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Abstract  
 In this Chapter two mathematical models, force-
or energy-based, are proposed to design nano-bio-
inspired hierarchical materials, considering strong or 
weak interfaces respectively. Simple formulas 
describing the dependence of strength, toughness and 
stiffness on the considered size-scale are derived, 
taking into account the toughening biomechanisms. A 
simple experimental comparison on a new two-level 
hierarchical grained material is also discussed.   
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1. Introduction 
 Biological materials exhibit several levels of hierarchy, from the nano- to 
the macro-scale. For instance, sea shells have 2 or 3 orders of lamellar 
structures, as well as bone, similarly to dentin, has 7 orders of hierarchy [1,2]. 
These nano-bio-materials are composed by hard and strong mineral structures 
embedded in a soft and tough protein matrix. In bone and dentin, the mineral 
platelets are ∼3nm thick, whereas in shells their thickness is of ∼300nm, with 
very high slenderness. With this hard/soft nano-hierarchical slender texture, 
Nature seems to suggest us the key for optimizing materials with respect to 
both strength and toughness, without losing stiffness. Even if hierarchical 
materials are recognized to possess a fractal-like topology [3], only few 
engineering models explicitly considering their complex structure are present 
in the literature (see [4] and related references). In this Chapter an alternative 
and concise mathematical model is presented.  
 
2. Strong interfaces: Force equilibrium 
 Strength, toughness and stiffness of materials are measured by                     
tensile tests. Imagine a virtual tensile test on a hierarchically fibre-reinforced 
bar. Its cross-section, composed by hard inclusions assumed here to be 
perfectly embedded in a soft matrix (strong interfaces), is schematized in 
Figure 1.  
 The smallest units, at the level N, are considered scale-invariant and 
related to the theoretical material strengths of the hard and soft phases, 
respectively hσ , sσ , where usually sh σσ >> . Each inclusion at the level k+1 
contains nk smaller ones, each of them with cross-sectional area Ak. Thus, the 

total number of inclusions at the level k is ∏
=

=
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 The equilibrium equation is 
C h s k k hkF A F F N Aσ σ≡ = + = + ( )k k skA N A σ− =  

( ) ,N N hN N N sNN A A N A kσ σ+ − ∀ , where F is the critical applied force, Fh, Fs  

are the forces carried by the hard and soft phases respectively, A ≡ A0 is the 
cross-section area of the bar, σC is its strength, hhN σσ ≡ , ssk σσ ≡  ( k∀ ), and 

the subscript k refers to the quantities at the level k. Note that 
k

kk
k A

An 11 ++=ϕ  

represents the cross-sectional fraction of the inclusions at the level k+1 in the 
inclusions at the level k.  
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Figure 1. The cross-section of a hierarchical bar. 

 
 Natural optimization suggests nearly self-similar structures [5], for which 

nnk =  and ϕϕ =k , thus k-independent numbers and fractions; accordingly 
k

k nN = . Since the inclusions present a fractal distribution [6], we expect 
D

h RF ∝  where AR =  is a characteristic size and D is a constant, the fractal 
dimension; the constant of proportionality can be deduced noting that 

( ) hNNNh AAAF σ== , and thus DD
NhN RRF −= 2σ . Accordingly, from 

22
N

N
hN

DD
NhNh RnRRF σσ == − , we derive:  

 

n
RRDN N
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that defines the number of hierarchical levels that we need to design an object 
of characteristic size R. Eq. (1) shows that only few hierarchical levels are 
required for spanning several orders of magnitude in size. For example, for a 
nano-structured hierarchical “universe”, considering for R its actual radius, i.e., 

m1026≈R , for the smallest units a radius of 1nm, i.e., m10 9−≈NR , n=5 and 
D=2 would result in only 100 hierarchical levels. 
 The scaling exponent D can be determined noting that φAAN NN = , 
where N

N ϕφφ =≡  represents the macroscopic (at level 0) cross-sectional 

fraction of the hard inclusions. Thus, we derive ( ) 2N
N nRR ϕ= . Introducing 

this result into eq. (1) provides the fractal exponent, as a function of well-
defined physical quantities: 
 

ϕlnln
ln2
−

=
n

nD .                           (2)  
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 Note that D represents the fractal dimension of the inclusions, i.e., of a 
lacunar two-dimensional domain in which the soft matrix is considered as 
empty [7, 8]; for example, the dimension of the well-known Sierpinski carpet, 
is D=1.89.  
 Since DD

NhNN
N

hN RRRn −= 22 σσ  and ( ) 2N
N nRR ϕ= , we derive:  

 

( ) 2−== D
N

N RRϕφ .             (3)  
 
Thus, from the equilibrium equation a scaling of the strength is predicted:  
 

