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ABSTRACT

Bone is a stiff and though, hierarchically organized and continuously evolving material that
optimizes its structure across the scales to properly respond to mechanical stimuli, which also govern
growth and remodelling processes through a complex cascades of interlaced mechanobiological
events. However, a full understanding of the fascinating underlying mechanisms responsible for
the cooperation of bone toughness and biological functions, with important implications in bone
ageing, osteoporosis and post-trauma repairing processes, has yet to be achieved. In particular,
how micro-damage nucleation –which is necessary for tissue remodelling– does not evolve into
catastrophic failure in such a stiff material, still remains a partial enigma, given that the presence
of cement lines, interfaces and sacrificial elements, which dissipate energy and deviate cracks,
alone do not provide a definitive answer to the question. To help solve this challenging problem,
here we bring to light a novel stress-based bone toughening mechanism, calling into play the
nearly-symmetrical, chiral and hierarchical architecture of the osteon, in which adjacent lamellae
are arranged in clockwise and counter-clockwise manners as a result of the different orientation
of their components, i.e. collagen fibrils and carbonated hydroxyapatite crystallites. Somewhat
counter-intuitively, we demonstrate that this arrangement simultaneously gives rise to stress states
that are alternating in sign along the osteon radius and to localized stress amplification phenomena,
both in the tensile and compressive regimes. This unveils a previously unforeseen synergistic
mechanism allowing micro-damage accumulation without propagating cracks, which is kindled by
the contrast between crack-opening due to tensile hoop stresses (required for bone remodelling)
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and crack-stopping due to compressive stresses at the crack tips in adjacent lamellae. This allows
to seal the crack ends and thus confer toughness to bone well beyond the level predicted by
current models. Furthermore, shear stresses alternating in sign occur at the lamellar interfaces,
contributing with fluid flow to mechanically stimulate the osteocytes in the lacunae and thus
amplify the signalling for osteoblasts and osteoclasts. These results, obtained through original
exact solutions based on the theory of anisotropic elasticity and confirmed by both Finite Element
fracture analyses and experimental tests on 3D-printed osteon prototypes, contribute with an-
other piece in the puzzle to making the rational biophysical picture of bone mechanobiology complete.

1 Introduction

Bone is a unique material that plays a crucial role in key vertebrates’ life functions, such as protection of internal
organs, definition of morphology, structural support for the whole body, movement and locomotion [1, 2]. This
hierarchically organized and continuously evolving mineralized tissue is capable of self-repairing, renewing and
adapting its architecture across various spatial scales to maximize stiffness, toughness (the ability to absorb mechanical
energy up to the point of failure) and strength in response to mechanical stimuli [3, 4, 5, 6, 7, 8, 9]. All these features
make it one of the smartest known biological materials [10, 11].
At the macroscopic level, bone essentially appears in both the forms of compact and spongy-like tissues that bear
normal and shear mechanical stresses in axial, bending and torque regimes induced by external forces [12, 13]. In
particular, cortical bone is mainly designed to absorb the highest stresses and to redirect them to optimize the material
response. Instead, the trabecular regions –found for instance in the epiphysis of long bones or in innermost sections of
the vertebral bodies– provide, according to the sites, the transfer of loads from joints to distal compact bone districts
[14], distributing forces over large articular surfaces, minimizing pressures and maximizing stiffness/weight ratios
through growth and remodelling processes that reorganize the bone density distribution and the anisotropic porous
skeleton over time [15, 16, 4]. At the microscale, the fundamental units of the cortical bone are (secondary) osteons
(see Fig. 1). These are hollow cylinders with diameters of the order of hundreds of microns (typically from 200 µm
to 500 µm), made of several concentric layers, named lamellae, which wrap around a central Haversian canal that,
together with a transversal network of Volkmann’s channels and a diffuse system of canaliculi, hosts nerve fibres and
blood vessels to supply nutrients throughout the tissue [17, 18, 19, 20]. In turn, each lamella in the osteon comprises
helically arranged collagen fibrils forming angles from about 10° to 60° with respect to the osteon axis, in alternate
clockwise and counter-clockwise directions in successive lamellae [21, 22, 23, 24, 25, 26, 27], this resulting into a
highly anisotropic structural organization, whose complexity is further enriched by the presence of interfaces and
material discontinuities. Most importantly, the osteons contain the main bone cells, namely osteoblasts, osteoclasts
and osteocytes, which coordinate their activity to form temporary anatomic structures –the Basic Multicellular Units
(BMUs)– designated to ensure bone integrity and homeostasis through the continuous resorption and deposition of
tissue, a process known as bone remodelling [4, 5, 31]. This is governed by a cascade of mechanical and biochemical
signals, occurring across the scales, that develops through a complex network of feedback mechanisms regulating
the cells turnover, which are actually not yet completely understood [32]. However, although many questions remain
unanswered in the literature and how exactly bone cells sense mechanical loads and then orchestrate their activity is
still an open issue, it has been ascertained that micro-damaging, resulting from everyday loadings at the osteon-matrix
interfaces and within osteons, triggers the BMU cycle, the level of damage somehow functioning as a stimulus to
locally increase mineral content through bone growth and repairing processes [33, 34, 35]. It is in particular claimed
that the stress-induced opening of micro-cracks could induce fluid flows, thus promoting nutrient concentration that in
turn would lead to intensify bone remodelling activities involving the dismantling of mineralized bone by osteoclasts
and the new bone deposition by osteoblasts. The coordination of this process seems to be driven by the osteocytes
[36, 37, 38, 39, 40] –osteoblasts surrounded by the growing bone matrix, which, as the material calcifies, remains
trapped in the inter-lamellar spaces, forming lacunae (see Fig. 1)– that could perform the mechano-sensing function of
transducing the interstitial flow and shear micro-strains into amplified biochemical signals, thus contributing to recruit
osteoblasts and osteoclasts [19, 40, 41, 42, 43]. This mechanism, at the basis of physiological life processes as well
as of osteoporotic disorders, is recognized as one of the most fascinating and effective examples in nature of synergy
among biological, chemical and mechanical signals, but a deep understanding of these events has yet to be reached. In
particular, the crucial point of how nucleation of micro-damage does not evolve into catastrophic fracture in such a stiff
material as bone is still unclear.
To this day, the most substantiated hypothesis to explain how cracks slow down or even stop in bone is essentially
related to material anisotropy and to the hierarchical architecture of osteons [11, 44, 45]. According to this conjecture,
after nucleating, cracks would be halted while travelling in the radial direction of an osteon, perceiving the alternate
arrangement of the wrapped fibres as an apparent material heterogeneity, first decelerating at the lamellar interfaces, then
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Figure 1: Organization, structure and (stress-based) fracturing mechanisms in secondary osteons of cortical bone: a) reconstruction
of the three-dimensional arrangement of secondary osteons in an ideal section of cortical bone (in the insets below, the Scanning
Electron Microscopy (SEM) images highlighting the lamellae and lacunae system (bottom-left) and a detail of osteocytes hosted in
the lacunae at the lamellar interfaces (bottom-right), (SEM adapted from [28, 29]); b) architecture of the secondary osteon with
emphasis on the overall helicoidal orientation β of the lamellae (which confers monoclinic-trigonal anisotropy to the osteon), the
slight wrap angle discrepancy between adjacent lamellae (described by γ), the sub-lamellar fibril microstructure and the intra-osteon
micro-crack opening along the radial direction (in orange and cyan, tensile or compressive hoop stresses, as well as associated shear
stresses, which are alternating in sign –in both the cases of tensile and compressive applied loads at the osteon level– at the basis of
the new stress-induced toughening mechanism discussed here); c) schematic of cross and lateral view sections of the osteons to
illustrate how damage and micro-fractures nucleate and diffuse in cortical bone due to arbitrary positive or negative applied axial
loads (cyan and orange arrows), by first involving the cement lines and progressing in the inter-osteon matrix (stage 2) and then
invading osteons, with cracks propagating in radial directions, but somehow surprisingly stopping despite bone being such a stiff
material (stage 3); d) comparisons of the outlined stages 2 and 3 and the actual evidence observed experimentally (SEM images
adapted from [30]).
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deviating to propagate circumferentially, simultaneously dissipating energy by both breaking inter-lamellar sacrificial
micro-bridge elements and encountering a number of micro-voids and discontinuities. All of this confers special
toughness to bone [46, 47, 48, 49, 50, 51], including mineralization processes at the fibrils level that determine increasing
mechanical properties [52]. Although some theoretical models and direct observations obtained through imaging
techniques have demonstrated that these mechanisms play a role in limiting crack growth, rule of thumb calculations to
estimate stress intensity factors at the crack tips and more accurate numerical analyses simulating crack propagation at
the osteon level all highlight that multi-scale bone heterogeneity is not per se sufficient to arrest cracks or hinder fracture
[48]. Moreover, the repairing activity carried out by BMUs, which contributes to both the removal of damaged areas in
healthy bone and the preservation of its structural integrity, can neither explain how bone prevents brittle and fatigue
failure, since healing processes evidently occur at characteristic times orders of magnitudes greater than the crack speed
in a material as stiff as bone. A confirmation that some essential elements are still missing is provided by the fact that
realistic static and cyclic loads applied in vivo and on bone samples show that cracks do not propagate across all the
lamellae, despite both stress analyses performed on detailed (orthotropic) elastic models of osteons under the same
loads and experimental findings from composite cylinders with stiffness and strength close to those of bone would
predict crack advance or even complete fracture [50, 53]. Furthermore, results from these theoretical models suggest
that tensile hoop stresses in the lamellae, responsible for micro-crack opening in the radial direction, would occur only
in case of compressive loads acting along the osteon axes, while experimental observations highlight lenticular radial
micro-cracks generated diffusely in osteons also solicited by tensile loads [54, 55].
On the basis of all these considerations, since the mechanobiology of bone remodelling is triggered by sign-independent
(both tensile and compressive) forces acting at the osteon level and is focused on the confinement of micro-crack opening
to avoid catastrophic fracture, it must be inferred that some additional, as yet undiscovered and possibly counter-intuitive
mechanism should cooperate with (or exploit) bone anisotropy and hierarchical features, in order to guarantee the
perfect balance between damage nucleation and crack stopping. To shed light on these still unexplained aspects, this
work elucidates an unprecedented crack-arresting and toughening mechanism in bone, by focusing on the mechanical
problem of an osteon modelled as a multi-layer hollow cylinder in which each lamella behaves as a monoclinic rather
than a simpler orthotropic material, which more faithfully reflects its micro-structure composed of transversely isotropic
grouped fibres wound helicoidally, as illustrated in Fig. 1. Hence, by means of both closed-form elastic solutions and
accurate Finite Element (FE) numerical simulations, it is shown how the osteon anisotropy, its hierarchical organization
and even some slight asymmetry cooperate to create an unforeseen mechanism of crack-arresting and bone toughening,
mediated by hoop and anti-plane shear stresses that alternate their sign in adjacent lamellae and amplify their magnitude
at the sub-lamellar scale (see Fig. 1b). In particular, we prove theoretically that alternate hoop stresses, indifferently
due to tensile or compressive axial loads at the osteon level, compete in nucleating and stopping cracks, with tensed
cracked lamellae "sealed" upstream and downstream by hoop compressions. Furthermore, we show that shear stresses
also are called into play by the chiral osteon architecture, contributing to stimulate osteocytes and so cooperating with
the strain amplification phenomena induced by fluid flow shear stresses at the same level [41, 56, 57, 58, 59]. Finally,
we demonstrate that both discrepancy in lamellar wrapping angles and sub-lamellar fibrils arrangement significantly
contribute to optimize the discovered new bone toughening mechanism and mechanosensing.

