directioir¢le- and
diamond-shaped markers for= 0° and 30° respectively). Furthermore, we foargbod agreement between
the experiments and the model predictions, whexectimtribution of the surface roughness is clesinigwn
(Figure 9.c).

When adhesion is introduced (Figure 10), sevetabhons may occur: if all the springs are comprdss

(high loads), the sum of all the elastic forcesabaé the applied normal lodad Then, if the load decreases,

some springs may be elongated generating tensgedpwhich are balanced by the remaining compdesse

springs. In Figure 10.a for 1D roughness the vianan time (normalized by the period of the funcisT)

of tensile springsn;) with respect to the total number of springs,f) is shown, from blue to red curves.

The more the load reduces, the more the springslarggated, untill. = 0, in which the sum of the

compression forces is equal in modulus to the stitheotensile forces (opposite direction). By ajpmdya

negative load (tensile force), some springs cotildb®e compressed (negative part of the graphiguie

10.b).

When there is no spring elongation, the tangefii@e R, ,, is linearly dependent on the normal fokg

while if some springs start to elongate, the batiavbecomes non linear, due to adhesion effectsetMer,

adhesion appears to have a significant role onlysfoall normal loads, as also reported in expertaden

works e.g. [40].

The presence of adhesion generates an (apparéanement of the friction coefficient (or even gateve

value, when the load has the opposite directianjeported by Eq. (22).

When the surfaces are described by the same fanamthatz(X) = z(X) and the sliding directiof is

equal to 90°, the springs do not modify their Iénafiong the sliding. In particular, if they arephase at =

0, adhesion does not influence the frictional bahavorange curve reported in Figure 10.b).

The anisotropic roughness clearly influences ti@idnal response, as the curves in Figure 10.lwsdad

the sliding direction that mainly contributes irhancing the effects of adhesiorpis 0°.

The effect of adhesion is different if we assumgDaroughness with sinusoidal function in bottandy

directions (Figure 10.c-d). By displaying the tamig@ forceR,, with respect to the applied normal ldadt
10



is evident that there is no significant dependemte¢he direction of sliding. Furthermore, adhesgually
affectsx andy directions of sliding (blue line and yellow dasHie). Figure 10.d shows an enlargement on
the graph close to zero. When the |dat equal to zero, a frictional force is still regable, due to some
springs that are compressed and thus generaieririct

In Figure 11 the effect of abrasive wear is introetll and discussed. As stated previously, 2D-ALSFM
predictions for the global coefficient of fricti@re slightly affected by the direction of slidiregpecially for
symmetric asperities. This is clear in Figure 1Where the first point of each curve representsgibbal
coefficient of friction (normalized by the local efficient) without wear effects. These values dmilar
and, by adopting the same local coefficient oftifoic 1o, the results are equal to the ones reported iar€ig
7. Then, when the wear mechanism starts modifylrey shape of surfaces, the coefficient of friction
decreases non-linearly, until it reaches the vafube local coefficient,, meaning that the surfaces became
flat.

By supposing a certain wear rate (order of magnitudé0~3 mm3/m, as reported in [59] for metals), after
a time equal tdy, the surfaces become flat and the friction cogffictends to the local friction coefficient
Uo- The influence of the sliding directighis more evident by comparing Figure 11.a-b withuiFé 11.c.

Thanks to the introduction of hierarchy, the H-ASLFrstly computes the friction coefficient of thener
level (on the smallest scale), and then the caefficof the others. Changing a level means hypmigt
changing the scale of the problem (we have assuh@dhe physics and the geometry of the problesn ar
preserved). As in the previous cases, these remdtebtained for distinct values gffor both 2D and 1D
roughness (wedge asperities or generic shape).

Hierarchy enhances non-linearly the friction cagdfint and the coefficient of each level dependshen
previous ones. By defining hierarchical subleveldoth upper and lower surfaces, the friction gorfht
increases faster than in the case of only onenstgial surface and a second single-level surface.

