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Chapter 6
Optimal Adhesion Control
via Cooperative Hierarchy, Grading,
Geometries and Non-linearity
of Anchorages and Adhesive Pads

Lucas Brely, Daniele Liprandi, Federico Bosia and Nicola M. Pugno

Abstract Optimization of dry adhesion in biological organisms is achieved using
various strategies at different scale levels. In the past, studies have shown how
contact splitting is used effectively by animals such as geckos and insects to
increase the total peeling line of contacts and therefore the adhesion force. Also,
tapering of contacts or grading of their mechanical properties has been shown to be
instrumental in the achievement of improved adhesion efficiency. On a more
macroscopic scale, structures such as spider web anchorages exploit hierarchical
structure or nonlinear constitutive material properties to improve resilience and to
achieve tunability in adhesion/detachment characteristics. Here, we analyse some of
these properties and propose some mechanisms for the optimization of adhesion
that have thus far been neglected in modelling approaches, and could be potentially
exploited for the design of bioinspired adhesives. We consider hierarchical struc-
ture, contact tapering, grading of mechanical properties, and their interaction. It
emerges that these mechanisms contribute on various size scales to the achievement
of optimal adhesive properties through structural complexity and hierarchical
organization.
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6.1 Introduction

Natural structural materials have been widely used as a source of inspiration for
advanced materials, due to their outstanding mechanical properties. This applies to
the field of adhesives [1], where notable examples are fibrillar structures such as
those found in gecko toe pads or in spiders or insects [2, 3]. Another interesting
example is that of spider web attachment discs, in which different types of spider silk
threads and hierarchical branching are employed to tune adhesion for specific
applications [4–6]. In all of these examples, material properties and structural
topology concur in determining adhesive functionality. As for many natural mate-
rials, in many cases hierarchical structures are observed (“hierarchical branching”),
and it is thought that these are essential in determining optimal adaptation to the
surface, load redistribution without self-bunching and possibly tunability in adhesive
properties [7]. This hierarchical branching allows so-called “contact splitting”,
whereby larger contacts are split into smaller ones (fibrils), with benefits deriving
from fibril deformation, adaptability to rough surfaces, size effects due to
surface-to-volume ratio, uniformity of stress distributions [8]. Contact splitting also
contributes to increasing the so-called “peeling line”, i.e. the sum of the contact tape
widths, also increasing adhesion [7]. Additionally, it has been shown that in bio-
logical structures adhesion can be optimized by variable contact unit geometry [9]
and spatial variation of mechanical properties, e.g. in the tarsal setae of the ladybird
beetle, allowing it to achieve adaptation to rough surfaces while simultaneously
ensuring sufficient stability [10]. These concepts are illustrated in Fig. 6.1, high-
lighting the multiscale nature of these mechanisms.

Fig. 6.1 Multiscale mechanisms contributing to fibrillar adhesion: contact splitting, hierarchical
branching, contact unit properties (i.e. tapering or grading of mechanical properties): a) Spider web
anchorages; b) gecko pads (from [25, 26])

82 L. Brely et al.



Artificial dry adhesives mimicking natural systems have recently been intro-
duced [11]. For example, creating pillar (or mushroom)-shaped patterns at micro
(and nano) scale has allowed to successfully activate adhesion based on van der
Waals interactions. The first artificial “mushroom-tape” or “gecko-tape” are based
on a punch-like structure [12, 13], which is designed to provide an adhesive force
mainly normal to the substrate. The optimization of these structures in terms of
adhesive strength has been attempted using contact mechanics models [14]. As
symptotically, the models predict an unlimited increase in adhesive strength. Using
nanoscale contact units, the adhesive strength tends to the theoretical strength of the
Van der Waals interaction. On the other hand, most natural designs are based on a
tape-like geometry, which can be described using Kendall’s “single peeling” theory
[15] developed in the 1970s, recently extended to “multiple peeling” cases [16, 17]
and applied to complex geometries [18]. Tape-like structures have also been
introduced in artificial adhesives in order to optimize the shear mode adhesion of
bioinspired tapes [19, 20]. The study of how nature organizes these basic consti-
tutive units could lead to further optimization in the field of bioinspired adhesives.
In this respect, introducing hierarchical structures instead of using regular patterns
is the new challenge [21, 22]. To design optimal solutions, adequate modelling of
all mechanical mechanisms is required, and thus reliable analytical/numerical
approaches need to be developed [23, 24].

