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Mechanical Characterization of 2D
Nanomaterials and Composites

Ruth E. Roman1, Nicola M. Pugno2,3,4 and Steven W. Cranford1
1Department of Civil and Environmental Engineering, Northeastern University,
Boston, MA, USA
2Department of Civil, Environmental and Mechanical Engineering,
University of Trento, Trento, Italy
3Centre of Materials and Microsystems, Bruno Kessler Foundation, Trento, Italy
4School of Engineering and Materials Science, Queen Mary University, London, UK

8.1 Discovering 2D in a 3DWorld

The remarkable emergence of nanotechnology has made flourish new possibilities for the
characterization of nanomaterials. These small-sized structures have at least one dimension
in the nanoscale (<100 nm) and can be categorized according to their dimensionality as
zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional
(3D) materials (Figure 8.1(a)–(d)). Herein, we focus in 2D nanostructures.
Intuitively, one can easily discern the difference between 2D and 3D objects: restrict the

size of a material volume to its length and width alone and reduce to zero its height. From a
materials science or engineering perspective, a reduction in dimensions necessarily changes
how a system is both described and characterized. Yet our own minds are accustomed to visu-
alization in 3D – what consequences occur when a material is constrained to two dimensions
poses intriguing questions. Over 100 years ago, a simple thought experiment considered life
restricted to two dimensions – a hypothetical “flatland.” The novel Flatland: A Romance of
Many Dimensions is an 1884 satire by the English author Edwin Abbott Abbott. The book
used the fictional (and limited) 2D world of “Flatland” to comment on the hierarchy of Vic-
torian culture, but the novel’s more enduring contribution is its examination of dimensions.
The story describes a 2D world occupied by geometric figures, while the narrator (himself a
lowly square) guides the readers through some of the implications of planer life. The square

Advanced Computational Nanomechanics, First Edition. Edited by Nuno Silvestre.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



Trim Size: 170mm x 244mm Silvestre c08.tex V3 - 11/16/2015 11:13 A.M. Page 202�

� �

�

202 Advanced Computational Nanomechanics

(a) (b) (c) (d)

Figure 8.1 Dimensional classification of nanomaterials. (a) 0D with all dimensions in the three
directions are in the nanoscale (≤ 10−9 m). Examples of this kind are nanoparticles, quantum dots, and
clusters. (b) 1Dwhere one dimension of the nanostructure will be outside the nanometer range. Nanorods,
nanotubes, and nanofibers are included in this classification. (c) 2D with two dimensions outside the
nanometer range. These include different types of thin films and plates. (d) 3Dwith all dimensions outside
the nanoscale. Bulk amorphous materials and materials with a nanocrystalline structure are included in
this category

is visited by a 3D sphere, which he cannot comprehend, and only observes in discrete circles
of varying sizes, for example, 2D cross sections of the sphere. The 2D materials we discuss
herein would be very comfortable in Flatland – having length and width prescribed by a 2D
atomic crystallinity, but constrained to a plane (with minor deviations). Moreover, like the
square observing the sphere in Flatland, three dimensions of such materials can be imagined
(and ultimately experimentally achieved) by grouping discrete “slices” of the 2D structures in
multilayer composite systems. However, this typically does not change the 2D nature of the
materials. Thus, in order to understand such materials, we are limited to 2D perspectives – a
molecular flatland. Unlike the poor square in Abbott’s novel, however, 2D materials exist in
the 3D world, but have only been a recent discovery.
In 2004, a one-atom thickness monolayer of carbon atoms was isolated through relatively