2 Chirality, deviation from symmetry, hierarchy and alternate stresses in bone
mechanobiology

From the mechanical point of view, a representative volume element of compact bone can be considered as a composite
material made of cylindrical strand structures –the secondary osteons– mainly oriented in the direction of the principal
strains [60] and aligned in long bones parallel to the diaphysis axis, embedded in a stiffer and more brittle matrix, to
which they are connected through a thin, highly mineralized interface, known as cement line. As shown by experimental
observations and mechanical tests, this implies that, under quasi-static or low-rate cyclic loads, damaging takes place
hierarchically [61, 62, 63, 64, 65]. The matrix is the first to be affected by micro-cracks, which open and evolve as a
function of the magnitude of the exerted forces, and subsequently involve the cement lines. These in turn behave as
weak links [1, 46] that dissipate energy and deviate the crack advancement transversally, by progressively determining
a condition in which a large part of the outermost cylindrical surface detaches from the surrounding matrix. This
segregation leaves the osteon isolated and only constrained, at its upper and lower bases, to other osteons located above
and below it (see scheme of the damaging stages in Fig. 1c-d) [11, 66, 67]. At this stage, compressive or tensile axial
forces exerted on cortical bone at the osteon level are then transferred to each osteon body through its bases in terms of
imposed displacements, which induce overall axial contraction or elongation. Although the lateral connection with the
matrix has now been largely lost, twisting of the osteon, which one would expect from the geometrically unbalanced
helical arrangements of the lamellae, remains instead essentially locked by the constrained bases, and this generates
reactive torsional shear stresses [68]. At this juncture, if the applied forces grow, intra-lamellar micro-cracks start
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to nucleate, then to propagate along the radial direction, finally remaining confined to small regions as a result of a
crack-stopping phenomenon that is yet to be fully understood (Fig. 1).

2.1 The osteon as a composite monoclinic elastic hollow cylinder

In order to model this last stage and try to explain the intra-osteon crack-arresting mechanism, we can neglect poroelastic
effects associated to the interstitial fluid flow [69, 70, 71], limiting at first the mechanical analysis to physiological
quasi-static loads, just before damaging and fracturing events take place. To determine the stress state that leads to
micro-crack opening, an isolated osteon can be seen as an inhomogeneous, anisotropic and linearly elastic hollow
cylinder with traction-free conditions at the outermost cylindrical surface and negligible pressures in the Haversian
canal, with the end bases subjected to prescribed displacements in the form of imposed axial contraction/dilation and
impeded twisting. In particular, by looking at the hierarchical organization of a secondary osteon, one can recognize
a degree of anisotropy that can be correctly described by an elastic Functionally Graded Material Cylinder (FGMC)
model [72, 73] made of n perfectly bounded hollow cylindrical phases –representing the lamellae– comprising helically
wrapped and alternate (clockwise and counter-clockwise) families of fibres, which in the case at hand account for
mineralized collagen fibrils and carbonated hydroxyapatite crystallites appearing at the sub-lamellar level.
Adopting a cylindrical reference system {r, ϕ, z}, with the origin placed at the basis of the whole FGMC model (say
at the center of the Harvesian canal), the above described micro-structure suggests that the osteon exhibits one plane
of material symmetry, say ϕ − z, as shown in Fig. 2a, which allows to assume cylindrically monoclinic anisotropy
at the osteon level [74, 75, 76, 77]. This is here retrieved by considering a transverse isotropy in a local helical
reference system fixed with respect to the plane orthogonal to the axis of the fibres and then transforming all the
quantities of interest in the global cylindrical coordinate system (the mathematical details are reported in Supplementary
Information, SI). In this way, the mean helical arrangement of the collagen fibrils and their characteristic alternating
wrapping angles in adjacent lamellae –which in previous literature models were neglected by reducing the osteon
to a homogenized orthotropic composite cylinder– have been explicitly taken into account through the monoclinic
anisotropy of each lamella ruled by the corresponding wrapping angle. Hence, the generalized Hooke’s stress-strain
relation σ = C : ε for each lamella ` will depend on five parameters characterising the transversely isotropic grouped
fibres in their own helical reference system and on the layer-specific wrapping angle ϑ, which governs the passage
to the cylindrical reference frame in which each lamella, as well as the whole osteon, is monoclinic. In this way, for
` = 1, ..., n, the stress can be written as σ(`)

ij = C
(`)
ijhk(E, ν, νt, α, η, ϑ

(`)) ε
(`)
hk , while the fourth-rank elasticity tensor

is C(`)
ijhk = QimQjnQhpQkqC

hel
mnpq(E, ν, νt, α, η), where Qmn(ϑ(`)) are the components of the orthogonal rotation

matrix (explicit transport formulas are recalled in SI),E and ν are the Young modulus and the Poisson ratio, respectively,
in the isotropy plane of the fibres’ cross-section, with the Lamé modulus given by 2G = E/(1+ν), and α = Et/E and
η = Gt/G are anisotropy coefficients involving in-plane and out-of-plane (denoted by the subscript t) moduli referred
to the fibres’ own helical system (see Table 1 for the numerical values of interest for bone). Equilibrium requires in
each lamella that divσ = 0, while continuity of stresses and displacements at the lamellae interfaces, identified by the
radii r = R(`), imposes that σ(`)

rj = σ
(`+1)
rj and u(`)j = u

(`+1)
j for ` = 1, ..., n− 1. Additionally, the above mentioned

boundary conditions provide vanishing lateral pressures (that is σ(1)
rr |r=R(0) = σ(n)

rr |r=R(n) = 0), prescribed vertical
displacements, which can be assigned in terms of applied uniform strain ε0 6= 0, and a null twisting angle φ0 = 0 at the
cylinder bases. Under these conditions, the system of partial differential equations governing the anisotropic elastic
problem can be solved analytically, by following a strategy already used by some of the authors [72, 73], which allows
to reduce the problem to a linear algebraic one, then solving it in closed-form for an arbitrary number of lamellae and
any set of geometrical and mechanical parameters characterizing the cylindrically monoclinic phases, as explicitly
reported in SI.

2.2 Insights into actual stress states from the simplest two-lamella osteon model

Referring the reader to the SI for the detailed analytical solutions, it is instructive to first examine the simpler case of
an osteon made of only two cylindrically monoclinic lamellae, each characterized by the same set of five parameters
(E, ν, νt, α, η) that are the elastic coefficients and anisotropic ratios of a transversely isotropic material in the helical
reference frames defined by ϑ(1) = β and ϑ(2) = −γβ, which correspond to the (mean) counter-wrapped angles
formed by the fibres in the two lamellae with respect to the osteon axis z. γ ∈ (0, 1) represents the angle discrepancy
factor accounting for the experimentally observed [78] mismatch (or deviation from symmetry) in microstructural
orientation of adjacent lamellae (see Fig. 1). Therefore, taking numerical values from the literature (see Table 1) and
calculating the analytical solutions in SI for n = 2, β = 45◦ and an imposed compressive axial strain of the order of
1%, we performed sensitivity analyses by plotting the hoop stresses σϕϕ and the shear stresses σϕz along the osteon
radius, varying the anisotropy ratio α and the angle discrepancy factor γ. As shown in Fig. 2, the first remarkable result
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is that the lamellae experience tensile and compressive circumferential stresses that are unexpectedly alternate in sign1,
whose peaks grow significantly as the anisotropy ratio increases (Fig. 2b-top). The stress average values over each
single lamella also increase, even jumping at the interface as the perfect symmetry of wrapping angles is lost, i.e. as
γ < 1, consistently with experimental observations [78](see Fig. 2c-top). It is worth highlighting that both average
hoop stresses σϕϕ and anti-plane shear stresses σϕz have magnitudes comparable with the main axial stresses σzz
directly called into play by the applied displacements, while the radial stresses σrr are at least one order of magnitude
smaller than the others and the in-plane shear stresses σrϕ are uniformly vanishing (see SI).

Figure 2: a) Schematic structure of a 2-phase osteon. The actual lamellae have a sub-lamellar system comprising many collagen
fibrils that are helically arranged in different ways: these orientations are averaged over each lamella and the mean angles set as
ϑ(1) = β and ϑ(2) = −γβ respectively, the discrepancy angle γ accounting for the observed counter-wrapping imperfection between
adjacent lamellae. b) and c) Hoop (σϕϕ) and shear (σϕz) stresses arising in the simplified 2-phase osteon structure subject to a
prescribed contraction in the z direction of 1% and locked twisting at its bases, with β = 45◦. On the left (b) hoop and shear stresses
are plotted along the osteon radius by varying the sole anisotropy ratio α, in case of perfectly symmetrical counter-wrapping (γ = 1)
while on the right (c) the same stresses are plotted when the realistic value of α = 1.68 [79] is kept fixed and different possible
discrepancy angles are considered (γ = 0.45, 0.6, 0.8). Results, obtained by means of the computational software Mathematica®[80],
show how counter-intuitive circumferential stresses that are alternate in sign arise along the osteon radius, the tensile components (in
red) creating the premises for crack opening and the compressive stresses (in blue) determining a sealing effect that favours the crack
arrest. Shear stress also appear at the lamellar interface with alternate signs, thus contributing to stimulate osteocytes in the lacunae
and to activate the cascade of signals for the bone mechanotransduction. (The model assumes equal thickness of the lamellae of
6µm and the Haversian canal radius of 15µm. The other constitutive parameters are those reported in Table 1).