In this chapter, we analytically and numerically analyse various mechanisms that
can contribute to the improvement of adhesion at different scale levels, at present
observed experimentally in the literature but not fully explained theoretically. These
include the creation of favourable delamination stress distributions thanks to spatial
stiffness variation of the fibrillar elements and increasing the peeling line and
adhesion force through contact tapering, i.e. width or thickness variations along the
pad length, and hierarchical organization of multiple peeling geometries. The study
is performed through energy-based analytic calculations and stress distributions
analysis. Finite Element Method (FEM) numerical simulations and their multiscale
interaction in complex hierarchical multiple peeling geometries are finally
discussed.

6.2 Single and Multiple Peeling Theories Applied
to Attachment Structures

Adhesion problems in biological structures can usually be investigated by resorting
to thin film peeling theories [15, 16], due to the typical tape-like shape of the
terminal contact units observed in systems such as gecko spatulae, insect setae,
spider attachment discs, mussel adhesive plaques, etc. These typically involve
multiple contact units, so that the detachment of adhesive biological structures must
be treated as a multiple peeling problem. In this type of formulation, Griffith energy
balance is used to determine whether the kth tape of a structure delaminates:
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�@P=@lk ¼ 2ckwk ð6:1Þ

where P is the potential energy, given as the difference between the elastic energy
E and the external workW, i.e.P = E − W, c is the surface energy between tape and
surface, wk the tape width and lk its detached length. For a thin film (i.e., neglecting
the bending stiffness), the variation of external work DW can be expressed as:

DW ¼ FDg ð6:2Þ

where F is the applied force and Dg the increment in displacement. The elastic
energy variation can be calculated as:

DE ¼ 1
2

XN
k¼1

Ykbkwk l0ke
02
k � lke

2
k

� � ð6:3Þ

where Yk is the kth tape elastic modulus, bk its thickness, wk its width and ek\ its
strain. l0k and e0k correspond to the length and the strain in the delaminated con-
figuration (see Fig. 6.2a). For a single tape (Fig. 6.2b), the force necessary to peel
the film from a substrate can be analytically obtained [15]:

T 1� cos hð Þþ T2

2bwY
� 2cw ¼ 0 ð6:4Þ

where T is the tape tension, h is the tape angle with respect to the substrate, and the
subscript k has been dropped for simplicity. This leads to:

T ¼ wbY cos h� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos hð Þ2 þ 4c

bY

r !
ð6:5Þ

which highlights the proportionality of the peeling force with the tape width w. This
geometrical parameter is linked to the width of the peeling line, i.e. the line along
which delamination occurs. As discussed in [7], a well-known strategy adopted by
biological attachments systems consists in increasing the length of peeling line by
simply splitting the contacts. This result is illustrated by the log relationship
between the body mass and the sum of the peeling lines in animal fibrillar
attachment structures [7].

In the case of multiple peeling problems [16], we first consider symmetrical
double peeling, as shown in Fig. 6.2c, since asymmetrical cases can be treated as
combined single peeling problems [18]. The applied force is the decomposition of
the tape tensions, which leads to:

F ¼ 2T sin h ð6:6Þ
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so that at delamination ðF ¼ F�; h ¼ h�Þ:

F� ¼ 2wbY sin h� cos h� � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos h�ð Þ2 þ 4c

bY

r" #
ð6:7Þ

In this case, the angle between the tapes and the substrate changes with the tape
elastic deformation. Solving (6.7), one finds that an optimal peeling angle exists at
which the peeling force is maximal. For angles below and above this value, the
peeling force decreases. However, in (6.7) the peeling force is expressed as a
function of the delamination (or “peeling”) angle h�, so that peeling angle values
below the optimal value correspond to negative “undeformed” initial angles h0,
which is physically meaningless. The tape tension before delamination
(Fig. 6.2c) can be expressed from the tape strain as lð1þ eÞ cos h ¼ l cos h0, so that:

T ¼ bwYe ¼ bwY
cos h0
cos h

� 1
� �

ð6:8Þ

while the external load applied to the system is given by (6.6). Considering as an
example a tape with properties Yk = 1000 MPa, bk = 1 µm, wk = 2 µm,
ck = 0.01 MPa µm or ck = 0.001 MPa µm, calculations shown in Fig. 6.3a
demonstrate that the peeling force F reaches a maximum when its intersects the
peeling force F* calculated as a function of angle variation when the initial tape
angle is h0 ¼ 0 [18]. An initial undeformed angle of h0 ¼ 0 degrees is therefore the
optimal peeling angle for maximizing the adhesion force.