simple mechanical tape exfoliation of graphite [1], quietly heralding an era of 2D materials.
Novoselov and Geim successfully produced the first single-layered 2D material, graphene, an
achievement that granted both of them the Noble prize in Physics in 2010. Its exceptional elec-
trical properties, potential in electronic, structural and thermal applications, and mechanical
and chemical stability has suggested graphene to be one of the most remarkable structure in
existence. Of course, all these superlatives mean that it has plethora of promising applications.
Since then, the potential of other atomistically 2D materials has created a new paradigm
of Materials Science. As graphene itself has shown, the properties of 2D structures can be
astounding, andmonolayers of crystals such as hexagonal boron nitride (hBN) ormolybdenum
disulfide could be just as mind blowing as graphene. They possess a high degree of anisotropy
with nanoscale thickness and infinite length in other dimensions, exhibit great potential in
applications such as energy storage and conversion systems, and hold enormous promise due
to its unique functionalities and properties, which are not foundwhen the material is in its bulk
form. In order to be successful in future applications, the behavior of such materials subject
to load must be fully understood, including limits in deformation and strength, and ultimate
failure response. In addition, nanocomposites reinforced with 2D nanolayers have become
of great interest due to their potential applications. These composite materials, in which the
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matrix material is reinforced by one or more nanolayers in order to improve performance
properties, commonly use polymers, ceramics, and metals as matrix [2], and form a 3D
arrangement.
This chapter reviews 2D nanomaterials and composites from the standpoint of their

mechanical properties. We discuss first the state of the art for graphene-related nanomaterials,
and then we focus in some of the more important experimental and analytical tools used for
the characterization of nanomaterials, and the different approaches used to characterize the
mechanical properties and behavior of an atomistic system, such as strength, stiffness, and
failure. Finally, we focus in multilayers and nanocomposites and the challenges of mixing
different materials in the context of mechanical properties.

8.2 2D Nanostructures

The study of 2D nanostructures has witnessed an increasing development over the past several
years due to the success of graphene and its remarkable characteristics. These novel materials
have extraordinary properties and promising applications. Recently, several works have been
published on graphene-like materials, including silicene, germanene, and molybdenum disul-
fide, which have been studied and designed from both experimental and computational sides,
allowing to predict interesting properties and establishing new fabrication methods. Here, we
briefly review some of these fascinating 2D nanostructures that represent a new breakthrough
in materials science.

8.2.1 Graphene

The most prominent 2D nanostructure is graphene, which is a honeycomb arrangement of
sp2-hybridized carbon atoms that has almost the same per-atom crystal energy as diamond
(sp3 structure) (Figure 8.2(a) and (b)). As each graphene carbon has only three bonds instead
of four for diamond, the graphene C–C bonds are about 25% stronger [3]. Thus, in plane,
it is the strongest material ever measured, and is both chemically stable and inert. Graphene
has a particular electronic structure, due to the presence of a Dirac cone in its electronic band
structure, which makes graphene conducts electricity better than any other known material at
room temperature [4]. In addition, it does not show a band gap, but the density of states is
zero at the Fermi level [3]. Today, graphene can be produced by several methods that depend
on the quality and dimension of the material to be obtained. Furthermore, we can list other
exceptional properties of graphene, such as high specific surface area, high carrier mobility,
high thermal conductivity, half-integer quantumHall effect, and ambipolar electric field effect.
Several researchers have determined the mechanical properties of a single layer of

graphene, and it has been reported to have the highest elastic modulus and strength, compared
with other materials. The Young’s modulus of a graphene sheet is reported on the order of
1 TPa (335N/m) using different techniques including Raman spectroscopy and AFM [5, 6].
Similarly, computational and experimental works report that the ultimate stress for single
layer of graphene is 130GPa, for an approximate ultimate strain of 20%–25% strain [5]. The
bending modulus for graphene has been calculated as well, based on ab initio, molecular
dynamics (MD) and other techniques resulted in values in the order of 1.5 to 2.1 eV for
monolayer graphene and approximately 130 eV for bilayer graphene sheets [7].
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(a) (b)

Figure 8.2 Atomic structures of (a) graphite and (b) graphene

8.2.2 Graphynes and Graphene Allotropes

The recent advent of graphene has motivated further investigation of similar 2D systems,
including all-carbon allotropes of graphene, as well as other 2D crystals. In this group, we
highlight the family of graphynes. The graphyne family is an all-carbon allotrope of graphene,
in which the framework in general consists of characteristic hexagonal carbon rings connected
by acetylenic linkages (single- and triple-bond, Figure 8.3(a) and (b)), which is made up of a
variation of the sp2 carbon motif-forming graphene. In this group, we highlight graphdiyne,
a member of the graphyne family proposed by Haley et al. in 1997 [8] with characteristic
diacetylenic links. Presently, thin films of graphdiyne have been successfully fabricated on a
copper (Cu) substrate by a cross-coupling reaction using hexaethynylbenzene [9], suggesting
the future feasibility of extended graphyne structures. In the process, the Cu foil serves as both
the catalyst and substrate for growing the graphdiyne films.
Although the mechanical performance of graphdiyne is noticeably inferior to graphene,