( ) ( ) ( )( )22 11 −− −+=−+= D
Ns

D
Nh

N
s

N
hC RRRR σσϕσϕσσ .         (4)

  
 
 Noting that 1>n  and 1<ϕ , we deduce 0<D<2 and thus eq. (4) predicts 
that “smaller is stronger” ( sh σσ >> ).  
 On the other hand, the energy balance implies 

( ) ( ) kGANAGANGANAGAWWAGW sNNNhNNNskkkhkkshC ∀−+=−+=+=≡ , , 
where W, sh WW ,  are respectively the dissipated fracture energies in the bar, 
hard and soft phases, and CG , hhN GG ≡ , ssk GG ≡  ( k∀ ) are the fracture 
energies per unit area of the bar, hard and soft phases respectively; usually 

sh GG << . Accordingly, the fracture energy scales as: 
 

( ) ( ) ( )( )22 11 −− −+=−+= D
Ns

D
Nh

N
s

N
hC RRGRRGGGG ϕϕ .        (5)

  
 
 And thus “larger is tougher”. In the following, toughening mechanisms 
will be introduced in the model. 
 On the other hand, the compatibility equation implies (bars in parallel): 

( ) ( ) kEANAEANEANAEANKKEAK sNNNhNNNskkkhkkksh ∀−+=−+=+=≡ , , 
where K, sh KK ,  are respectively the “elastic” force of the bar, hard and soft 
phases and E , hhN EE ≡ , ssN EE ≡  are the Young’s moduli of the bar, hard 
and soft phases respectively. Accordingly, the Young’s modulus scales as: 
 

( ) ( ) ( )( )22 11 −− −+=−+= D
Ns

D
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N
s

N
h RRERREEEE ϕϕ .         (6)

  
 
Since usually sh EE >> , “smaller is stiffer”.  
 Eqs. (4-6) show that at the smaller size-scales the inclusions are 
dominating, whereas at the larger size-scales the matrix dominates. These 
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equations present the same self-consistent form: in fact, regarding the generic 
property X ( CC G,σ  or E) at the level N−1, ( )ϕϕ −+=− 11 shN XXX . Thus, 

at the level N−2: ( ) ( )22
12 11 ϕϕϕϕ −+=−+= −− shsNN XXXXX  and 

iterating ( )N
s

N
h XXXX ϕϕ −+=≡ 10 , as described by eqs. (4-6). In 

addition, it is clear that the scaling laws predicted by eqs. (4-6) are particularly 
reasonable, since they predict two asymptotic behaviours for macro- and               
nano size-scales. Note that for a three-dimensional architecture (i.e., particle 
inclusions and not longitudinal fibres) for which also the third dimension plays 
a role, in the stiffness of eq. (6) the factor 2 must be replaced by 3, ϕ  becomes 
the volume fraction rather than the cross-sectional fraction and D is deduced 
from eq. (2) considering again the factor 3 instead of 2; this is true if we 
consider valid the rule of mixture of eq. (6) also for a nonparallel architecture.  
 Then, the fracture toughness can be derived as EGK CC = , whereas the 
hardness CH σ∝  formally making the substitution HC →σ  in eq. (4). Note 
that the important equality (3) would allow us to derive scaling laws from 
“rules of mixture” also in different systems and for different properties, e.g., 
the friction coefficient.  
 Finally, for quasi-fractal hierarchy, described by ( )Rn  and ( )Rϕ  weakly 
varying with the size R, a function D(R) should be considered in eqs. (4-6), as 
deducible from eq. (2).  
 
3. Weak interfaces: Energy balance 
 In the presence of weak interfaces the energy will mainly be dissipated 
on them during delamination, and the interfaces are thus expected to play 
the key role. Following [9] we assume that the dissipated energy Wtot is 
proportional to the total surface area Atot of the interfaces at the fractured 
cross-section, and not to the nominal cross-section area A. The gain in the 
energy dissipation imposed by the presence of hierarchy is thus given by 
[10]: 
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 where for spherical grains (0D) λ = 2, whereas for 1D- or 2D-inclusions 

kk RL=λ  represents their slenderness. Note the dramatic role played by a 
large value of λ, as observed in the mineral platelets of nacre, bone or dentine 
materials, in enlarging the composite toughness. A similar mechanism is 
discussed in the next section for strong interfaces. 
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 Thus, the gain in the fracture energy imposed by hierarchy (with a number 
of level explicitly shown here as superscripts of the symbols) is predicted to be: 
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For the Young’s modulus, from eq. (6) we derive: 
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Thus, for the fracture toughness ( EGK CC = ) we expect: 
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 Assuming the characteristic crack length to be proportional to αα 221 RRN
−  

[9], where usually 210 ≤≤ α  (even if 21>α  simply describes an inversion, 
often observed, of the classical Hall-Petch law), the strength 
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 As an example, we can treat the experimental results on double cemented 
WC-Co [11], a new two-level hierarchical grained material, for which 