The effects of hierarchy in the presence of 1D somal asperities (Figure 12.a-b) and wedge asgerit
(Figure 12.c-d) are studied, both in the case ofnerough or rough-flat sliding. For wedge aspesitit is
possible to compare the numerical results with 83 and (34). By adopting the same simplified Sotu
in the case of sinusoidal roughnegsi§ assumed to be the average of the slopes)pigsible to make a
gualitative prediction of the variation of the fian coefficient in a hierarchical surface, even if
underestimated (red curves in Figure 12.a-b), duie slope approximation. In Figure 13 the vavratf
the friction coefficient between two 2D symmetric asymmetric self-similar hierarchical asperitias i
reported. Three different directions of sliding) @re considered (Figure 13.a) and for surfaceb 2id
symmetric roughness, the same behaviour is fourll relative sliding along andy directions, proving
again that the frictional response is symmetricwkler, similar results are obtained also for ofhee.g.
45°, meaning that the sliding direction is not pneponderant factor modifying the friction coefént, even
in the presence of hierarchical surfaces. On timrary, if asymmetric asperities are adopted (FedLB.b),
the frictional response varies with respecptdn particular, the results obtained frequal to 0° or 45°,
with surfaces characterized by= 2r andA, = 3z, or by/. = 3z andi, = 2z show that the difference among
the sliding directions is more significant, whitetresults fop = 45° are the same.

When the effect of wear is introduced within theABLFM, the global coefficient of friction decreases
depending to the number of sublevels. In Figurethd,coupled friction-wear behaviour between two 2D
rough hierarchical surfaces is reportég.is the time needed to wear away the innermost [¢eel 1). As
stated before, each outer level is linked to thevipus ones and influences the following. A chaimgthe
friction coefficient at a certain levelaffects all the upper levels, as it is clearlyibles in Figure 14. After a
time equal tdly, the innermost level has become flat apdeduced tQi,_;.
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5. Conclusions

We proposed a theoretical model for anisotropicagyic friction, which considers the interactions and
effects of two rough surfaces in contact, duringjrthelative sliding. By developing the analyticabdel for
1D and 2D surface roughness (the Anisotropic Lat8pring Friction Model), the parameters that iefice
the frictional behaviour of the model are the |dtaition coefficient, the direction of sliding, ehamplitude
and wavelength of the surfaces. The friction coedfit strongly depends on the roughness of thecesf
involved and on the sliding directigh Generic 1D roughness displays higher frictionffoicient rather than
the saw tooth shape, with a reduction up to 40%yimgofrom 8 = 0° to 90°. By introducing 2D roughness,
the results of this investigation highlight thatvsyetrical surfaces seem to be more influenced by th
shape, rather than the direction of sliding, whilth non-symmetrical surfaces (different wavelenigtthex
andy directions), the sliding direction affects up @-80% the dynamic friction coefficient whehvaries
from 0° to 90°. We also validated the model praditda with some experimental results taken from a
previous work.

Then, adhesion is introduced by imposing that gréngs governing the interaction at the interfaaa be
subjected also to tensile forces. This aspect saaisencrease in both the total compression foctegon
the asperities and in the apparent friction cordfit Results show that, when adhesion affectslideng, a
tangential force is still present even if theragsnormal load.

Wear is adopted as a process that reduces theriricbefficient in time and smooths the asperitiEse
effect is more evident if the sliding is along thefile with sharper roughness (efequal to 0 for 1D
roughness). If hierarchical self-similar levels present, they contribute in enhancing the frictoefficient

in a non-linear way. The effect of wear in the pre=e of hierarchical surfaces provides the mod#i thie
prediction of the friction coefficient, which deases in time due to sliding wear.