the graphdiyne structure is predicted to be the most synthetically approachable, and the most
stable diacetylenic non-natural carbon allotrope [9]. It has been found that graphdiyne exhibits
semiconductive characteristics and, advantageously, the natural band gap in graphdiyne,
which can vary as a function of directional anisotropy, is similar to that of silicon and makes
it the possible supplant material to silicon electronic devices. The possible applications of
graphdiyne sheets and nanoribbons due to its promising properties include nanoelectronics,
energy storage, anode materials in batteries, for hydrogen storage, or as membranes for gases
separation [10].

(a) (b)

Graphene
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(n = 1)

Acetylene

(single and
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Figure 8.3 (a) Classification of graphyne family. (b) Schematic of graphene to graphyne
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Table 8.1 Mechanical properties for extended graphynes [11]

Structure n Reclined chair direction Zigzag direction

E (GPa) 𝜎ult (GPa) 𝜀ult (%) E (GPa) 𝜎ult (GPa) 𝜀ult

Graphyne 1 532.5 48.2 8.2 700.0 107.5 13.2
Graphdiyne 2 469.5 36.0 6.3 578.6 45.5 8.0
Graphtriyne 3 365.0 26.8 7.7 476.7 43.7 9.9
Graphtetrayne 4 370.4 24.8 7.0 453.3 32.5 9.7

(a) (b) (c) (d)

Figure 8.4 Atomic structures of graphene allotropes. (a) Graphyne, (b) graphdiyne, (c) graphene
allotrope with Stone–Wales defects, (d) supergraphene

The mechanical properties of the extended graphyne family in both armchair (or reclined
chair) and zigzag directions have been reported in previous studies, and are summarized in
Table 8.1. A consistent degradation of the properties is observed,with the addition of acetylene
linkages to the structure.
With the purpose of defining further approaches to achieve controllable manipulation of

the atomic, electronic, and mechanical properties of all-carbon graphene, different graphene
allotropes have been developed (see Figure 8.4(a) and (b)). An alternative approach is the
introduction of variation in structure and topology of graphene, such as atomic-scale defects
(Stone–Wales defects, see Figure 8.4(c)), or the substitution of the original carbon–carbon
bonds in graphene by acetylene carbyne-like chains (Figure 8.4(d)) [12]. The introduction of
acetylene links introduces an effective reduction in stiffness, strength, and stability, enabling
the properties to predict the nanostructures properties as a function of acetylene repeats [11].
The 2D materials family is of course not limited to carbonic crystals, although similar

problems are faced when attempts are made to synthesize other 2D materials.

8.2.3 Silicene

Among the various 2D crystalline structures similar to graphene is also all-silicon-based
silicene. Owing to its current use in semiconductor electronics combined with a similar
hexagonal graphene-like lattice, this monolayer allotrope of silicon (Si) has attracted
increasing attention due to its potential compatibility with Si-based electronics. It was first
mentioned in a theoretical study by Takeda and Shiraishi [13] in 1994 and then investigated by
Guzman-Verri et al. in 2007, who labeled it silicene [14]. Structurally, silicene is a 2D sheet
of hexagonally arranged silicon atom, analogous to graphene, but with consecutive bonds
buckled out-of-plane. Unlike graphene, silicene is not stable as a perfectly planar sheet, with
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Figure 8.5 Schematic of silicene

chair-like distortions in the rings leading to ordered surface ripples and enhancing reactivity
with other material surfaces. Being said, as sp3 hybridization is more stable in silicon than
sp2 hybridization, silicene is energetically favorable as a low-buckled structure, as depicted
in Figure 8.5. This buckling confers advantages on silicene over graphene because it should,
in principle, generate both a band gap and polarized spin-states that can be controlled with a
perpendicular electrical field [15].
The mechanical properties (in-plane stiffness and ultimate strength) of silicene in both