73.01 =ϕ , 94.02 =ϕ , µm2001 =d , µm612 −=d . The experimental 
mechanical tests were performed on standard (ASTM-B406) rectangular bars 
having volume V=0.500×0.625×1.875=0.586cm3. We assume spherical grains 

( 2=λ ). Accordingly 102125

6
3
1

1
1 ==

d

V
n

π
ϕ  is the predicted number of 

mesoparticles in the total volume, whereas 7520000348153
2

3
12

2 −==
d
dn ϕ  is 

that of the microparticles inside a mesoparticle. Thus the specimen is 
composed by several billions of microparticles. Accordint to eq. (8) the gain in 
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the fracture toughness energy is 
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quite unreasonable, for α = 1/2 (crack length proportional to the                

structural size) 
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observed to be slightly smaller than the unity, we deduce an inversion of the 
classical Hall-Petch law.  
 
4. Toughening mechanisms for strong interfaces: 
viscoelasticity, plasticity and crack deflection or 
bridging  
 Introducing a Young’s modulus we have implicitly assumed linear 
elasticity. For a more realistic behaviour of the matrix, we should consider 
visco-elasticity, often observed in bio-tissues. If ( ) ∞∞−≡ EEEv

0µ , with 
∞EE ,0  short- and long-time elastic moduli respectively ( ∞≥ EE 0 , where the 

equality is valid for linear elasticity), the effective fracture energy becomes 
( ) svs GG µ+=+ 1 . The parameter vµ  represents an enhancement factor for 

fracture energy dissipation due to the viscoelastic properties of the medium, 
e.g., for bone 4≈vµ  or for shell 5.1≈vµ  (see [12]). Including plasticity, if 

pµ  represents the enhancement factor due to the plastic work during fracture 

( ) ss GG µ+=+ 1 , where pv µµµ += . The factor pµ  can be estimated for 
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blunt cracks as ( )ap 2ρµ =  [13], ρ being the tip radius and a being the 
“fracture quantum”, a material/structural parameter. 
 According to the previous analysis and Fig. 1, the fracture surface is 
assumed to be planar. On the other hand, the inclusions could serve as hard 
structures to deflect the crack path or as crack bridging elements, assuming 
strong interfaces. For weak interfaces, the inclusions will be pulled-out after 
fracture, incrementing the dissipated energy (see previous section) in a fashion 
similar to the other mechanisms (if the fracture of the matrix is assumed to be 
similar to that of the interface; it is evident that this hypothesis can be easily 
removed). To model crack deflection we simply assume the two-dimensional 
scheme reported in Figure 2, which is a lateral view of the crack surface of Fig. 
1. According to this scheme ( )nhlGlG ss += +++ , where l is the nominal crack 
length, n is the number of inclusions along l and h is their height. Noting that 

lnt=ϕ , with t thickness of the inclusions, and that th=λ  is their 
slenderness, the effective fracture energy becomes ( ) +++ += ss GG λϕ1 . Thus, 
also this toughening mechanism can enhance the effective fracture energy ++

sG  
( 1;1 >>≈≈ λϕµ ) by several orders of magnitude with respect to the intrinsic 
fracture energy of the matrix Gs. This explains why the shape of mineral 
crystals is found to be very anisometric (platelets, [12]), no matter if the 
interfaces are strong or weak: the anisometry is larger for bone and dentin 
(platelets 3nm thick and up to 100nm long) as well as for enamel (15-20nm 
thick, 1000nm long) than for nacre (i.e., see shells, 200-500nm thick and 5-
8µm long). For details on the hierarchical bone structure see [14]. Thus, eq. (5) 
has in general to be considered with the substitutions: 
 

n 

1 

l 

h 

t 

 
 

Figure 2. The lateral view of the crack surface: toughening mechanisms. 
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( )( ) ss GG λϕµ ++→ 11                       (12a) 
 

0→hG                (12b)  
 

since in this case no dissipation occurs in the hard phase. 
 Furthermore, a soft matrix activates shear mechanisms rather than 
longitudinal ones, according to the tension-shear chain model recently 
proposed [12]. Since in this case matrix does not carry tensile load, the 
substitution: 
 

0→sσ              (13)  
 
should be considered in eq. (4). Considering a linear variation of the shear 
stress (but stress concentration factors could be included [15]) with a 
maximum value τ implies a maximum normal stress σ in the platelet equal to 
λτ [12]. Thus, load transfer requires λτs > σC where τs is the shear strength of 
the matrix (or, strictly speaking, of the matrix/inclusion interface); this shows 
that low values of τs are compensated in Nature by high slendernesses λ. Note 
that according to [12] an in-series tension/shear rather than an in-parallel 
tension architecture, as considered in eq. (6), emerges. However, their 
asymptotic behaviours (for realistic sufficiently large size-scales R) are 
identical if in eq. (6) the Young’s modulus of the matrix is assumed to be 
negligible, i.e.:  
 