These first results provide a number of relevant insights into how bone, through its hierarchical organization, does not
simply use its microstructure to slow down cracks by dissipating energy, but exploits the unique chiral architecture of
the osteons and even some apparent geometrical "imperfections" to activate an extremely sophisticated stress-based
crack-stopping mechanism. In fact, even at this simplified modelling level, we can trace the main strategies that
bone adopts to accommodate two competing demands, i.e. damaging and toughness. First, the theoretical outcomes
show that the helical and symmetrical (γ = 1) counter-wrapping of the lamellae on their own creates a hoop stress
competitive mechanism in which, as tensile stresses prepare the ground for crack nucleation and opening in the
radial direction, compressive stresses simultaneously counter any attempt of cracks to propagate in adjacent regions,
generating sealing circumferential forces that halt the crack by impeding the radial diffusion of tensile regimes. This
key mechanism is thus significantly amplified, in terms of difference between average hoop compression and tension
∆σϕϕ, by the anisotropy ratio, which in healthy bone osteons can be estimated as α ≈ 1.7 [79] or greater, as
highlighted in Fig. 2b-top. In particular, the following helpful rule of thumb can be derived from exact solutions:
∆σϕϕ ≈ E ε0(α − 1)τ sin2(β)(cos(2β) + 1)/2, where τ is a ratio between the thickness of the lamellae (which
can be set initially to 1) and, for the sake of simplicity, some further simplifying assumptions were introduced (see
SI). From this equation, one can appreciate that this dimensionless stress gap scales (almost) linearly with (α − 1),

1In fact, with the prescribed boundary conditions for the inner and outer cylindrical surfaces and assuming vanishing in plane
shear stresses σrϕ, equilibrium along the radial direction of an infinitesimal circular sector of the osteon implies that, if hoop stresses
appear, their integration over the whole thickness should be zero, and hence σϕϕ must change sign along the radius.
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according to the requirements imposed by the theory of elasticity for the Poisson ratio. From the same expression, it also
emerges that chirality and anisotropy cooperate in the basic model of an osteon in making this stress difference effective
(e.g. non zero), since the counter-wrapping angle β provides a contribution if and only if the material is anisotropic
(i.e. α > 1). The contribution of the anisotropy also becomes vanishing if the chirality is lost, for instance if β = 0.
Furthermore, the mechanism of competing stresses is additionally enhanced by a deviation from perfect symmetry [81]
in lamellar counter-wrapping angles, here represented by the discrepancy factor γ. Indeed, as highlighted in Fig. 2c-top,
the mismatch ∆β = (γ − 1)β between the wrapping angles, once again counter-intuitively, is directly responsible
for modifying the almost continuous profile of the hoop stress along the radius, by making it steeply discontinuous at
the lamellae interface and in this way amplifying the sealing effect mentioned above as a consequence of an abrupt
change of sign of hoop stresses. In particular, rough estimations, still based on analytical solutions (see SI), allow to
find at the first order a direct proportionality between the angle mismatch ∆β and the hoop stress jump at the interface,
say JσϕϕK, which is JσϕϕK ≈ E ε0(α− 1)∆β sin(2β)[(1− ν)(1 + 2ν) cos(2β) + ν]/(1− ν2), as confirmed by the
sensitivity analyses reported in Fig. 2c-top with γ varying from 0.45 to 1. Another key result is that chirality, anisotropy
and asymmetry also cooperate to give nonzero anti-plane shear stresses σϕz , also alternate in sign (see Fig. 2 bottom),
which do not participate to stop crack propagation but directly act to significantly improve the effectiveness of the
mechanobiology of the bone at the osteon level. These shear stresses, absent in orthotropic models and therefore
neglected in all the previous approaches, directly stimulate the osteocytes in the lacunae, excavated at the interface
between lamellae, contributing with the fluid flow to amplify the shear signals that have been demonstrated to be
crucial to stimulate the BMU cell activities [41]. Finally, it is worth underlining that both the alternating hoop and
shear stresses –and thus the associated above described mechanisms of crack-stopping and osteocyte shear stimulation–
would occur, in an inverted mode, if elongations were applied to the osteon bases instead of contractions. This means
that the discussed mechanisms are independent from the sign of applied forces and can thus help to explain how bone
can also be capable of working under cyclic bending loads, as confirmed by experimental evidence.

Parameter Value
Fiber Young modulus in the isotropy plane: E 16 GPa

Fiber anisotropy ratio: α = Et/E 1.68
Fiber Poisson ratio in the isotropy plane: ν 0.31

Fiber Poisson ratio in the anisotropy planes: νt 0.26
Fiber shear moduli ratio η = Gt/G 1

Table 1: Values adopted for the constitutive parameters of the osteon models presented in the present work, based on consolidated
literature data [41, 78, 17, 79].

2.3 Alternate crack-opening and crack-halting hoop stresses and osteocyte stimulation in actual osteons

To reconstruct a more faithful model of an osteon and verify how the stress state behaves in presence of many adjacent
lamellae, a detailed FE model is set up. To obtain results of interest for realistic cases, we hence set the anisotropy ratio
α ≈ 1.7 and, to consider a wide spectrum of possible secondary osteon structures, the analyses were performed as both
the wrapping angles β and the discrepancy factor γ varied within intervals of values consistent with those observed
experimentally. In particular, the osteon FE model conists of seven concentric lamellae all having a thickness of 6µm
and variously wound around a central Haversian canal of radius 15µm [24, 82, 17], as illustrated in Fig. 3a. As in the
previous simplified 2-phase model, the transverse isotropy in the helical reference system of the intra-lamellar collagen
fibrils has been taken into account averaging over each lamella the fibril orientation and by homogenizing the material
properties in the helical system, obtaining monoclinic elasticity in cylindrical coordinates. Furthermore, coherently with
experimental evidence highlighting imperfectly symmetrical counter-wrapping microstructures, lamellae have been
characterized by angles ϑ that alternately assume values β and −γβ in contiguous phases. The elastic response of this
system was then studied in the static regime, prescribing the same boundary conditions applied to the 2-phase model to
replicate the above described third stage that determined the stress conditions leading to intra-osteon damaging.
The results of numerical simulations are summarized in Fig. 3. Generalizing the 2-phase model with β = 45◦, Fig. 3b
shows how alternate signs of hoop stresses still develop along the osteon radius and lead to potentially anticipated crack
nucleation/propagation regions, dominated by tensile stresses, counterbalanced by crack confinement regions, dominated
by compressive circumferential stresses. Results also highlight that the hoop stress profile exhibits marked jumps at the
interfaces passing from the perfectly counter-wrapped micro-structural arrangement of the lamellae (i.e. γ = 1) to more
realistic situations in which counter-wrapping symmetry is instead lost (i.e. γ < 1). This geometrical "imperfection"
further improves the toughening mechanism because, irrespective of the applied load sign (e.g. overall contraction or
elongation experienced by the osteon), hoop tensile stresses occurring in one or more selected lamellae open a crack:
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Figure 3: a) FE monoclinic model of a secondary osteon implemented in the ANSYS® code [83], comprising seven lamellae that
contain counter-wrapped fibres with a possible discrepancy factor γ to deviate from the perfectly alternate orientation θ = ±β. b)
Hoop stresses developing across osteon lamellae in the case of a prescribed axial contraction ε0 = −10−2, locked twisting at the bases
and traction-free lateral surfaces, for a fixed wrapping angle β = 45◦ and different discrepancy factors γ, e.g. γ = 0.4, 0.6, 0.8, 1.0,
which highlight how circumferentially tensed regions, where crack opening is expected, are counterbalanced by the sealing effect of
compressed ones, an effect amplified if symmetry is lost. c) Hoop σϕϕ (left) and shear σϕz (right) stresses for a wide variety of
realistic secondary osteon windings (e.g. β = 5◦, 22.5◦, 45◦), both in the case of perfectly counter-wrapped lamellae (i.e. γ = 1,
upper row) and experimentally observed asymmetry (i.e. γ = 0.8, lower row), showing that marked osteon chirality (for instance
β = 45◦) increases stress peaks, favouring the stress-based crack stopping mechanism and magnifying the required osteocyte shear
stimulation. Red and blue colors are used for tensile and compressive stress values, respectively. All results have been obtained using
the numerical values reported in Table 1.
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the latter would thus tend to propagate radially at the crack tip, remaining instead trapped in a confined region by sharp
jumps of compressive circumferential stresses that simultaneously occur nearby in adjacent lamellae, creating a sealing
effect that closes the crack, slowing down or even halting it by at most deflecting its path circumferentially and thus
avoiding catastrophic fracturing [11].
To broaden the campaign of numerical analyses to different osteon micro-structures, a wider range of possible reference
angles β was finally investigated, as shown in Fig. 3c. More specifically, hoop stresses are plotted along the osteon
radius for both perfect alternate wrapping (γ = 1) and an asymmetrical case (γ = 0.8), highlighting a significant
amplification of the compressive and tensile peak values as the reference angle β –associated with different secondary
osteon types– increases (e.g. β = 5°, 22.5°, 45°). This outcome is in line with experimental evidence showing that
osteons whose average fibre orientations are around ±45°, for which the hypothesised crack-stopping mechanism turns
out to be strengthened, are actually those mainly responsible for bone remodelling, since they are significantly more
widely present in compact bone in comparison with the so-called bright and dark osteons, which exhibit sub-horizontal
and sub-vertical fibril dispositions, respectively [26].
Further important considerations can be made regarding the shear stresses σϕz , which exhibit jumps and changes in
sign at the interfaces between adjacent lamellae for both perfectly symmetrical (γ = 1) and asymmetrical (γ = 0.8)
configurations of the micro-architecture. The increase of wrapping angle β and deviation from symmetry associated to
γ < 1, however, produce an amplification of anti-plane shear stress magnitudes. This is crucial for bone mechanobiology,
since the inter-lamellar jumps imply a magnification of the net shear stresses experienced by the osteocytes inhabiting
the lacunae located exactly at the lamellae interfaces. This type of mechanical stimulus, together with the fluid flow, has
been ascertained to play a key role in the signal pathway at the basis of bone remodelling [42, 56, 41, 58, 57].