The optimal asymptotic peeling angle is a function of the global deformability of
the system, i.e. the deformation that the system can sustain before delamination

Fig. 6.2 a Tape angle before deformation (h = h0) and at delamination (h = h*) due to a tape
tension T. b Single peeling configuration with an applied force F (in which case h0 = h*).
c Symmetrical double peeling configuration with a vertically applied Force F: undeformed (h0) and
deformed (h < h*) tape angle
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occurs. This property can be quantified using the non-dimensional parameter k ¼ 4c
bY

representing the ratio between adhesion energy and elasticity [16]. From (6.7) and
(6.8), it is possible to determine the optimal peeling angle hopt ¼ h�jh0¼0 at which
the structure delaminates:

2 cos3 hopt � 3þ kð Þ cos2 hopt þ 1 ¼ 0 ð6:9Þ

The corresponding hopt versus k curve is shown in Fig. 6.3b, showing a
monotonically increasing nonlinear behaviour. More in general, we have:

Fig. 6.3 a Peeling force F*
as a function of deformed tape
angle h, calculated with
Multiple Peeling Theory
(MPT), (6.7), compared to the
external load F applied to the
system as a function of h,
(6.6) and ( 6.8), for various
initial angles. For a given
initial angle, the tape deforms
from point A=(h0;0) to point
B=(h*;F*), then deforms and
delaminates until point C=
(hopt;Fopt) where it reaches the
optimal asymptotic
angle. The h0 ¼ 0 curve is the
one that intersects the MPT
curve for maximal peeling
force values. b Optimal
asymptotic peeling angle hopt
for symmetric double peeling
as a function of the ratio
between adhesion energy and
elasticity of the system.
c Initial peeling force F* as a
function of the initial
angle h0. In all cases, the
peeling force then tends
towards the maximum
delamination force F*=1 mN,
for all initial angles.
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cos h0 ¼ cos2 h� þ cos h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos h�ð Þ2 þ k

q
ð6:10Þ

Using this relation, it is possible to plot the initial peeling force as a function of
the undeformed angle h0 (Fig. 6.3c). These results highlight the fact that in multiple
peeling cases, delamination is dependent from the deformability of the system, and
therefore from the type of structure and the mechanical properties of the attachment.

The adhesion force of attachment structures can be deduced from planar multiple
peeling models such as those discussed above. One example are so-called “dendritic”
geometries in spider web anchorages, which can be described as radial branching
structures where the pyriform silk fibres converge to a single point at a distance from
the substrate. This results in a cone-like morphology (Fig. 6.1) which is involved in
spider prey capture. It has been shown that in order to fulfil its function, the dendritic
anchorage must exhibit a reduced pull off force [4, 27]. Due to its conical symmetry,
the relationship between force and extension can be directly obtained from the
symmetric double peeling configuration described above, modified by multiplying
results by the appropriate number of tapes or membrane geometries [17]. Figure 6.4a
shows simulation results for non membrane-like dendritic attachments when varying
the initial contact angle h0. For h0 ¼ p=4, the system is firstly deformed without
delamination, with a linear force-displacement relationship (Hooke’s law). Then, the
tapes begin to delaminate and the peeling angle starts to vary, which results in an
increase of the peeling force. This explains the elasto-plastic-like behaviour obtained
in experimental [5] and in numerical results. The peeling force saturates when the
peeling angle is asymptotically optimal. In the case of a limited available delamina-
tion length, however, full delamination could be achieved before the optimal peeling
angle, and thus before the load plateau, is reached. This would allow to tune the
adhesive strength of the structure. For a small peeling angle h0 ¼ p=16ð Þ, the initial
elastic deformation displays hyperelastic behaviour due to the geometrical non lin-
earity of the system, but then saturates to the maximum peeling force as soon as
delamination begins. These two cases illustrate how by varying the peeling angle and
attached tape lengths, it is possible to control the properties of the anchorage, inducing
linear/nonlinear deformation and varying detachment loads. The possibility of tuning
load response by selecting suitable multiple peeling structures has been observed
experimentally, e.g. in spider web anchorages [5]. In more complex loading sce-
narios, such as when applied loads are not normal to the surface, asymmetric defor-
mation states are induced (as shown in Fig. 6.4b), and FEM approaches are useful to
evaluate the performance of these structures.

