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Abstract

The aim of this chapter is the investigation of the universal behavior of nonlinear vibrating
structures. The approach is formulated in terms of the black box interaction formalism, only
recently introduced (see Chapter 1), but including subharmonics and multidegrees of freedom.
As a prototype of the nonlinear box, we focus attention on a multicracked cantilever beam. The
cause of the vibration (i.e., the input in the box) is represented by a harmonic force excitation;
the effect (i.e., the output), by the tip displacement. Universality corresponds to zero-, high-, and
subharmonic generations, describing complex phenomena such as period doublings and transi-
tion towards deterministic chaos. Applications to damage detection and structural monitoring
seem to be promising. '
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1. Introduction

The study of the nonlinear dynamics of structures represents a powerful tool for dam-
age detection. Vibration-based inspection of structural behavior offers an effective tool
of nondestructive monitoring. The analysis of the dynamic response of a structure to
excitation forces and the monitoring of alterations, which may occur during its life-
time, can be employed as a global integrity-assessment technique to detect, for ex-
ample, the presence of a crack or play in joints. The damage assessment problem in
cracked structures has been extensively studied in the last decade [1-5], highlighting
that the vibration-based inspection is a valid method to detect, localize and quantify
cracks especially in one-dimensional structures. Dealing with the presence of a crack
in a beam, previous studies have demonstrated that a transverse crack can change its
state (from open to closed and vice versa) when the structure, subjected to-an external
load, vibrates [3,4]. As a consequence, a nonlinear dynamic behavior is introduced.
The aim of this chapter is the investigation of the universal behavior in the complex
oscillatory behavior of damaged nonlinear structures. In particular, we have focused
our attention on a cantilever beam with several breathing transverse cracks and sub-
jected to harmonic excitation perpendicularly to its axis. The method, that is an exten-
sion of the high-harmonic analysis presented in [4] to subharmonic and zero-frequency
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components, allows us to capture the complex behavior of the nonlinear structure, for
example, the occurrence of period doubling, as experimentally observed [5]. The ap-
proach is written in terms of the black box interaction formalism, recently developed
for high-harmonics (see [6] and Chapter 1), but including subharmonics and multide-
grees of freedom, as described in References [7, 8].

- 2. Nonlinear Dynamics of Structures

2.1 The Interaction Box Formalism

Consider a nonlinear structure, having several degrees of freedom and subjected to the
multicomponent cause {C} of the vibration, that is, a set of harmonic forces/couples
with multiple angular frequencies rather than a fundamental angular frequency . The
effect {E}, dual to the cause {C}, thatis, the structural displacements (translations and
rotations), must satisfy: '

M1{E}+ (D) (£} + [K11E) + (B (D) =€), (6.1)

where [M], [D], and [K] represent the mass, damping, and stiffness matrices re-
~spectively, and {B} is the nonlinear component of the box (or structure) [6]. See the
Appendix. For free vibrations {C} = {0}.

In general the cause {C} can be put in the following form,

N

{C}=""({Cs};sinj o +{Cc}; cos j o). (6.2)
=

Assuming as the period of the effect a multiple s of the period of the cause (usually
s =1), and according to Fourier analysis, we can write:

N

(E@O) = ({ES} ;sin jgt +{Ec}; cos jf;)—.z), 6.3)

=0

in which an s different from the unity parameter describes subharmonic generation
(17, 8] s = 1lin [4] and [6]) and N should be large enough (theoretically infinite) to
reach a good approximation. Introducing the time dependence for {E (1)} of Eq.(6.3)
into the nonlinear box part { B (E)} yields:

{

N

BEO)= > (18s) sinj%t +{Bc); cdsj%’—r), ‘(5.4)

=0

where {BS c} are constants related to {E S c}

Introducing Eqs. (6.2-6.4) into Eq. (6.1) and balancing the harmomcs with the same
angular frequency, would formally solve the problem, correlating cause_ and effect.
A algebraic system of nonlinear equations is derived in the form of ) '
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[Kl———WJ P L [{E_s}j‘ {{Cs}, } {{BSGES} AEC)H}; }
——[D] » [K]Qj ) {Ec}; {Ccl; {Bc(Es}{EcH};
A ‘ .
o (6.52)
or, in compact form: _ |
_ [A(DHE (DY ={C ()} = (B, | (6.5b)
where j =0,1, ..., N.
For a monochromatic single cause:
o Cij = C(Sjséip, : (6.6)‘

p being the node position corresponding to the point where the sinusoidal cause of
intensity C is applied.