armchair and zigzag directions, as well as the bending rigidity have been previously deduced
theoretically in the literature using techniques such as MD and DFT. The in-plane stiffness
in zigzag direction is reported in the range of 50–65N/m, whereas in armchair direction the
reported values of in-plane stiffness range from 59 to 65N/m [16, 17]. The ultimate stress
is reported approximately 5–8N/m for both directions, with the corresponding value of
maximum strain between 10% and 20% [16, 17]. The bending modulus has been obtained by
curve fitting with energy versus curvature data points and is calculated to be approximately
38 eV. Compared with monolayer and bilayer graphene, it can be noted that this value falls
between these two values. This could be due to the out of buckling structure of silicene, which
creates an effective thickness and bending inertia, compared to flat graphene, which does not
have this effect [16].

8.2.4 Boron Nitride

Boron nitride (BN) is another 2D nanostructure with graphene-like structure that consist of
alternating boron and nitrogen atoms in a hexagonal arrangement, where boron and nitrogen
atoms are bonded with strong covalent sp2 bonds (Figure 8.6), while for multiple layers they
are stacked together by electrostatic interaction and weak van der Waals forces, as in graphite.
Therefore, BN layers could be peeled off from bulk BN crystal by micromechanical cleavage
and used as a dielectric layer [18]. For this reason, bulk BN is commonly called white graphite,
and in analogy the monolayer hBN is known as white graphene [19].
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Bo

Ni

Figure 8.6 Atomic structure of boron nitride (BN)

BN, unlike graphene, is an insulator due to the difference in electronegativity, where the
narrowing of the sp2 p-bands is responsible for the loss of conductivity [18]. BN is well known
for a variety of crystalline structures (cubic, rhombohedral, amorphous); however, its hexago-
nal layered structure is the most stable. Due to a combination of exceptional properties, from
whichwe can highlight its high oxidation resistance, large thermal conductivity, good electrical
insulation, chemical inertness, nontoxicity, apart from being environmentally friendly, this
versatile inorganic compound can be used for a wide range of industrial applications, such as
surface coatings, ceramic composites, lubricants, or insulators [20].
The mechanical parameters of boron nitrate have been reported in different studies using

theoretical calculations such as density functional theory (DFT). The Young’s modulus of
single-layered hBN is about 780GPa and is nearly independent of loading orientation. The
bending rigidity is also isotropic and is about 0.95 eV. The ultimate tensile stresses are 102,
88, and 108GPa for the zigzag, armchair, and biaxial strains, respectively [21].

8.2.5 Molybdenum Disulfide

Molybdenum disulfide (MoS2) is an inorganic 2D material, semiconductor with hexagonal
structure, and the most prominent member of the family of transition metal dichalcogenides
(TMD). TMDs are representing by the formulaMX2, whereM=Mo, W, V, Nb, Ta, Ti, Zr, Hf,
and X=S, Se, Te, constituting a fascinating group of materials with an extensible range of
remarkable mechanical, optical, and electronic properties and applications [19]. Structurally,
it consists of three-atom-thick layers of a monatomic molybdenum plane between two
monatomic sulfur planes, such as a sandwich structure (Figure 8.7), in which the atoms are
bonded with strong covalent bonding, and the layers are held together by van der Waals
interactions [22]. MoS2 can be obtained easily from the bulk material using exfoliation
techniques, such as graphene and BN [23].
The presence of a direct band gap in monolayer MoS2 makes it promising for nanoelec-

tronics and photoelectronics applications. Another special feature of this material is that
the electronic structure can be tuned by varying the number of layer due to perpendicular
quantum confinement effect [19]. Additionally, its functional and structural properties can
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Mo

S

Figure 8.7 Atomic structure of molybdenum disulfide (MoS2)

be modulated by the application of mechanical strain, electric field, surface adsorption, and
defects [19, 24].
Due to the remarkable mechanical properties of MoS2, such as large ultimate strains, result-

ing in high flexibility, and high strength and stiffness, the material is presented as a promising
candidate for elastic energy storage for clean energy, as reinforcement in nanocomposites,
and for fabrication of flexible electronic devices. Furthermore, it is environmentally friendly.
Several studies report the mechanical properties of MoS2, using DFT calculations. For a single
layer of MoS2, the Young’s modulus is reported in the range of 184–270GPa, while the
ultimate strength is reported between 12 and 24GPa [19, 24, 25].