This being the case, the present work could ses\eeguide for future investigations to analyse nu@eply
the effects of surface topology and hierarchy mftiction response of multilevel surfaces andtfa design
of their tribological properties.
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Figure 1: a) 2D roughness visualization. A set of longitadisprings governs the interaction at the interfagdetail of one surface
with 2D roughness: we consider the force equiliriat pointP (P € f(x,y)) due to the spring interaction. To obtain eaclcdor
contribution, the tangent plang)(in P is considered. c) Force decompositionmowith respect to the local systerhy’z in P. To
obtain the final reactions in the global referesgstemxyz, the rotation matrix must be applied)( 8, identifies the direction of
the sliding velocity vectow, on therm plane, tilted by from x'y’ plane, whilev is the projected sliding velocity ar@l the
projection off3, on thex'y’ plane. d) Detail of one surface with 1D roughn@ésngx direction): we consider the force equilibrium
at pointP (P € f(x)) due to the spring interaction. To obtain eacltdocontribution, in this case the tangent plamgif P is
considered as well. e) Force decompositiomramith respect to the local systexyz in P is considered. In this situation, no rotation
matrix is neededB, identifies the direction of the sliding velocitgatorv, on them plane, tilted byp from xy plane, whilev is the
projected sliding velocity anfl the projection o3y on thexy plane.
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Figure 2: Particular cases of 1D wedge asperities rougha¢$3ne flat surface sliding on a rough surfadt wymmetric wedge
asperities. b) Two rough surfaces with the samensgtmic wedge asperities.
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Figure 3: A 2D schematization of half model in various sitoas in the presence of adhesion, with decreasifrgrh a to d. a) All
the springs are compressed and the normal loaguid € the sum of all the spring axial forceslflsome springs are elongated and
L is the applied normal load, the sum of the corsgire forces is larger than the load. c) In caseooéxternal load, the sum of
tensile and compressive forces on the springsrs @@ In the case of a tensile load some compdesisengs still generate friction.

Figure 4: a) A schematization of the surface levelling after wear processg, is the initial surface shape, whitds the surface
profile after a certain timg. At the end of the wear mechanism, the surfackbeiflat. b) A scheme of the surface levellingase
of 1D wedge asperities? is the initial surface tilt angle, whilg is the smoothed surface after a certain ime) Surface roughness

changing in time.
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One level of roughness Two levels of roughness Three levels of roughness

Figure 5: How to model different levels of roughness
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Figure 6: a) Coefficient of friction of the six case studieported in the box in the presence of two wedgerity surfaces. These
coefficients are calculated by assuming differargation of slidingB. b) Coefficient of friction of the six case studieported in
the box for friction between 1D general rough stefa by assuming different direction of slidjfigy, is set equal to 0.3.
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Figure 7: Variation of the coefficient of friction betweewad 2D rough surfaces with respect to the directibaliding 8. The upper
and lower surfaces are the same, with symmetrighwoess, thus the coefficient of frictiprnvaries between 0° and 45°. The blue line

shows how the coefficient of friction changes betw®°® and 90°, with a stefpf equal to 5°, while the red line is the friction
coefficient obtained for smaller stepg.is set equal to 0.3.
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Figure 8: Changes in the friction coefficient by varying bathvelength inx andy directions (fromi =z to A = 3z) and sliding
directiong from 0° (a) then 45° (c) and finally 90° (b). Aspected, a and b are symmetrical and show the mawigoefficient of
friction for the smallest wavelengths and this ¢té&hpreserved in the direction of sliding. Insteth@ minimum value is reached for
the biggest wavelengths. Withequal to 45°, the coefficient of friction is symimeal with respect to the middle valugg.is set