Each of the N systems in Egs. (6.5) can be easﬂy solved numerically using an itera-
tive procedure starting assuming {B (j)} = {0} and then evaluating {B (j)} according

to the solutions for {£ ()} derived at the previous step, until a satisfactory conver-
gence is reached. '

2.2 Application to Cracked Structures

To quantify universal behaviors in nonlinear dynamics of structures, we refer to a mul-
‘ticracked beam. The cracks “breathe” during the vibration and thus cause a variation of
the stiffness of the structure, that is, a nonlinearity. Mathematical details are reported
in [4,7] and briefly summarized in the appendix. We consider here just two different -
and simple cases: a weakly or a strongly damaged structure. An extensive parametrical -
investigation can be found in {8]. Only in the latter case, the so-called period doubling
phenomenon, experimentally observed by Brandon and Sudraud [5], clearly appears.
The beam considered here is the same as that described in the mentioned experimental
analysis. It is 270 mm long and has a transversal rectangular cross-section of base and
height, respectively, of 13 and 5 mm. The material is UHMW-ethylene, with a Young’s
- modulus of 8.61 x 108 N/m? and a density of 935 kg/m>. We have assumed a modal
damping of 0.002. 1t is discretized with 20 finite elements. We have found that values
of s = 4 and N = 16 give a good approximation; that is, for larger values of s and
N, substantially coincident solutions are obtained. The first natural frequency of the
undamaged structure is f, = 10.6 Hz. A monochromatic cause, a force at the tip, is
considered. The effect is assumed to be the tip displacement.

For each of the two considered structures (Figures 6.1a and 6.2a) the time history of
the applied force and of the free-end displacement (Figures 6.1b and 6.2b), are shown
as well as the zero-, high-, and subharmonic components of the free-end displace-
ment (Figures 6.1c and 6.2c). Obviously, in a hypothetical linear (i.e., here undamaged)
structure, the response is linear by definition with only one harmonic component at the
same frequency of the monochromatic excitation (Case 0).

Case 1. In the weakly nonlinear structure of Figure 6.1a, the response converges
and it appears only weakly nonlinear, as depicted in Figure 6.1b. The harmonic com-
ponents in the structural response are the zero—one (presence of a negative offset in
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Fig. 6.2. (a) Structure 1l — Damaged structure and characteristics of the excitation (a; = 4.25mm, ay =
425mm,C = F = 2N, f = w/2n = 18.9 Hz); (b) time history of the free end displacement and of the
applied force; (c) zero- (offset), sub-, and super-harmonic components for the free end displacement (i.e.,
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o Whele E is the Young moduius of the material constituting tk t‘le finite element; ] =
b3 /12 is the moment of inertia. of its cross-section, having base b and height h; and
~ Mand P are the bending moment and shear load acting at the ends of the finite element

of length I. The additional energy due to the crack is:

w® b/a (k300 + K% (x))-/E’ + (1K, () /E) d, (A2)
0

where E’ = E for plane stress, E/ = E /(1 + v) for plane strain, and v is the Poisson
ratio. Ky y7 77 are the stress intensity factors for opening, sliding, and tearing-type
cracks, of depth a, respectively. Taking into account only bending (i.e., the predomi-
nant load): -

a

W =b [ [ + Kin()P + Kip()] /E'ds, (A3)
J |

with:
Koy = (6M/bh2) JTaF; () |
Kip= (_SPZ / bh2) JTaF; (w) | (A4)
Kirp = (P /bh) JmaF; (w),

where w = a / h and:

Fr(w) = /2/(x w) tan(z 0/2)(0.923 + 0.199(1 — sin(z w /2)*)/ cos(mw/2)
Frr(w) = Gw — 2w?)(1.122 — 0.561w + 0.085w? +0.18w>) /V/I —w. (A5)

The term Cz(k) of the flexibility matrix [CS))] for an element without a crack can be

written as 2er(@)

o O _W k=12 P=P, P=M A6)
Clk. GP, aPk l, 9 1 ] 2 . ( )

The term CE/? of the additional flexibility matrix [Cgl)],due to the crack can be obtained
as : : '

AR 1.2 P AT
o= i, k=12 Pi=P, P,=M.
ik =3 P.oPy L 1 2 (A7)
The term cjx of the total ﬂex1b111ty matrix [C,] for the damaged element is:

©) o

ik =Cy o | (A8)

From the equilibrium condition

(P Mi Piy Mist) =71 (Pt M) - (A9)
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where

[T]= [ 1:11(1)(1)] . (A10)

Applying the theorem of Enrico Betti (1823-1892), the stiffness matrix of the undam-
aged element can be written as

| . |
(K)=1[c®] ', NN
or
12 6l —12 6l
CEI| 6l 4% -6l 207
[Kel=7| _10-61 1261 | (Al2)
61 212 —6l 41*
and the stiffness matrix of the cracked element may be derived as
Kl =[T1CI T - (A13)

In order to evaluate the dynamic response of the cracked beam when acted upon
by an applied force, it is supposed that the crack does not affect the mass matrix.
Therefore, for a single element, the mass matrix can be formulated directly:

156 220 54 —131

1| 221 41 130 =302

20 | 54 (3] 156 —221 |’
—131 =312 =221 4]*

[Mc] = [Ma.] = (Al4)

where m is the mass for unity length of the beam.
Assuming that the damping matrix [D] is not affected by the crack, it can be cal-
culated through the inversion of the modeshape matrix [¢] relative to the undamaged

" structure: »
(01 =(1¢1") @161, (A15)
where [d]. is the following matrix,
F1o1 My 0 0 0 ]
0 OonMy O L. 0 .
dl=2 e e , (A16)
0 0 GnonMy

in which ¢; is.the modal damping ratio, w; is the ith natural frequency and Ml is the
ith modal mass relative to the undamaged beam.

Accordingly, the mass, damping, and stiffness matrices of the structure are deduced
by expansion and summation of the element matrices.

Regarding the nonlinearity imposed by the presence of the cracks:

m
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“where [K]4 z [4K (’”)] is the stiffness matrix of the undamaged beam and [ 4K ™)]
- ishalfof the Varlatwn in stiffness introduced when the mth crack is fully open (see [7]).
* According to this notation, £ ({E}) ranges between —1 and +1 and models the
transition between the conditions of mth crack fully oper and fully closed, depending
on the curvature of the corresponding cracked element [4]. Considering the function
£ ({E)) as linear versus-the curvature of the corresponding cracked element [4, 7]
implies |
- Ey,,

F™MAED) = = A (Emy — Emy) » (A18)

IEmk

Where the numerator reports the difference of the rotations for the mth element
Correspondingly:

mh l max

. | (m) .
- [ AK(’")] [0] H:.

where

A
stvm) - Zn J2ijitia=j {(Esme — Esmyj) Ecij

' (Ekajl N Ethjl) ESi,jz} m Zh J2ii—j=%j
+ {(ESmm ESthl) Ecij — (Ekajl ~ Ecmyj;) Esijp }» (A202)

K = Zn Zh sy = (Esmey = Esmjy) Esij,

+ (Eckal Ethh) ECUz} T o Zn,]z = ja==£j
+ {(Esﬁkjl ~ Esmyj) Esij — (Ekajl ~ Ecmyjy) ECij2} - (A20b)
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