8.2.6 Germanene, Stanene, and Phosphorene

The remarkable properties and extensive applications of carbon-based graphene have lead to
the research of layered structures of the other elements in main group IV (Si, Ge, Sn, and Pb),
resulting in the development of new and innovative atomic 2D nanostructures: germanene
and stanene. In their stable state, these elements form a buckled hexagonal structure, unlike
graphene. This is related to the nature of graphene possessing an sp2 hybridization, whereas
silicene, germanene, and stanene exhibit the sp2–sp3 hybridization due to their preferential
state of sp3 bonding [26].
One of these promising materials is germanene, which is the germanium analog of silicene.

Based in first principled DFT calculations, Cahangirov et al. reported that the low-buckled
honeycomb structure of germanium analog of graphene can be stable [27]. Trying to
produce germanene, the hydrogen-terminated germanene was synthesized in 2013 from the
topochemical deintercalation of calcium digermanide (CaGe2) [28]. Afterwards, Li et al. [29]
have reported the successful fabrication of germanene by an annealing process after having
deposited germanium onto a Pt(111) surface. As in free-standing silicene, germanene presents
no band gap at the Fermi level, indicating metallic properties [3].
Two-dimensional tin, called stanene, is another versatile Group IV elemental 2D material.

Stanene presents an intrinsic buckling that allows for functionalization by an out-of-plane
electric field, and almost full sp3 hybridized bonding. It also owns a slightly metallic band
alignment, with massless Dirac fermions, analogous to silicene and germanene, which are
excellent properties for potential nanoelectric applications [30]. Although there is a lack of



Trim Size: 170mm x 244mm Silvestre c08.tex V3 - 11/16/2015 11:13 A.M. Page 209�

� �

�

Mechanical Characterization of 2D Nanomaterials and Composites 209

knowledge on the fundamental properties of some of these Group IV 2D allotropes, the notable
correspondence in their crystal and electronic structures enables the properties of germanene
and stanene to be extrapolated through relative estimations with graphene and silicene [26].
Recent theoretical studies on the in-plane stiffness of Group IV elemental layers reported

an observed reduction in the stiffness with increasing atomic weights (from Si to Sn). This
observation is related to the tendency of metallic bonding with increasing atomic weight that
is evidenced by the increasing bond length [31].
One of the latest 2D nanostructure developed is phosphorene, which was isolated by liquid

exfoliationof black phosphorus [32]. Similar to graphite, black phosphorous ismade of stacked
layers of phosphorene held together by weak van der Waals forces [33]. Phosphorene, such
as graphene, is the elementary 2D nanolayer that composes black phosphorus crystals, but
unlike graphene, it has a unique, vertically skewed/wrinkled hexagonal structure (Figure 8.8).
Monolayer phosphorene is a semiconductorwith a predicted direct band gap, which combined
with tunability of its properties makes it an ideal candidate for nanoelectronic, optoelectronic,
and photovoltaic applications [26].
It should also be noted that chemical functionalization, especially hydrogenation, is also

being used to develop new 2D nanomaterials, such as germanane. The hydrogenated counter-
part of graphene is graphane, a fully saturated 2D hydrocarbonwith sp3 hybridized bonds that
opens up. Graphane is an insulator and lacks the Dirac cone of graphene [34]. Hydrogena-
tion process can lead to the deterioration of graphene mechanical properties, such as Young’s
modulus and shear modulus due to membrane shrinkage and extensive membrane corrugation
caused by functionalization [35]. Also under study is silicane, the fully hydrogenated version
of silicene, which is a wide-band-gap semiconductor that is projected as a promising potential
candidate not only for nanoelectronic applications but also for hydrogen storage [36]. For
hydrogenated BN, the hybridized states of boron or nitrogen atoms change from sp2 into sp3.
Hydrogenation opens a band gap in graphene, but it reduces the band gap of BN sheets.
Silicane, the fully hydrogenated version of silicene, is a wide-band-gap semiconductor that
is projected as a promising potential candidate not only for nanoelectronic applications but
also for hydrogen storage [19].