equal to 0.3.
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Figure 9: Comparison of the 2D model with experimental dafeet from [21]. a) The pin surface are modellecurmsg the
average roughnedg, and the root mean square of the slope prdfije obtained from the profilometer, reported in tabe c)
Comparison between the experiments (cirle-shapellergrand the 2D-ALSFM (square-shaped and diambaged markers).
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Figure 10: Effect of adhesion between 1D rough surfaces. ajatien of springs elongation in time for 1D rougiss, normalized
by the function period. The number of stretched springsdepends on the normal load. For each circulairdbt a curve in a is
obtained. In the reported case, until the rhtlg,,, is major than 0.3, the springs are all compreg¢ske line in a), corresponding to
zero for each time interval). After that value, ®osprings are elongated, and lines from blue tostemlv when and how many
springs display a tensile force during the slidinéhen the upper and lower surfaces are both desthly the same function, and
they are in phase, the number of elongated spisdsscribed by lines with shades of blue, whiderréo L>0. On the contrary,
lines with shades of red describe the number afigadted springs once the load reduces and becomsifet¢ <0). b) Effect of
adhesion between 1D rough surfaces. Tangentiad Rygcwith respect to the applied normal lodadWhen no adhesion occurs, the
coefficient of friction is the ratio between theowon the contrary, when some springs become &resihon-linear curve describes
this relationship. In the presence of 1D roughnadhesion does not affect the sliding witB0°, because there is a swift transition
from compressed to tensile springs alongytli@ection. c) Effect of adhesion between 2D rosgtfaces. Tangential foré, with
respect to the applied normal lohdboth normalized with respect to the maximum lbag. In the presence of 2D symmetrical
roughness, adhesion equally affextandy directions of sliding (blue line and yellow dashet). An enlargement on the graph
close to the origin is reported in d. With othédislg directions, e.g8 = 45°, the behaviour is close to the previous ase
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Figure 11: a) Variation in time of the friction coefficient treeen two wedge asperities. Three different dioedtiof sliding g) have
been considered. After a time equal iy the surfaces become flat, thus the friction comdfit tends to the local friction
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coefficientuy. b) Variation in time of the friction coefficieritetween two asperities with generic 1D roughnesso Aere, three
different directions of sliding) have been considered. After a time equdl,jahe surfaces become flat, and, as in the previous
case, the friction coefficient tends to the locaition coefficienty,. ¢) Variation in time of the friction coefficietietween 2D rough
symmetrical asperities. Five different directioriskiding (5) have been considered, from 0° to 45° (from 45906 the behavior is
the same, due to symmetry). After a time equaljadhe surfaces become flat, so that the frictionffament tends to the local
friction coefficientu,. 1o is set equal to 0.3.
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Figure 12: Hierarchical friction. The theoretical predictiomhich is the exact solution in case of wedge atiperandf=90°, is
reported (red curves) for all the cases. a) Vammtf the friction coefficient between two sinusaidhierarchical asperities. Three
different directions of sliding) are considered. b) Variation of the friction dagént between a sinusoidal hierarchical surface a
a flat surface. Three different directions of sigli(3) are reported. c) Variation of the friction coeif@int between one hierarchical
wedge asperities and a flat surface. Three dinestid sliding §) have been reported. d) Variation of the frictamefficient between
hierarchical wedge asperities. Three differentddioms of sliding §) have been considered.
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Figure 13: Hierarchical friction for 2D roughness. a) Variatiof the friction coefficient between two symmetself-similar
hierarchical asperities. Three different directiafisliding (8) are considered. b) Variation of the friction dagént between two
asymmetric self-similar hierarchical asperities.orudifferent directions of slidingsf have been considered, compared with two
different asymmetric profiles. If the asperities aot symmetric, the frictional response variea more significant way with respect

top.
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Figure 14: Variation of the global coefficient of friction @sfunction of wear and roughness levels for 2D hmags. Every outer
level is influenced by the inner one, so that wieduces a reduction of each global coefficientriftifon associated to a certain level
i. After a time equal td,, the innermost level becomes flat, so that thefuerfit of friction of each level at the end of ghivear
cycle tends to its local friction coefficient. Lé\®is the local coefficient of friction.

21