2.4 Multiple micro-crack opening, stress-induced barriers to crack propagation and magnification of
mechanical stimuli from osteon hierarchy

Raman spectroscopy has widely been used for quantitative analyses of osteons to reveal their micro-structural organiza-
tion, characterized by packaged bundles of collagen fibres that are helically wrapped around the osteon axis in each
lamella, where they form different angles of the same sign (i.e. all clockwise or all counter-clockwise) whose average
value is here identified with the already introduced angle β. To investigate possible effects of osteon hierarchy (i.e.
sub-lamellar architecture) on the stress-based crack arresting mechanism, we further enriched the previously described
FE osteon model by taking into account the actual arrangement of the fibrils within each lamella. In particular, as
shown in Fig. 4a, the resulting finer numerical model comprises a series of concentric thin (sub-lamellar) cylindrical
phases, about 1µm thick [82], made of fibres oriented in a way to exactly reproduce the angle sequence experimentally
observed and reconstructed, through an accurate scanning method based on X-ray diffraction, by Wagermaier et al.
[24] starting from osteon samples. The mechanical response of this more realistic osteon model was then evaluated by
applying the same boundary conditions prescribed to the previous cases, finally comparing the results in terms of hoop
and shear stresses of the sub-lamellar model with those provided by its simpler counterpart, which was obtained by
averaging the fibril orientation over the thickness of each lamella. Results collected in Fig. 4b show that hierarchy is
also explicitly called into play in the stress-based toughening mechanism.
Because of the sub-lamellar organization, both the stress components σϕϕ and σϕz , which are responsible for the
novel discussed simultaneous crack-opening/crack-halting mechanism and for osteocyte stimulation, respectively,
assume marked sign variations even within each single lamella, accompanied by further significant magnification of the
stresses. The stress peaks in some regions reach values three or more times greater than the corresponding ones found if
the fibrils angles are instead averaged over the lamellae thickness, as highlighted in Fig. 4b. The sub-lamellar sign
alternation and the stress amplification phenomena have a direct impact in increasing the effectiveness of stress-based
bone toughening and cell stimulation mechanisms: a first impact is on the optimization of the fracture sealing. Results
show how hierarchy leads to cracks nucleating in tensed sub-lamellar regions that will remain more confined in
between compressed areas, within the same lamella space. This improves the crack arresting mechanism through the
opening of multiple but smaller micro-cracks, locked by circumferential stresses that form real compressive barriers
located typically near the Haversian canal and close to the cement line. These give rise to a further stress shielding
mechanism limiting the cracks coming from outside the osteon and those directed towards the central blood vessels
and nerve fibres, ensuring a controlled diffuse damage that promotes remodelling, while simultaneously improving
bone toughness without affecting its stiffness [48, 10]. Additionally, the growth of larger stress peaks (with respect
to the non hierarchical, homogenized coarser model) suggests that the sub-lamellar micro-structure works as a sort
of gear multiplier of the external loads, thus enhancing the bone sensitivity to the mechanical stimuli and acting in a
complementary way to the "strain-amplification" phenomenon envisaged by Han et al. [41, 57]. The shear stresses
are also amplified by the osteon hierarchical sub-lamellar organization, as seen in Fig. 4b-bottom: this enhances the
mechanical signaling at the lacunae level and increases the probability that osteocytes can be directly affected by the
mechanical stimuli, which are crucial in mechano-biological cellular processes to trigger bone remodelling.
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Figure 4: a) Geometry of a detailed FE model of a secondary bone osteon, accounting for its sub-lamellar hierarchical organization
through the actual arrangement of collagen fibrils reconstructed from experimental data provided by Wagermaier et al. [24]. b)
Comparison of the results obtained in terms of hoop stresses σϕϕ and shear stresses σϕz along the osteon radius, highlighting the
growing number of alternate signs within each single lamella and the overall increase of stress peaks for the case in which hierarchy
(i.e. sub-lamellar organization) is taken into consideration (in blue), in comparison with the same stress trends when the fibril
orientation is averaged over the lamellae thickness (in green).

3 Beyond the onset of cracks

3.1 Numerical simulations of crack progression in osteons

The analytical solutions and in silico FE models presented up to now have investigate how chirality, deviation from
symmetry and hierarchy of the osteon micro-structure cooperate to kindle hoop stresses that alternate in sign, leading
to the opening of non-propagating micro-cracks, as well as amplified shear stresses stimulating osteocytes located in
lacunae at the lamellae interfaces. These results are obtained assuming that the single osteon behaves as a composite
cylinder made of elastic monoclinic phases. Although this hypothesis is consistent with the overall bone response
when subjected to physiological static or cyclic loads and up to the onset of damage, stresses from elastic analysis
can only suggest the locations in which cracks would nucleate and where, at that loading stage, compressive hoop
stresses oppose the tensile ones to inhibit their spatial diffusion, in this manner limiting, in case of crack opening,
its propagation. However, when a crack opens, the stress state is modified nearby, and eventually interferes with
simultaneous stress fields related to other crack nucleations occurring in the vicinity: to determine how cracks evolve
and toughness develops requires the performance of simulations in the post-elastic regime, by employing fracture
mechanics [84, 85, 86, 87, 88, 89, 90]. To go beyond elastic analysis and obtain a confirmations of the stress-based
toughening mechanism, we studied cracks by employing a simple consolidated cohesive modelling approach. In
particular, non-linear FE models were set up by reproducing the osteon micro-structural geometry at both lamellar and
sub-lamellar level, using the same elastic properties as above but enriching the elements with the possibility of cracking
and updating the model as stress thresholds are reached at any point. Fracture mechanics-based cohesive elements were
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hence adopted [86, 87], which allowed to capture the fracture process by essentially modelling the physical events
occurring in the vicinity of the crack through a bi-linear relationship between traction and crack-opening displacement,
as shown in Fig. 5a. These cohesive elements were located both on longitudinal planes across the osteon radius and at
the lamella-lamella interfaces, where cracks are mainly expected to open and induce debonding or fracture as prescribed
tensile strengths are reached. Due to this placement, only radial cracks and possible deviations along the circumferential
direction at the lamellae interfaces were allowed during the crack progression simulations, consistently with what is
observed in real osteons.

Figure 5: a) Nonlinear FE model implemented, at the lamellar scale, to follow the evolution of the stress-induced micro-cracking
process occurring within the osteon. The presence of cohesive elements, whose constitutive law is schematically reported in the
bottom-left corner, is highlighted in red. b) Progression of the cracking process along the osteon radius, captured at several time-steps
in simulations performed beyond the elastic stress analysis. The results were obtained by assuming a thickness equal to 6µm for
each lamella, innermost radius of 15µm, osteon height of 100µm, wrapping angle β = 45° and angle discrepancy factor γ = 0.8,
and values reported in Table 1 for the other parameters.

Overall, the results obtained from fracture analysis, assuming boundary conditions consistent with those prescribed
above, confirm the sealing effect, already hypothesised considering the sole elastic regime, kindled by the alternation of
the hoop stress sign in the radial direction. In particular, simulations show that, due to the specific orientation of the
fibrils, the micro-cracks could both nucleate simultaneously in multiple lamellae and arise in a single region, in the
latter case typically starting at points surrounding the Haversian canal. Indeed, close to this region, elastic analysis
under the same boundary conditions highlighted the presence of hoop tensile stress peaks. Interestingly, even when a
single crack initiates from the innermost regions of the osteon, its propagation tends to develop across few lamellae,
being subsequently halted as the load further increases, making room for the nucleation of new cracks in remote zones.
These results hence suggest that, even though the specific stress distribution with alternate compressed and tensed
regions over the whole osteon radius is obviously perturbed during the transition from the purely elastic regime to
the elastic-fracturing one, the stress state tends to dynamically reorganize to reproduce its form that alternates in sign
on the residual intact regions. Thus, the spatial variation of stresses realizes the same simultaneous mechanism of
crack-opening/stopping for nucleating and confining new cracks far from the early fracture process zone, enormously
enhancing the toughness of the bone.
An example of this mechanism is summarized in Fig. 5b, where both the crack nucleation and its opening length
progression along the osteon radius are illustrated at several time-steps of the simulations performed with reference
to a FE model comprising seven lamellae with "imperfect" helicoidal arrangement of the fibrils, which is described
by the mean wrapping angle θ that assumes values β and −γβ in contiguous layers. Due to the stress distribution
induced by the growing external load (see Fig. 3), a first micro-crack arises within the lamella closest to the Haversian
canal and then rapidly extends and invades the near lamellar regions. However, after a certain crack size is reached, a
second micro-crack nucleates within a lamella, experiencing analogous tensile circumferential stresses, far from the
first crack whose propagation is meanwhile stopped. As a result, this produces a slow-down and finally the halt of the
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first micro-crack and subsequently –following a similar path– of the second one, too. Both the cracks become wider but
no longer grow along the radius as the axial load further increases.

Figure 6: Progression of the cracking process along the osteon radius, captured at several time-steps of the simulations performed in
the non-linear FE model faithfully reproducing the osteon geometry at the sub-lamellar scale. Consistently with the corresponding
elastic analysis, the values of the parameters that have been employed in this case are a thickness equal to 1µm for each sub-lamellar
layer, an innermost radius of 15µm, an osteon height of 100µm and wrapping angles following the sequence reported in [24]. The
applied strain is ε0 = −10−2. All the other parameters are set according to Table 1.

Analogous considerations can be made with reference to the results provided by the step-by-step analysis of the cracking
path evolution within a 9-phase osteon described at the sub-labellar scale by following a realistic disposition on the
collagen fibrils [24], which are reported in Fig. 6. In this case, consistently with the elastic stress distributions occurring
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before any damage occurs (see Fig. 4), different cracks arise along the osteon radius, namely at its outermost and
innermost lamellae, which are in fact those experiencing the highest levels of tensile stress. For growing external
solicitation, in the present case axial contraction, these micro-cracks propagate radially, then slowing down while a
further damaging event takes place at an inter-lamellar locus. All the cracks finally halt their progression, remaining
confined within small osteon regions and eventually only further thickening laterally. This kind of behaviour confirms
that chirality, deviation from symmetry and hierarchy, characterizing the micro-structure of the osteon, create the
alternating stress state in the elastic regime that, as the crack actually nucleates and opens, recurs on the intact parts
and works to create mechanical barriers to crack propagation, contributing to confer bone its extraordinary toughness
and favouring damage-based remodelling processes. The hypothesised stress-driven mechanism de facto explains how
micro-crack nucleation, propagation and stopping mechanisms can coexist and collaborate to on the one hand promote
necessary mechanobiological activities, and on the other hand, to significantly improve the toughness and the fatigue
life of bones under static or cyclic loads [10, 11, 48, 91, 92, 93, 94].