6.3 Hierarchical Branching in Adhesive Structures

Adhesive fibrillar structures found in Nature display much more complex geome-
tries than the double peeling problem discussed above. One example is the bran-
ched structure found in spider attachment discs, where a high number of contacts
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with the substrate are obtained thanks to hierarchical structure and branching at
several levels [5, 28], as illustrated in Fig. 6.1. To evaluate 2-D branched hierar-
chical multiple peeling configurations, FEM simulations have been carried out
using the Structural Mechanics module of COMSOL Multiphysics 4.3. The inter-
face between the tape and substrate is modelled adopting a Cohesive Zone Model
(CZM) [29], based on a stress-softening constitutive law before delamination [24].
Simulation parameters are b = 10−2 m, t = 10−3 m, Y = 3 MPa, m = 0.45 (where m
is the Poisson’s ratio). The hierarchical configurations are compared to the sym-
metrical double peeling case. A second-level hierarchical geometry is considered
(“2”), where the two tapes branch out in a self-similar manner into two further tapes
at equal distances from the centre. The third-level hierarchical geometry (“3”)
replicates this to a further level. These structures are shown in Fig. 6.5a, with the
corresponding calculated load-displacement curves in Fig. 6.5b. The three config-
urations are compared for the same peeling line, length, thickness, and all three start
from a fully adhered tape. It is apparent that increasing hierarchical branching
increases contact splitting and the number of delamination points in the tape, thus
distributing and reducing the stresses at the interface. This helps in avoiding stress
concentrations and an early onset of tape delamination. On the other hand, tape

Fig. 6.4 a Force-extension
curves for a non
membrane-like dendritic
anchorage, varying the initial
peeling angle h0 of the
anchorage. b Model of
dendritic anchorage in an
asymmetric loading scenario
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deformation and internal stresses are generally greater. The variation in normalized
adhesive properties of the three structures is reported in Fig. 6.5c. There is an
increase in adhesive failure stresses with hierarchy, i.e. the geometry with the
highest hierarchical level achieves the best adhesive strength. Also, dissipated
energy, which can be obtained as the area underlying the load-displacement curves,
also increases for 2 and 3, showing how hierarchy favours an increase in both the
strength and toughness of the adhesive interface.

6.4 Geometry and Mechanical Properties of Contact Units

At a lower scale level, the peeling force of a single tape depends on the mechanical
properties and the geometry of the contact unit itself. It is well known that the gecko
spatulae or insect setae are not simple uniform tapes, but display gradients in the
mechanical properties along both the width and the thickness of the attached length
[10]. It has been shown that due to the concentration variation of a softener, the
resilin protein, the elastic modulus in the adhesive tarsal setae of the ladybird beetle

Fig. 6.5 Hierarchical peeling configurations: a FEM simulation results, pictured for different
imposed displacement d values. 1 first level (non-hierarchical) configuration; 2 second-level
hierarchy; 3 third-level hierarchy. Colour scale represents von Mises stresses during delamination
(scale bar shown on the left). b Corresponding Load versus displacement curves: the peaks in the
curves correspond to full delamination of single tapes; c Comparison between the normalized
delamination stress and dissipated energy at delamination for the 3 configurations
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varies approximately from 1 MPa to 6 GPa, with two gradients, one along the
length of the setae, the other along its thickness, in the dorsal (in contact with the
substrate) and ventral part of the setae [10]. This result cannot be justified simply
using Kendall’s theory, which predicts that the peeling force increases with the
elastic modulus. The softening has the function to increase adaptability to the
surface, which leads to a greater contact area, and an increase in adhesive energy.
However, stress distributions on the contact area should also be considered to
determine the possibility of early-stage onset of delamination in correspondence
with stress concentrations. These effects can be captured using the stress distribu-
tions in the tape/interface system theoretically derived in [30]. The shear and
normal stress (s and r) distributions at the interface are:

s xð Þ ¼ T cos hð Þ a
w
eax ð6:11Þ

and

r xð Þ ¼ T sin hð Þ 2b
wð1� KÞ e

bx cos bxð ÞþK sin bxð Þð Þ ð6:12Þ

where x is the distance from the peeling line, a, b and j are parameters that depend
on geometry and mechanical properties:

a ¼
ffiffiffiffiffiffiffiffiffi
GI

Ytab

r
; b ¼ 4

ffiffiffiffiffiffiffiffiffiffiffi
3YI
Ytab3

r
;

K ¼ 1� sin hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2YtItð1� cos hð ÞÞ=T � bb=2 cos hð Þþ sin hð Þp

ð6:13Þ

where GI and YI are the interface shear and elastic modulus, Gt and Yt the tape
interface shear and elastic modulus, It its momentum of inertia, and a the interface
thickness. Considering an interface of setae with fixed mechanical parameters, the
shear stress distribution can be derived approximately using (6.11). Gradually
reducing the interface stiffness allows to distribute the stress over a larger area and
therefore to increase the adhesive strength of the attachment. This is shown in
Fig. 6.6a, where results are calculated using the same mechanical properties as in
the first Section and the geometry shown in the inset. For the sake of simplicity, we
only plot the shear stress distribution considering h ¼ 0 and applying a force
T = 0.1 µN. We consider both the tape and interface to be isotropic, so that G = Y/2
(1 + m), with m = 0.3. Shear stress along the length of the adhesive area for various
stiffness values of the soft interface YI compared to that of the elastic layer Yt are
plotted in Fig. 6.6a. Results show how layer softening can have a considerable
beneficial effect in reducing stress concentrations towards the tip of the pad,
redistributing them more uniformly along the whole length of the interface area. For
the same applied external force, in the considered case a tenfold reduction can be
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obtained in the normal stresses, with an approximately equivalent increase in the
adhesive strength of the layer. Another simple strategy to tune the adhesive strength is
to generate tapered geometries. Indeed, most of the observed setal elements in insects
and geckos display width and thickness variations over the length of the setae [9]. As
predicted by Kendall’s model, these structures would increase the adhesive strength
as the delamination proceeds, thanks to the increasing peeling line length (Fig. 6.6b)
[7]. These broadened contact units are characteristic features observed not only in
gecko adhesion systems [31], but also in those of insects and spiders [32].

6.5 Conclusions

In summary, we have reviewed how structural, geometric and mechanical features
contribute on different scale levels to optimizing adhesion in biological adhesives.
Many of these effects have been observed experimentally in the literature and

Fig. 6.6 a Geometry of the
considered thin elastic layer
with a “ventral” soft interface
and an applied horizontal
force T. Shear stress
distributions are plotted along
the length of the attached
region for varying ratios
between contact layer stiffness
YI and tape stiffness Yt. Softer
contact layers are shown to
reduce stress concentrations
with respect to stiffer layers.
b Tapered geometry of
terminal contact element
width to increase peeling line
(w ! w + dw) during
delamination (image from
[25])
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discussed qualitatively, but we have demonstrated how they can also be derived
analytically and numerically, based on Multiple Peeling Theory [16], its numerical
implementation and FEM-based simulations [18]. These features can readily be
applied to artificial adhesives, e.g. “mushroom”-like structured surfaces [12, 33,
34], using the developed numerical tools for structural, geometrical and mechanical
optimization. The observed effects can contribute on different scale levels, with
cumulative optimization of adhesive properties. For example, in the considered
cases of branched hierarchical structures, tapering or contact softening in the ter-
minal elements could provide additional multiplier effects in the enhancement of the
adhesion force. Future studies can exploit the proposed approach to further eluci-
date in a multiscale scheme the observed strategies found in Nature for adhesion
optimization and their interaction, and propose new structural designs for artificial
adhesives.
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