Figure 8.8 Atomic structure of phosphorene
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8.3 Mechanical Assays

There are two basic approaches to investigate the mechanical performance of a nanomaterial:
experimental and computationalmodeling. The difference between these twomethodologies is
that modeling presents how materials should behave, experimentation presents how materials
do behave. Both methodologies face challenges when applying to study nanostructures. On
the one hand, experiments should be capable to identify, measure, and manage the different
variables on the system; on the other hand, modeling methods must deal with assumptions,
constraints and boundary conditions, unknowns, and the complexity of real material structure
and environments.While experimental approaches are necessary to characterize emerging 2D
materials, we concentrate primarily on computational methods herein. Due to the precise con-
trol of material geometries and boundary conditions, computationalmethods are advantageous
when exploring theoretical mechanistic models, requiring less assumptions and conditions
than experimental techniques. Ultimately, both models and experiments broadly contribute to
the understanding of the nanostructures behavior.

8.3.1 Experimental

Mechanical characterization through experimental methods represents a successful approach
to study the behavior and properties of 2D nanostructures.Various experimental techniques are
being used to image single layer or multilayers of 2D structures such as optical microscope,
atomic forcemicroscopy (AFM), scanning electronmicroscopy (SEM), and transmission elec-
tron microscopy (TEM). Probing the atomic structure of 2D materials is a demanding task
due to the small sample size and the choice of technique on the measurement requirements.
Often, a combination of two or more techniques completes the characterization of nanomate-
rials, allowing the fast estimation of parameters as thickness distribution and facilitating their
observation and identification [19].
One of the most used methods for carrying out experimental measurements of mechanical

properties in 2D nanostructures is scanning probe microscopy (SPM), which is a family of
methods that use a sharp probe of nanometer dimension to detect changes in the material
surface structure on the atomic scale [37]. SPM provides 3D real space images and enables
spatially localized measurements of structure and properties. AFM is one of the prominent
members of the SPM family, which can produce topographic images of a surface with atomic
resolution in all three dimensions, moreover, combining with appropriately designed attach-
ments, such as nanoindentation, and allowing its use in measuring the mechanical properties
such as Young’s modulus and hardness of various types of materials [38].
AFM has been used with multilayered graphene sheets in static deflection tests to measure

the effective spring constants [39]. Another approach was employed to probe graphene sheets
[5, 40], hBN [41], and monolayer MoS2 suspended over circular holes [42] (Figure 8.9),
which yielded the Young’s modulus, bending rigidity, and breaking strength by comparing
the experimental data to a continuum plate model [43]. The requirement that the material to be
suspended translates into a significant limitation because of the use of nanoindentationmethod
with some 2D nanostructures. The presence of a substrate, over which the nanostructure may
be either deposited or directly grown epitaxially (e.g., silicene over silver [44], graphdiyne
over copper [9]), makes it hard to separate the intrinsic mechanical properties of the nanolayer
from that of the substrate from the nanoindentation measurements [40].
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2D nanostructure

AFM probe

Substrate

Figure 8.9 Schematic of an indentation experimental setup showing a nanostructure on substrate,
suspended over open holes. The mechanical properties are probed by deforming and breaking the
resulting suspended free-standing sheet with an atomic force microscope (AFM)

Raman spectroscopy is a vibrational technique that provides access to information relating
to the lengths, strengths, and arrangements of chemical bonds in a material, but the method is
not highly sensitive to information such as chemical composition [40]. Raman technique uses
the interrogation of bond vibrations by optical spectroscopy and provides information about
crystallite size, the presence of sp2–sp3 hybridization, the introduction of chemical impurities,
the optical energy gap, elastic constants, defects, edge structure, strain, number of layers, and
mechanical and structural properties for single or multilayer structures, both freestanding or on
a substrate [45, 46]. Raman spectroscopy has been widely used in mechanical characterization
of graphene layers [40].
Other useful experimental technique with broad applications with 2D nanostructures is

TEM, in which a beam of electrons is transmitted through the sample, interacting with the
specimen as it passes through [47]. The scattering processes experienced by electrons dur-
ing their passage through the specimen determine the kind of information obtained, such as
the layer sizes, the elemental composition, the nature of crystallinity, and interlayer stacking
relationships [38, 48].