3.2 Prototyping osteon micro-structures: experimental evidence of the stress-based toughening mechanism

With the aim of providing experimental confirmation of the bone toughening mechanisms described above, brought to
light by means of theoretical arguments, we performed some first mechanical tests to indirectly estimate how toughness
due to the stress-based crack arresting mechanism varied in detailed replicas of osteons. Due to manufacturing
constraints, the model parameters differ from those used to characterize the osteon micro-structure in the theoretical
analysis (see Fig. 7C). More in detail, using high-resolution multi-material additive manufacturing techniques, we ad
hoc designed and fabricated four polymeric osteon prototypes –hollow cylinders in scale 1000 : 1– consisting of a
matrix in which families of helically arranged fibres with different orientations and material properties are embedded,
to reproduce both a "regularized" and the "actual" organization of the collagen fibres in osteons. The "regularized"
configuration was obtained by grouping fibres in each lamella and disposing all of them following the average wrapping
angle (see Fig. 7A.1-A.2. The "actual" configuration was obtained by reproducing the sub-lamellar micro-structure
(see Fig. 7B.1-B.2. Prototypes were instrumented and tested in laboratory under displacement-controlled uni-axial
compression, as shown in Fig. 7D).
To confirm theoretical results and highlight the role played by the asymmetry of counter-wrapped lamellae and by
the hierarchical (sub-lamellar) osteon organization in determining the overall toughness, we fabricated two pairs of
osteon prototypes. In the first pair, where the fibre orientations were averaged over each lamella thickness, we realized
a perfectly symmetrical model by orienting the fibres in adjacent lamellae symmetrically (i.e. setting β = +45◦

and β = −45◦), and one with an imperfect symmetry of counter-wrapping lamellae, i.e. β = +45◦ and β = −50◦.
Experimental results shown in Fig. 7A.3 confirmed the analytical and numerical predictions: plotting nominal stress
versus axial strain, the toughness modulus indeed increases with the deviation from symmetry (in blue) with respect
to the perfectly symmetric lamellar winding (in red). Although the "symmetric model" exhibits a gross yield stress
greater than that of the "asymmetrical model", a softening phase follows the stress peak in the symmetric case, while a
slight hardening is observed in the case of imperfect symmetry. This result is consistent with the theoretical results,
which in the case of β = ±45◦ predict a tensile hoop stress peak at the innermost lamella higher than the one for
β = +45◦/− 50◦, thus anticipating the crack onset in the asymmetrical case. However, the alternating stresses enhance
the sealing effect due to the compressive stresses, in turn slowing down the crack propagation, as shown in Fig. 3c.
This behaviour is confirmed experimentally, as highlighted by the analysis of specimens cut after the test (see insets in
Fig.3A.3), in which cracks that occurred along the radius appeared much more spatially confined in the asymmetrical
model than in the symmetrical one. Furthermore, to investigate the effects of structural hierarchy on toughness, we also
fabricated a second pair of osteon prototypes, this time faithfully reproducing the helical counter-wrapped arrangement
of the sub-lamellar fibrils of osteons, as reported in [24]. In particular, we used as control the sample obtained by
homogenizing the actual fibril orientations at the scale of each lamella, the second model instead replicating the
actual different sub-lamellar orientations, consistently with the input already implemented to perform the numerical
simulations described above. Again, force-strain plots showed how the osteon hierarchy (i.e. the micro-structural
arrangements of the fibres at sub-lamellar level) plays a key role in conferring enhanced toughness to bone, as emerges
comparing the responses of regularized (yellow curve) and actual (green curve) micro-structures of the osteon samples
(see Fig. 7B.3), with a percentage toughness gain of about 20%, here measured by integrating the stress-strain curve not
up to the point of failure but at the maximum strain of 25% provided by the testing machine, thus underestimating the
actual toughness gain. Accordingly, width and extension of cracks in the two cases (see insets in Fig. 7B.3) highlighted
that the actual sub-lamellar micro-structure slowed down crack propagation more effectively than in the regularized
osteon sample, thus indirectly confirming the stress-based toughening mechanism suggested by the theoretical analysis.
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Figure 7: 3D-printed osteon prototypes and experimental results. A.1-B.2 Details of the fibre arrangement in each lamella for the
four osteon samples: prototype with perfectly symmetric counter-wrapped fibres in lamellae with β = ±45◦ (A.1); model with
deviation from symmetry, i.e. fibre angles in contiguous lamellae β = +45◦/ − 50◦ (A.2); osteon prototype with actual fibril
orientations averaged over the lamellae thickness (B.1) and replicated faithfully as measured at the sub-lamellar level [24]. A.3)
Dimensionless axial force versus corresponding engineering longitudinal strain obtained experimentally by testing the first pair of
osteon prototypes (a.1 and A.2): note how, starting from a prescribed wrapping angle and a symmetric sequence β = ±45◦ (red
curve), the overall toughness of the osteon sample grows as a result of the wrapping angle imperfection (blue curve). The crack in the
latter case remains confined to the innermost hollow cylindrical layers (see insets). B.3) Force-strain results comparing the responses
of the second pairs of osteon samples (B.1 and B.2): significant toughening (confirmed by the reduced crack extent, illustrated in the
inset) is gained if the sub-lamellar hierarchical organization of the osteon is considered (green curve) with respect to the case in
which the same micro-structure is instead averaged over the lamellae thickness (yellow curve), consistently with theoretical results.
C) Details of both the three-dimensional arrangement of the fibres designed for the CAD model (top-left) and actually realized in
the 3D-printed model, following the arrangement in [24] (bottom-left and right). D1-D2) Samples instrumented with strain gauges
and electromechanical transducers (Linear Variable Differential Transformer, LVDT) to be tested in compression under controlled
displacements (D.1) and in undeformed (D.2-left) or deformed (D.2-right) states.
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4 Conclusion

At present, bone mechanobiology is only partially understood, with the consequence that many fundamental questions
remain still unanswered, including challenges related to ageing-induced bone deterioration and to adult and paediatric
diseases. One unsolved enigma in bone is how diffused micro-cracks, necessary to trigger bone growth and remodelling
in response to mechanical stimuli at the osteon scale, do not propagate in such a stiff material. It is indeed ascertained that
interfaces, sacrificial bonds and material discontinuities alone are insufficient to avoid catastrophic fracture, and thus to
provide a definitive response to this open issue. Starting from exact elastic solutions and accurate numerical simulations,
we have demonstrated –with both theoretical arguments and experiments performed on ad hoc fabricated 3D-printed
prototypes faithfully replicating osteon micro-structures– that a previously unknown crack-arresting mechanism,
mediated by hoop stresses that are alternating in sign, occurs across the lamellae as a result of the cooperation across the
scales of the helical counter-wrapped arrangement of the anisotropic fibre bundles, the asymmetry of wrapping angles
in contiguous lamellae, and the hierarchical (sub-lamellar) organization of the osteon architecture. We have shown
that circumferential stresses with alternate signs balance the opening of new cracks in tensed regions –required for
driving nutrient flows, and activating bone tissue remodelling and self-repair processes– and their arrest in compressed
areas, preventing irreversible fractures. Simultaneously, anti-plane shear stresses also appear to be amplified by the
sub-lamellar fibre organization, contributing with the interstitial fluid flows to stimulate osteocytes located in the lacunae.
We infer that these two complementary and synergistic effectscreate a perfect mechanobiological mechanism, able to
operate both in compressive or tensile conditions, hence permitting the functioning in static regimes as well as when
bone undergoes cyclic loads. We have also highlighted that the novel stress-driven bone toughening mechanism and
the associated phenomenon of mechanical stimulation of osteocytes provided by the presence and amplification of
shear stresses, also optimized by deviation from symmetry and hierarchy, are both triggered by the concurrent existence
of alternating wrapped structures in the osteon (chirality) and anisotropy (i.e. α > 1). The change in sign of the
hoop stresses and the related crack-opening/-arresting phenomena –at the basis of the bone remodelling– switch off
whether α = 1 (isotropy of each lamella) or absence of opposite signs of the wrapping angles in adjacent lamellae
(e.g. β = 0). It is then worth noticing that osteoporosis, including the effects experienced by astronauts involved
in medium/long-term space flights due to microgravity conditions [32, 95], has been recently demonstrated to be
associated to a progressive reduction of the osteon overall anisotropy ratio with respect to healthy bones, combined
with a decrease of the level of mineral bone density. This can reach a critical condition of an only partially reversible
recovery of the bone’s physiological status, for which the behaviour of the osteon tends to finally become isotropic
[48, 53, 96]. This suggests that the alternating stress mechanism and the obtained results could be exploited to conceive
new strategies for personalized regenerative medicine to promote and accelerate the solution to bone tissue diseases and
degenerative disorders, as well as to design novel bio-inspired hierarchical, self-healing and ultimately self-remodelling
materials.

5 Methods

5.1 FE elastic model of the osteon

Several parametric procedures have been developed ad hoc by using the APDL interface in order to automatically
generate the FE models reproducing the geometrical and constitutive properties of the osteon and to analyse their
mechanical response with the aid of the ANSYS® code [83].
In particular, the implemented geometry of the FE osteon model at the lamellar scale consists of a FGMC, containing
seven concentric layers of thickness 6µm, wound around a central Haversian canal having a radius of 15µm. The
height to diameter ratio for the whole hollow cylinder was set to be ≈ 1, this size being sufficiently representative
of the osteon and such that end effects were avoided. The FE model was then obtained by discretizing the solid by
means of about 378,000 standard 8-node hexahedral elements (SOLID185) and about 390,000 nodes. The implemented
parametric modelling allowed to characterize the constitutive properties in an independent way for each lamella, by
setting appropriate elastic constants Ccylij in the cylindrical reference system {r, ϕ, z} and by making use of local helical
coordinates to describe the transverse isotropy of the single fibrils, whose direction was traced by the wrapping angle ϑ
alternately assuming values β and −γβ in contiguous phases. Coherently with the analytical model, we studied the
mechanical response of the overall FE system by prescribing vanishing tractions at the lateral surfaces and a longitudinal
contraction ε0 = −10−2 through the imposition of a uniform axial displacement uz at the upper and lower bases, at
which the twisting was also locked by imposing a circumferential displacement uϕ = 0.
By following an analogous approach, we set up the more detailed FE osteon model, described in the main text,
containing instead nine lamellae whose micro-structure was taken into account by reproducing the actual fibril
orientations experimentally observed and measured in [24] for each sub-lamellar layer. In this case, the mesh of the
model generated 48600 elements and 54450 nodes.
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5.2 FE simulations of crack evolution within osteons

With reference to the nonlinear FE simulations performed to follow the whole evolution of the cracks within the osteon,
a standard fracture cohesive model was implemented and the parameters were chosen as high as possible to properly
satisfy numerical convergence, by considering that the crack formation was influenced predominantly by a single mode
I. The implemented geometry was meshed with about 244,000 elements and about 292,000 nodes in the case of the
lamellar description and with 108680 elements and 103950 nodes in the case of the sub-lamellar (hierarchical), more
detailed model.