0→sE              (14)  
 

5. Size and shape of “flaw-tolerant” 1D- 2D-
inclusions  
 Let us consider for the sake of simplicity the Griffith’s problem. 
According to Quantized Fracture Mechanics [13] the failure stress is predicted 
to be ( )2alEGCf += πσ , where 2l is the crack length and a is the fracture 
quantum (Linear Elastic Fracture Mechanics, LEFM, assumes a=0). Thus, a 
“flaw tolerance” is expected to take place for crack lengths 2l smaller than a 
and surely in platelets with thickness t ≈ a. The fracture quantum a can be 
estimated noting that ( ) Cf l σσ == 0  and thus the platelet thickness or grain 
size for flaw tolerance is:  
 

( ) ( )

( )2N
C

NN
C

N
EG

t
σ

≈
            

(15)
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similarly to what previously deduced [16, 12]. This characteristic length 
represents also the optimal diameters for hierarchical grains (or grain size). 
Inserting eqs. (4), (5) and (6) or (8), (9) and (11) into eq. (15) defines the 
thicknesses of the inclusions at all the hierarchical levels for flaw tolerance.  
 In addition, to reach the failure simultaneously in the soft and hard phases, 
the following equation for the slenderness at a given hierarchical level must 
hold (see previous section): 
 

( )
s

N
CN τσλ ≈             (16)  

 

 Finally, Nature seems to optimize structures by imposing the ratio between 
fractal D and Euclidean nominal dimensions D according to D/D=D/(D+1) 
[17], e.g., for D=3, D/3=3/4 [5]. Thus 322 ≈D , and, from eq. (2), the 
optimum would imply:  
 

34≈optD ,    or,   ( ) 121 ≈optnϕ           (17)  
 

 The fractal dimension of the inclusions, according to eq. (17), is 
intermediate between those of an Euclidean line and surface.  
 Eq. (15) defines the optimal platelet thicknesses for flaw tolerant, eq. (16) 
the optimal platelet slenderness to have a uniform strength in both the phases 
and eq. (17) the relation between their number and cross-sectional area fraction 
for having an optimal fractal dimension.  
 

6. Conclusions 
 The developed mathematical model, summarized in the numbered 
equations, allows us to preliminary design nano-bio-inspired hierarchical 
materials, by following a bottom-up or top-down procedure. The complexity of 
the problem has imposed a simplified treatment with associated limitations; 
nevertheless, the model could be useful for preliminary designing micro- or 
nano-structured hierarchical materials.  
 
Acknowledgement  
 The authors are supported by the ‘‘Bando Ricerca Scientifica Piemonte 
2006’’ – BIADS: Novel biomaterials for intraoperative adjustable devices for 
fine tuning of prostheses shape and performance in surgery. 
 
References  
1. J. D. Currey 1977 Proceedings of the Royal Society B 196 443. 
2. J. D. Currey 1984 The Mechanical Adaptations of Bones (Princeton, NJ, Princeton 

University Press) pp. 24-37. 
3. R. Lakes 1993 Nature 361 511. 



Nanomechanics of hierarchical biomaterials  21 

4. H. Gao 2006 International Journal of Fracture 138 101.  
5. J. H. Brown and G. B. West 1999 Scaling in biology (Oxford University Press, 

Oxford).  
6. A. Carpinteri and N. Pugno 2005 Nature Materials 4 421. 
7. A. Carpinteri 1994 Mechanics of Materials 18 89.  
8. A. Carpinteri 1994 International Journal of Solids and Structures 31 291. 
9. A. Carpinteri and N. Pugno 2005 Review on Advanced Material Science Journal 

10 320. 
10. N. Pugno 2007 J Physics – Cond. Matt 19 395001 (17pp). 
11. Z.Z. Fang, A. Griffo, B. White, G. Lockwood, D. Belnap, G. Hilmas and J. Bitler 

2001 Int. J. Refractory Metals and Hard Materials 19 453. 
12. B. Ji and H. Gao 2004 Journal of the Mechanics and Physics of Solids 52 1963. 
13. N. Pugno and R. Ruoff 2004 Philosophical Magazine 84 2829. 
14. O. Akkus, Y.N. Yeni and N. Wesserman 2004 Critical Reviews in Biomedical 

Engineering 32 379. 
15. N. Pugno and A. Carpinteri 2003 Journal of Applied Mechanics 70 832.  
16. A. Carpinteri 1982 Engineering Fracture Mechanics 16 467. 
17. R.B. Banavar, A. Maritan and A. Rinaldo 1999 Nature 399 130. 