8.3.2 Computational

The advancement of computational and processing power in recent decades has rapidly paced
the theoretical investigations on various materials ranging from bulk to nanomaterials. Com-
putational techniques such as MD, DFT, and Monte Carlo simulations provide advantageous
understanding to elucidate and study the nanoscale phenomena. Moreover, computational
methods have become an indispensable tool to the investigation of material systems, comple-
menting the experimental analysis for conducting materials design and property prediction.
MD is a simulation technique that consists of numerically solving the classical equations of

motion for a group of atoms, in which the motion of each atom in the material is characterized
by its position, velocity, and acceleration. The molecular dynamic method encompasses five
basic steps: definition of initial conditions (initial temperature, number of particles, density,
time steps, etc.), identify initial positions and velocities of the system particles, integration
of Newton’s equations of motion, calculation of the force acting on every particle, and
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computation of the average of measured quantities. Each atom is considered as a classical
particle that obeys Newton’s laws of mechanics. The only physical law that is used to
simulate the dynamical behavior of the atoms is Newton’s law, along with a definition of how
atoms interact with each other. Those interactions are the so-called interatomic potentials or
force fields that describe attractive and repulsive forces in between pairs or larger groups of
atoms [49].
DFT, based on quantum theories of electronic structure, is currently the most commonly

employed quantum mechanics method, which has evolved into a powerful tool for comput-
ing electronic ground-state properties of a large number of nanomaterials. The entire field of
DFT method relies on the theorem that the ground-state energy of a many-electron system
is a unique and variational functional of the electron density, and this conceptual proposal is
implemented in a mathematical form to solve the Kohn–Sham (KS) equations [19]. We note
that, due to the system size constraints of DFT, in this chapter we focus on the MD approaches
to mechanical characterization of 2D materials, which are more versatile in implementation.
Being said, DFT and other quantum-level approaches have a degree of accuracy unattain-
able by the potential formulations of MD. Moreover, when analytical potentials are available,
the effect of various types of interactions can be investigated by switching off, or modifying,
the corresponding potential energy terms, being able to probe our understanding of the studied
problems. Being said, prudence is necessary when selecting any approach to characterize such
systems, with understanding of both the advantages and limitations of any method.

8.4 Mechanical Properties and Characterization

Atomistic simulations have proved to be a unique and powerful way to investigate the mechan-
ical properties of 2D systems at a very fundamental level, and provide a means to investigate
complex systems with unparalleled control and accuracy.MD has evolved as a suitable tool for
elucidating the atomisticmechanisms that control deformation at the nanoscale and for relating
this information to macroscopic material properties. Mechanistic behavior, function, and fail-
ure are directly linked to distinct atomisticmechanics and require atomistic andmolecular level
modeling as an indispensable tool for studying 2D materials [50]. The implementation of full
atomistic calculations of mechanical test cases by classical MD has been used successfully to
derive a simplified set of parameters to mechanically characterize monolayer systems such as
graphene, simple graphyne, and silicene, which are in good agreement with the experimen-
tal data as far as available. The atomistic-level characterization techniques described herein
are equally applicable to different structures and can be immediately applied to various 2D
material geometries.
One of the most logical approaches to characterize the mechanical properties and the

behavior of an atomistic system is to emulate the testing procedures and measurement of
the macroscale material, including tensile and compression tests, three-point bending tests,
torsion, and so on. For example, a small model system can be constructed as a computational
“test specimen” with direct control over the loading and boundary conditions, from which
the specimen can be subject to various testing procedures and mechanical properties directly
determined. The dominance of specific mechanisms is controlled by geometrical parameters,
the chemical nature of the molecular interactions, as well as the structural arrangement. Such
response-based approaches are advantageous when there is inherent difficulty in defining
traditional elastic “properties” such as bending stiffness or Young’s modulus.
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8.4.1 Defining Stress