5.3 3D prototyping and mechanical testing of osteon-inspired polymeric models

The four prototypes of the osteon were designed ad hoc and manufactured through a high-resolution and multi-material
3D printing machine (Stratasys J750). They consist in polymeric multi-layered hollow cylinders reinforced with
different families of helically organized fibres, replicating the main features of the osteon architecture (see Fig. 7A.1-
B.2, C). More in detail, the multi-material 3D printer Stratasys J750 allowed to fabricate prototypes with locally defined
constitutive properties. Thus, by using the resinous material VeroClear™810 to obtain fibers with elastic stiffness
around 2− 3 GPa and a combination of VeroBlack™870 and AgBLK30™to obtain a matrix with a Young’s modulus
of about 1.1 − 1.7 GPa, it was possible to fabricate the desired composite structures with an anisotropy ratio α of
about 1.7, consistently with the values reported in the literature for bones [79] and used in this work in both theoretical
analysis and FE numerical procedures. In particular, to build up the sample faithfully reproducing the counter-wrapped
arrangement of the osteon fibrils at the sub-lamellar level, a very accurate, fine CAD model was implemented, which
included concentric lamellae, each made of six sub-lamellae comprising fibers whose number and wrapping angle
varied parametrically from the innermost to the outermost layer to ensure the same volumetric fraction of fibres along
the radius. This is necessary to quantitatively compare the test results in the various cases analysed. The accuracy of the
prototype structures, highlighted in Fig. 7, was guaranteed by the high-resolution printing process with a slice thickness
of about 30µm and a spatial resolution of about 2µm.
The four multi-layered cylindrical structures were then tested under axial contraction by means of a servo-hydraulic
machine ITALSIGMA (having a loading capability of 3000kN in compression and a maximal cross-head displacement
of 75mm), with the aim to evaluate their elastic response, yield strength and post-elastic behaviour. The latter is related
to toughness and damaging phenomena, which were observed at the end of each test by cutting some slices from the
tested samples to find any cracks present. In particular, several strain gauges (positioned circumferentially) and LVDT
sensors (positioned longitudinally) were used to control the accuracy of both circumferential and axial strains during
the uni-axial compression tests.
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Supplementary Information

Analytical modelling of an isolated osteon

To model the mechanical behavior of an isolated osteon in response to selected physiological constraints and loading
conditions, let us consider a cylindrical reference system {r, ϕ, z} having the origin placed at the basis of the whole
FGMC model, say at the center of the Harvesian canal. Then, in the light of the above described characteristic micro-
structure, the osteon exhibits a plane of material symmetry ϕ− z, which allows to assume a cylindrically monoclinic
anisotropy [74, 75, 76], here retrieved by considering a transverse isotropy in a local helical reference system fixed with
respect to the plane orthogonal to the axis of the fibres and then transforming all the quantities of interest in the global
cylindrical coordinate system. Then, the linear elastic law for the generic j-th phase (j = 1, ..., n) can be written as

σ = C : ε (S.1)
where the stress σ, the strain ε and the elasticity matrix C, in the Voigt notation, read respectively as

σ =


σrr
σϕϕ
σzz
σϕz
σrz
σrϕ

 , ε =

εrr
εϕϕ
εzz
εϕz
εrz
εrϕ

 ,C =


C11 C12 C13 C14 0 0
C12 C22 C23 C24 0 0
C13 C23 C33 C34 0 0
C14 C24 C34 C44 0 0
0 0 0 0 C55 C56

0 0 0 0 C56 C66

 (S.2)

with
ε =

[
ur,r,

uϕ,ϕ+ur

r , uz,z,
uϕ,z+ruϕ,z

2r ,
ur,z+uz,r

2 ,
ruϕ,r+ur,ϕ−uϕ

2r

]T
Then, by considering both the axis-symmetry of the osteon geometry and the prescribed boundary conditions of interest
(i.e. traction-free lateral surfaces and imposed uniform axial strain with locked twist at the cylindrical bases), the
displacement field can be assumed as independent from the variable ϕ, so that the solution for the j-th phase can be
sought in the form:

ur = ur(r, z) uϕ = uϕ(r, z) uz = uz(r, z)

the corresponding shear strain components being:
γϕz = 2εϕz γrz = 2εrz γrϕ = 2εrϕ

Therefore, the constitutive relation (S.1) can be rewritten as follows:
σrr
σϕϕ
σzz
τϕz
τrz
τrϕ

 =


C11 C12 C13 C14 0 0
C12 C22 C23 C24 0 0
C13 C23 C33 C34 0 0
C14 C24 C34 C44 0 0
0 0 0 0 C55 C56

0 0 0 0 C56 C66

 ·


ur,r
ur

r
uz,z
uϕ,z

ur,z + uz,r
uϕ,r − uϕ

r

 (S.3)

With respect to the stress components, physical arguments allow to assume that they can be found as independent from
the z variable, this implying that the following set of differential equations holds true:{

ur,rz = 0

ur,z = 0

{
uϕ,zz = 0

uϕ,rz −
uϕ,z
r

= 0

{
uz,zz = 0

ur,zz + uz,rz = 0
(S.4)

By integrating them, the displacements will take the general form:
ur = U(r)

uϕ = V (r) + φrz (S.5)
uz =W (r) + ε0z

where U(r),V (r) and W (r) are unknown functions and φ and ε0 are constants to be determined by imposing boundary
conditions to the system. By substituting the expressions (S.5) into the Cauchy equilibrium equations that stresses have
to obey, i.e. divσ = 0, the differential system in the unknown functions U(r),V (r),W (r) is finally obtained:

C11r
2U ′′(r) + C11rU

′(r)− C22U(r) + (C13 − C23)rε0 + r2φ(2C14 − C24) = 0

C66 [r (rV
′′(r) + V ′(r))− V (r)] + C56r (rW

′′(r) + 2W ′(r)) = 0

C56V
′′(r) + C55

(
W ′′(r) +

W ′(r)

r

)
= 0

(S.6)
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Therefore, by solving the first of (S.6) to find U(r) and by then integrating the second and the third ones with respect to
the unknown functions V (r) and W (r) and substituting the results in (S.5), algebraic manipulations lead to obtain the
displacement components for the j-th phase as:

u(j)
r =U (j)

1 (rλ
(j)
+ r−λ

(j)
) + iU (j)

2 (rλ
(j)
+ r−λ

(j)
) + h(j)

1 ε
(j)
0 r + h(j)

2 φ
(j)r2 (S.7)

u(j)
ϕ =rV (j)

1 +
V (j)
3

r
+ rzφ(j) + V (j)

0 (S.8)

u(j)
z =

V (j)
0 ln(r)

ω(j)
1

− 2V (j)
3

ω(j)
2 r

+W (j)
0 + ε(j)

0 z (S.9)

where

h(j)
1 =

C(j)
23−C

(j)
13

C(j)
11−C

(j)
22

h(j)
2 =

C(j)
24−2C

(j)
14

4C(j)
11−C

(j)
22

λ(j) =

√
C(j)

22√
C(j)

11

ω(j)
1 =

C(j)
56

C(j)
66

ω(j)
2 =

C(j)
55

C(j)
56

By substituting these expressions in the system (S.3), it can be seen that W (j)
0 and V (j)

1 are constants associated with
rigid body motions, so (S.8) and (S.9) simplify as:

u(j)
ϕ =

V (j)
3

r
+ rzφ(j) + V (j)

0 (S.10)

u(j)
z =

V (j)
0 ln(r)

ω(j)
1

− 2V (j)
3

ω(j)
2 r

+ ε(j)
0 z (S.11)

Solutions (S.7), (S.10), (S.11) and the relationship (S.3) then allow to derive the stress components and, without loss of
generality and with the displacement-prescribed problem in mind, the following conditions at the bases of the osteon
can be written: {

u(j)
z |z=L = D0

u(j)
ϕ |z=L = φ0r

∀j ∈ {0, 1, ...n} (S.12)

where L is the total length of the hollow cylinder and D0 and φ0 are respectively a prescribed displacement value and a
prescribed twisting angle, shared by all the phases. As a consequence, by solving (S.12), an uniform deformation in z
direction ε0 and a unitary angle of rotation φ for all the phases are obtained as functions of D0 and φ0, that is:

ε(j)
0 = D0

L

φ(j) = φ0

L

∀j ∈ {1, ...n} (S.13)

In order to take into account the simplest form in which the elastic moduli of the monoclinic stiffness matrix C can be
expressed, we recall that the structure of the osteon is such that each lamella exhibits transverse isotropy with respect
to its own helical coordinate system, the plane of isotropy being orthogonal to the local fibres axis and the passage
between the overall cylindrical reference system and the local helical one being mediated by the transformation process
illustrated in Appendix 5.3. In detail, the five independent elastic moduli for a generic j-th phase can be referred to the
helical coordinate system {r, t, c}, characterized by the unit vectors {er, et, ec}: in this system, the elastic compliance
tensor Shel reads as:

Shel =



1
Err

− νrc
Ecc

− νrt
Ett

0 0 0

− νrc
Ecc

1
Ecc

νtc
Ett

0 0 0

− νrt
Ett

− νtc
Ett

1
Ett

0 0 0

0 0 0 1
Grc

0 0

0 0 0 0 1
Grt

0

0 0 0 0 0 1
Gtc


(S.14)

where we set

Err = Ecc = E, Ett = Et = αE, νrc = ν, νrt = νtc = νt, Grc = G =
E

2(1 + ν)
, Grt = Gtc = Gt = ηG

(S.15)

denoting with E and ν the Young’s modulus and Poisson’s coefficient in the plane of isotropy, α ≥ 1 being a
dimensionless parameter describing the anisotropy ratio (the ratio between the elastic modulus along the fibres direction
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and the Young modulus in the plane of isotropy whose normal is coaxial with the fibres), νt representing the Poisson’s
ratio in the anisotropy planes and the coefficient η > 0 relating the shear moduli, positive definitiveness of the elastic
energy implying the following restrictions:

−1 < ν < 1, −
√
α(1 + ν)√

2
< νt <

√
α(1 + ν)√

2
∩ −

√
α < νt <

√
α (S.16)

From the relations above, the following elastic stiffness coefficients can be finally derived in the helical coordinate
system:

Chel11 = Chel22 =
E(ν2 − α)

(1 + ν)[α(ν − 1) + 2ν2t ]

Chel12 = − E(ν2t − αν)
(1 + ν)[α(ν − 1) + 2ν2t ]

Chel13 = Chel23 =
Eαν

α− αν − 2ν2t
(S.17)

Chel33 =
Eα2(ν − 1)

α(ν − 1)− 2ν2t

Chel44 = Chel55 =
Eη

2(1 + ν)

Chel66 =
E

2(1 + ν)

Then, by using the relations (S.53) in Appendix 5.3 the expression of the stiffness components Cij in the cylindrical
coordinate system (from (S.17)) are finally obtained as a function of the angle ϑ, which represents the orientation of the
fibres in a single lamella evaluated with respect to the osteon axis.

Exact solutions for the n-phase osteon model

By considering the generic case in which there are n arbitrary hollow cylindrical phases and under the above mentioned
prescribed boundary conditions, the unknown parameters result:

V (j)
0 V (j)

3 U (j)
1 U (j)

2 φ(j) ε(j)
0 ∀j ∈ {1, ...n}

Hence the total number of unknowns is 6n that must equate the total number of boundary conditions of the assigned
problem. At the interfaces, the 6(n− 1) equilibrium and compatibility equations read as:

σ(j)
rr|r=R(j) = σ(j+1)

rr |r=R(j)

σ(j)
rϕ|r=R(j) = σ(j+1)

rϕ |r=R(j)

σ(j)
rz|r=R(j) = σ(j+1)

rz |r=R(j)

u(j)
r |r=R(j) = u(j+1)

r |r=R(j)

u(j)
ϕ |r=R(j) = u(j+1)

ϕ |r=R(j)

u(j)
z |r=R(j) = u(j+1)

z |r=R(j)

∀j ∈ {1, ...n− 1} (S.18)

it can be shown from the second, third, fifth and last of (S.18) that φ(j) = φ, ε(j) = ε0 and V (j)
0 = V (j)

3 = 0. In general
linear elastostatic problems with load-prescribed boundary conditions, the variables ε0 and φ are treated as additional
unknowns, so that the number of constants to be determined becomes 2n+ 2 and the previous conditions reduce to:

σ(j)
rr|r=R(j) = σ(j+1)

rr |r=R(j)

u(j)
r |r=R(j) = u(j+1)

r |r=R(j)

∀j ∈ {1, ...n− 1} (S.19)

Then, additional conditions require the equilibrium on the internal and external cylindrical boundary surfaces, i.e.

σ(1)
rr |r=R0 = 0 (S.20)

σ(n)
rr |r=Rn

= 0
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while, at one of the bases, the equilibrium equation along and about the z-direction must be considered. Therefore,
without loss of generality, for z = 0, one has

n∑
i=1

∫ 2π

0

∫ Ri

Ri−1

σ(i)
zz|z=0 rdrdϕ = Fz (S.21)

n∑
i=1

∫ 2π

0

∫ Ri

Ri−1

σ(i)
ϕz|z=0 r2drdϕ =M (S.22)

where Fz andM are the total axial force and torque moment applied at z = 0. In this way, the system is closed and can
be solved. Recasting the (S.19) in the form

U (j)
1 A

(j)
5L + U (j+1)

1 A(j)
6L + U (j)

2 A
(j)
7L + U (j+1)

2 A(j)
8L + ε0A

(j)
9L + φA(j)

10L + E(j)
1L = 0

U (j)
1 A

(j)
11L + U (j+1)

1 A(j)
12L + U (j)

2 A
(j)
13L + U (j+1)

2 A(j)
14L + ε0A

(j)
15L + φA(j)

16L + E(j)
2L = 0

∀j ∈ {1, ...n− 1} (S.23)

and the (S.20) in the form

U
(1)
1 A1L + U

(1)
2 A2L + ε0A3L + φA4L + E3L = 0

U (n)
1 An1L + U (n)

2 An2L + ε0An4L + φAn5L + EnL = 0 (S.24)

in order to solve the algebraic system constituted by (S.23) and (S.24), it could be convenient to re-arrange the algebraic
system following a matrix based procedure. Indeed, the known terms can be collected in the load vector L with 2n+ 2
dimension

L = [ 0, 0, ..., Fz,M ]
T

while the unknown parameters can be collected in the X (2n+ 2)-vector as follows:

X =
[
U

(1)
1 , U

(1)
2 , U

(2)
1 , U

(2)
2 , ..., U (i)

1 , U
(i)
2 , ..., U

(n)
1 , U (n)

2 , ε0, φ
]T

so that the set of equations (S.23) and (S.24) becomes

P · X = L (S.25)

where P is a [(2n+ 2)× (2n+ 2)] square matrix containing the coefficients A(j)
iL, E(j)

iL, which are functions of both
geometrical and constitutive parameters of the phases.
Finally, being the system (S.25) of linear and algebraic type, provided that detP 6= 02, it is thus possible to write the
solution as follows:

X = P−1L =
adj[P]
detP

L =
P̃

detP
L, Xm =

1

detP

m=2n+3∑
h=1

P̃h/mLh (S.26)

where adj[P] = P̃ is the adjoint matrix of P and then the Cramer rule has been employed.
Dually, in a linear elastostatic problem with displacement-prescribed boundary conditions, the number of unknowns
reduces to 2n. In such a case, the equations (S.21) must be substituted with (S.12) with ε0 and φ imposed for all
the phases from (S.13), the interface conditions and the equilibria at the internal and external cylindrical boundaries
remaining unchanged. Recasting the (S.19) with ε and φ known in the form

U (j)
1 A

(j)
5D + U (j+1)

1 A(j)
6D + U (j)

2 A
(j)
7D + U (j+1)

2 A(j)
8D + E(j)

1D = ε0A
(j)
9D + φA(j)

10D

U (j)
1 A

(j)
11D + U (j+1)

1 A(j)
12D + U (j)

2 A
(j)
13D + U (j+1)

2 A(j)
14D + E(j)

2D = ε0A
(j)
15D + φA(j)

16D

∀j ∈ {1, ...n− 1} (S.27)

2The possibility to invert the matrix P is ensured by invoking the uniqueness of the linear elastic solution, due to Kirchhoff’s
theorem. This could appear not immediately evident if one directly tries to see the actual form of P. However an analytical proof that
the algebraic problem is well-posed is given by utilizing the Mathematica®code, where the command RowReduce is employed.
This command performs a version of Gaussian elimination, adding multiples of rows together so as to produce zero elements when
possible. The final matrix is in reduced row echelon form. If it is a non-degenerate square matrix, as in our case, RowReduce[P]
gives the IdentityMatrix[Length[P]].
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and the (S.20) in the form

U
(1)
1 A1D + U

(1)
2 A2D + E3D = ε0A3D + φA4D

U (n)
1 An1D + U (n)

2 An2D + EnD = ε0An4D + φAn5D (S.28)

in order to solve the algebraic system constituted by (S.27) and (S.28), it is again convenient to re-arrange the algebraic
system following a matrix based procedure. Indeed the known terms can be collected in the displacement 2n-vector D

D =



A3D A4D

A
(2)
9D A

(2)
10D

A
(2)
15D A

(2)
16D

... ...

A(i)
9D A(i)

10D

A(i)
15D A(i)

16D
... ...

An4D An5D


·
[
ε0
φ

]

while the unknown parameters can be collected in the 2n-dimensional vector Y as follows

Y =
[
U

(1)
1 , U

(1)
2 , U

(2)
1 , U

(2)
2 , ..., U (i)

1 , U
(i)
2 , ..., U

(n)
1 , U (n)

2

]T
so that the set of equations (S.27) and (S.28) becomes

Q · Y = D (S.29)

where Q is a [2n× 2n] square matrix containing the new coefficients A(j)
iD, E(j)

iD, which are functions of both radii and
elastic moduli of the phases as well.
Finally, being the system (S.29) of linear and algebraic type, provided that detQ 6= 0, it is possible to write the solution
as follows:

Y = Q−1D =
adj[Q]
detQ

D =
Q̃

detQ
D, Ym =

1

detQ

m=2n+3∑
h=1

Q̃h/mDh (S.30)

where adj[Q] = Q̃ is the adjoint matrix of Q and then the Cramer rule has been employed.

Exact solutions for a 2-phase osteon model

Focusing on a two-phase system and referring to the field solutions (S.7), (S.10) and (S.11), the unknown constants
result:

V
(1)
0 V

(2)
0 V

(1)
3 V

(2)
3

U
(1)
1 U

(2)
1 U

(1)
2 U

(2)
2

These can be found by imposing proper boundary and interface relations, which, under displacement-prescribed
conditions, with an assigned contraction/dilation in the z-axis direction of the cylinder and null circumferential
displacements at the bases, are:

σ(1)
rr |r=R0

= 0

σ(1)
rr |r=R1

= σ(2)
rr |r=R1

σ(1)
rϕ |r=R1

= σ(2)
rϕ |r=R1

σ(1)
rz |r=R1

= σ(2)
rz |r=R1

u(1)r |r=R1
= u(2)r |r=R1

u(1)ϕ |r=R1
= u(2)ϕ |r=R1

u(1)z |r=R1
= u(2)z |r=R1

(S.31)

σ(2)
rr |r=R2

= 0

Finally, substitution of the solutions into the equations (S.7),(S.10),(S.11) leads to find the exact analytical form of the
displacements’ components in the two phases, i.e. u(1)r , u(1)ϕ , u(1)z , u(2)r , u(2)ϕ and u(2)z , from which one can then derive
the whole strain and stress fields.
Starting from the obtained complete closed-form solutions, approximated expressions have been derived by considering
moderate angle mismatches and a sufficiently small ratio between the lamellae thickness and the interface radius. With
these assumptions, by also excluding differences in Poisson ratios for the transversely isotropic fibrils in order to have at
one disposal compact expressions, the difference between the averages of the hoop stresses in the two lamellae –given
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by formula (??)– and the interface stress jumps have been examined, the latter one being described for sufficiently
small angle mismatches (say up to ∆β = ±15◦) by means of the approximated function:

JσϕϕK
E ε0

=
N(β)∆β2 +N(π/2− β)∆β

D1(β)∆β2 +D1(π/2− β)∆β +D2(β)
(S.32)

where ∆β = (γ − 1)β and

N(ξ) = (1− α)α
{[

2(3α+ 5)ν2 + α(5α+ 11)ν + 5α(α− 1)
]
cos(2ξ)−

(
αν + α− 2ν2

) [
4(1 + δ̂(ξ − β))(α+ 2ν + 1) cos(4ξ)− (1 + 2δ̂(ξ − β))(α− 1) cos(6ξ)

]}
D1(ξ) = 2(1− α)

(
α− ν2

) [
2(1 + δ̂(ξ − β))

(
αν + α− 2ν2

)
cos(4ξ)− 4α(ν + 1) cos(2ξ)

]
D2(ξ) = 2

(
α− ν2

) {
(α− 1)

[(
αν + α− 2ν2

)
cos(4ξ)− 4α(ν + 1) cos(2ξ)

]
+ 2(α− 1)ν2 + α(3α+ 5)(1 + ν)

}
(S.33)

with δ̂(·) indicating the Kronecker delta symbol. A first order approximation of relation (S.32) for smaller angles
mismatches and α near to 1 gives that

JσϕϕK
E ε0

≈ (α− 1)∆β sin(2β)((ν − 1)(2ν + 1) cos(2β) + ν)

ν2 − 1
(S.34)

Helical to cylindrical coordinate system transformation

Let us consider the helical coordinate system {r, t, c} characterized by unit vectors
{er, et, ec}. This coordinate system has unit vector et tangent to helix; the unit vector er is perpendicular to et and the
unit vector ec is perpendicular to the plane defined by r and t.
Then, let us consider a new coordinate system characterized by the cylindrical system {r, ϕ, z} with the unit vectors of
such system {er, eϕ, ez}. If the cylindrical system has the same origin of the helical one, the unit vector er is coincident
in the two coordinate systems. The angle between two unit vectors et and eϕ is identified by ϑ, that is the same angle
between two unit vectors ec and ez .
Euler’s theorem on the representation of rigid body rotations has many forms. The theorem concerns the characterization
of a three-dimensional rotation by an angle ϑ about a specific axis, here indicated by the unit vector p. This theorem is
represented by the formula:

Q = I + P sinϑ+ (1− cosϑ)P2 (S.35)
where the three-dimensional skew-symmetric tensor P with components Pij is introduced to represent the unit vector p,

P =

[
0 −p3 p2
p3 0 −p1
−p2 p1 0

]
or Pij = eijkpk (S.36)

It is easy to show that P has the following properties:

P = −PT , Pp = 0, P2 = p⊗ p− I, P3 = −P (S.37)

The transformation law between cylindrical and helical coordinate systems is characterized by a rotation about the
radius. In this case the vector p = {1, 0, 0} then the skew-symmetric tensor P becomes:

P =

[
0 0 0
0 0 −1
0 1 0

]
or Pij = eijkpk (S.38)

By applying the formula (S.35) the rotation matrix Q can be obtained:

Q =

[
1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ

]
(S.39)

Then the transformation law between two coordinate systems is:[
er
eϕ
ez

]
=

[
1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ

]
·

[
er
et
ec

]
= Q ·

[
er
et
ec

]
(S.40)

In a six-dimension space, the representation of a three-dimensional rotation by an angle ϑ about a specific axis,
characterized by the unit vector p, is represented as a six-dimensional orthogonal tensor by the formula:

Q̂ = I + P̂sinϑ+ (1− cosϑ)P̂
2
+ 1

3 sinϑ(1− cosϑ)(P̂ + P̂
3
) + 1

6 (1− cosϑ)2(P̂
2
+ P̂

4
) (S.41)
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where the six-dimensional skew-symmetric tensor P̂ with components:

P̂ =



0 0 0 0
√
2p2 −

√
2p3

0 0 0 −
√
2p1 0

√
2p3

0 0 0
√
2p1

√
2p2 0

0
√
2p1 −

√
2p1 0 p3 p2

−
√
2p2 0

√
2p2 −p3 0 p1√

2p3 −
√
2p3 0 p2 −p1 0


(S.42)

satisfies the following conditions:

P̂ = −P̂
T
, P̂

5
+ 5P̂

3
+ 4P̂ = 0, P̂

6
+ 5P̂

4
+ 4P̂

2
= 0 (S.43)

Matrices of six-dimension tensor components, according to Cowin’s notation, are distinguished with the symbol "̂".
Note that the formulas (S.35) and (S.41) show that a change in the orientation of p is the same as a reversal of the
direction of the angle from p, ϑ to −p,−ϑ.
Formula (S.41) is of interest in anisotropic elasticity because the elasticity tensor can be expressed as a second rank
tensor in six dimensions [?], as well as in its more traditional representation as a fourth rank tensor in three dimensions.
Formula (S.41) connects the geometric operation in three dimensions to the matrix algebra of six dimensions. Since
the tensor transformation rules for a second rank tensor rather than a fourth rank tensor apply, transformations of the
reference coordinate system for the elasticity tensor may be accomplished in a very straightforward fashion using matrix
multiplication.
The anisotropic form of Hooke’s law is often written as σij = Cijkmεkm, where the Cijkm are the components of the
three-dimensional fourth rank elasticity tensor. There are three important symmetric restrictions on the fourth rank
tensor components Cijkm. These restrictions, which require that components with the subscripts ijkm and kmij be
equal, follow from the symmetry of the stress tensor, the symmetry of the strain tensor, and the requirement that no
work can be produced by the elastic material in a close loading cycle, respectively. Written as a linear transformation in
six dimensions, Hooke’s law has the representation T = C ·E or

σ11
σ22
σ33
σ23
σ13
σ12

 =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

 ·


ε11
ε22
ε33
2ε23
2ε13
2ε12

 (S.44)

In the Voigt notation the components of C and Cijkm are related by replacing the six-dimensional indexes 1, 2, 3, 4, 5
and 6 by the pairs of the three-dimensional indexes 1, 2 and 3; thus 1, 2, 3, 4, 5 and 6 become 11, 22, 33, 23 or 32, 13 or
31, 12 or 21, respectively. The members of the paired indexes 23 or 32, 13 or 31, 12 or 21 are equivalent because of the
symmetry of the tensors of the stress and strain. The matrix C in equation (S.44) is not a matrix of tensor components
in six dimensions, although it is formed from the components of a three-dimensional fourth rank tensor.
Six-dimensional vector base and notations are introduced so that stress and strain can be considered as vectors in a
six-dimensional vector space as well as second order rank tensors in three-dimensional Cartesian reference systems.
The six-dimensional quantities will be indicated by the hat notation; thus, the six-dimensional vectors of stress and
strain will be denoted by T̂ and Ê, respectively, whereas the three-dimensional second rank tensors of stress and strain
are denoted by T and E, respectively. The direct relationship between the components of T̂ and T, and Ê and E, are
dual representations given by

T̂ =


σ̂1
σ̂2
σ̂3
σ̂4
σ̂5
σ̂6

 =


σ11
σ22
σ33√
2σ23√
2σ13√
2σ12

 , Ê =


ε̂1
ε̂2
ε̂3
ε̂4
ε̂5
ε̂6

 =


ε11
ε22
ε33√
2ε23√
2ε13√
2ε12

 (S.45)

where the shear components of these new six-dimensional stress and strain vectors are the shear components of these
three-dimensional stress and strain tensors multiplied by

√
2. This

√
2 factor ensures that the scalar product of the two

six-dimensional vectors is equal to the trace of the product of the corresponding second rank tensors, T̂ · Ê = tr(T · E).
Introducing the Cowin’s notation of equation (S.45) into equation (S.44), (S.44) can be rewritten in the form:

T̂ = Ĉ · Ê (S.46)
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which in explicit takes the form
σ11
σ22
σ33√
2σ23√
2σ13√
2σ12

 =



C11 C12 C13

√
2C14

√
2C15

√
2C16

C12 C22 C23

√
2C24

√
2C25

√
2C26

C13 C23 C33

√
2C34

√
2C35

√
2C36√

2C14

√
2C24

√
2C34 C44 C45 C46√

2C15

√
2C25

√
2C35 C45 C55 C56√

2C16

√
2C26

√
2C36 C46 C56 C66


·


ε11
ε22
ε33√
2ε23√
2ε13√
2ε12

 (S.47)

or 
σ̂1
σ̂2
σ̂3
σ̂4
σ̂5
σ̂6

 =



Ĉ11 Ĉ12 Ĉ13 Ĉ14 Ĉ15 Ĉ16

Ĉ12 Ĉ22 Ĉ23 Ĉ24 Ĉ25 Ĉ26

Ĉ13 Ĉ23 Ĉ33 Ĉ34 Ĉ35 Ĉ36

Ĉ14 Ĉ24 Ĉ34 Ĉ44 Ĉ45 Ĉ46

Ĉ15 Ĉ25 Ĉ35 Ĉ45 Ĉ55 Ĉ56

Ĉ16 Ĉ26 Ĉ36 Ĉ46 Ĉ56 Ĉ66

 ·

ε̂1
ε̂2
ε̂3
ε̂4
ε̂5
ε̂6

 (S.48)

The relationship between the non-tensor Voigt notation C and six-dimensional second rank tensor Ĉ components is
easily constructed from equation (S.47); a table of this relationship is given in Mehrabadi and Cowin [?]. The symmetric
matrix Ĉ can be shown to represent the components of a second rank tensor in a six-dimensional space, whereas the
components of the matrix C appearing in equation (S.44) do not form a tensor. It is easy to prove that if the material
has rhombic syngony in the helical system, then in the cylindrical coordinate system, the material has a monoclinic
anisotropy. The monoclinic crystal system has exactly one pale of reflective symmetry. A material is said to have a plane
of reflective symmetry with respect to a plane passing through the point. In particular, in the cylindrical coordinate the
plane of elastic symmetry is ϕ− z. Remember that vector p is equal to {1, 0, 0}, then, six-dimensional skew-symmetric
tensor P̂, becomes:

P̂ =


0 0 0 0 0 0

0 0 0 −
√
2 0 0

0 0 0
√
2 0 0

0
√
2 −

√
2 0 0 0

0 0 0 0 0 1
0 0 0 0 −1 0

 (S.49)

Then, from (S.41), six-dimensional orthogonal tensor Q̂ is equal to:

Q̂ =



1 0 0 0 0 0

0 cos2 ϑ sin2 ϑ −
√
2
2 sin 2ϑ 0 0

0 sin2 ϑ cos2 ϑ
√
2
2 sin 2ϑ 0 0

0
√
2
2 sin 2ϑ −

√
2
2 sin 2ϑ cos 2ϑ 0 0

0 0 0 0 cosϑ sinϑ
0 0 0 0 − sinϑ cosϑ

 (S.50)

In helical coordinate system the elastic matrix is:

Chel =


Chel11 Chel12 Chel13 0 0 0
Chel12 Chel22 Chel23 0 0 0
Chel13 Chel23 Chel33 0 0 0
0 0 0 2Chel44 0 0
0 0 0 0 2Chel55 0
0 0 0 0 0 2Chel66

 (S.51)

where the vector stress is obtained multiplying the matrix Chel by the strain vector, in Voigt notation. The moduli of
elasticity Chelij are linked to the elastic moduli:
Err, Ett, Ecc, νrt, νtc, νrc, Grt, Gtc, Grc.
By invoking the transformation law (S.40) in six dimension, with reference to (S.51) and (S.50), the elastic matrix in
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cylindrical coordinate system becomes:

Ccyl =



Ccyl11 Ccyl12 Ccyl13 2Ccyl14 0 0

Ccyl12 Ccyl22 Ccyl23 2Ccyl24 0 0

Ccyl13 Ccyl23 Ccyl33 2Ccyl34 0 0

Ccyl14 Ccyl24 Ccyl34 2Ccyl44 0 0

0 0 0 0 2Ccyl55 Ccyl56

0 0 0 0 Ccyl56 2Ccyl66


(S.52)

where the constants Ccylij are linked with the ones Chelij and the angle of the helix ϑ through the following relations:

Ccyl11 = Chel11

Ccyl12 = Chel12 cos2 ϑ+ Chel13 sin2 ϑ

Ccyl13 = Chel13 cos2 ϑ+ Chel12 sin2 ϑ

Ccyl14 = (Chel12 − Chel13 )
sin 2ϑ

2

Ccyl22 = Chel22 cos4 ϑ+ (Chel23 + 2Chel44 )
sin2 2ϑ

2
+ Chel33 sin4 ϑ

Ccyl23 = Chel12 cos2 2ϑ+
1

4
(Chel22 − 2Chel23 + Chel33 − 4Chel44 ) sin2 2ϑ

Ccyl24 =
1

4

[
Chel22 − Chel33 + (Chel22 − 2Chel23 + Chel33 − 4Chel44 ) cos 2ϑ

]
sin 2ϑ (S.53)

Ccyl33 = Chel33 cos4 ϑ+ (Chel23 + 2Chel44 )
sin2 2ϑ

2
+ Chel22 sin4 ϑ

Ccyl34 =
1

4

[
Chel22 − Chel33 + (4Chel44 − Chel33 + 2Chel23 − Chel22 ) cos 2ϑ

]
sin 2ϑ

Ccyl44 = Chel44 cos2 2ϑ+
1

4
(Chel22 − 2Chel23 + Chel33 ) sin2 2ϑ

Ccyl55 = Chel55 cos2 ϑ+ Chel66 sin2 ϑ

Ccyl56 = (Chel66 − Chel55 )
sin 2ϑ

2

Ccyl66 = Chel55 sin2 ϑ+ Chel66 cos2 ϑ
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