To obtain the maximum strength or ultimate stress (along with corresponding extensibility or
ultimate strain) for different 2D nanostructures, the most direct approach is to apply a uniaxial
tensile strain along the representative directions in the material, analogous to a traditional
macroscopic tensile coupon test. One just need to extract the corresponding stress though
atomistic measures – this is typically accomplished using virial stress (following the virial
theorem of Classius, 1870, which relates the average over time of the total kinetic energy of a
stable system of constant particles bound by potential forces). The virial stress is commonly
used to find the macroscopic (continuum) stress in MD computations [51, 52].
Mechanical stress is the measure of the internal forces acting within a deformable body

and is inherently a continuum concept. In the molecular interpretation there is no continuous
deformable body, but a set of discrete atoms. To reconcile this fact, we fundamentally define
material stress as the change in free energy density is a function of material strain, or

𝜎ij =
𝜕u
𝜕𝜀ij

(8.1)

where 𝜎ij is the component of stress induced by a strain, 𝜀ij, and the free energy density, u, is
defined as the energy per unit volume (the indices i and j refer to the basic vectors of an arbitrary
coordinate system). The formulation of stress in terms of energy landscape is convenient, as
it is also a common description of atomistic systems in terms of potential energy functions or
force fields, where

u = 1
Ω
∑

a∈Ω
𝜙a(𝜒) (8.2)

in which Ω is the considered system volume, a the atoms within that volume, and 𝜙a the
potential energy function dependent on some state variable 𝜒 (the total strain energyU = uΩ).
The continuum stress interpretation of atomic force fields is important, allowing the intensity
and nature of internal interactions in materials to be measured and equated with macroscopic
metrics (such as Young’s modulus).
In order to obtain the atomistic–molecular counterpart of the stress tensor (as defined in Eq.

(8.1)), we consider a small sample volume, Ω, of an atomistic system.1 This sample volume
containsN atoms, described by positions r(a)i for a ∈ 1, … , N. The componentsof the position

vector can be denoted by i = 1, 2, 3 in 3D space (e.g., r(a)1 , r(a)2 , r(a)3 ). The number of atoms is
large enough to allow an adequate definition of elastic field (stress and strain) in the region. The
virial stress approach allows us to determine the components of the macroscopic stress tensor
by considering both the kinetic energy of the atoms and the interatomistic forces through the
virial components, Sij, in the representative volume Ω, where

Sij =
∑

a∈Ω

[
−m(a)v(a)i v(a)j + 1

2

∑
b∈Ω

((
r(a)i − r(b)i

)
F(ab)
j

)]
(8.3)

which generates the six components of the symmetric stress–volume tensor, Sij, where m(a)

is the mass of particle “a,” v(a)i and v(a)j are the velocities in the ith and jth vector component

basis, r(a)i − r(b)i denotes the distance between particle “a” and atom “b” along the ith vector

component, while F(ab)
j is the force on particle “a” exerted by particle “b” along the jth vector

1 Assumed elastic and following the derived continuum laws as Ω → ∞.
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component (defined by the interatomistic potential, 𝜙a(𝜒)). We observe that the velocity vi of
each atom is composed by a term corresponding to an effective macroscopic drift. As a sum
of both the kinetic energy and directional force of the potential, the virial can be (colloquially)
considered a kind of “directional strain energy,” akin to the strain energy, U.
To reduce random fluctuations, in addition to averaging over the representative spatial

volume, Ω, it is recommended to average further over small time interval around the desired
time of the stress. We introduce the time average:

⟨f (t)⟩ = lim𝜏→∞

[
1
𝜏 ∫

𝜏

0
f (t) dt

]
(8.4)

The total stress can be calculated as

𝜎ij = ⟨Sij⟩Ω−1 (8.5)

We note that the virial stress defined as in Eq. (8.5) is equivalent to Cauchy stress only in
the framework of linear approximation. However, the virial stress can easily be calculated
regardless of nonlinearity, large strains, and/or failure/fracture response, dependent on the
fidelity of the atomistic potentials.
One primary advantage of the virial stress approach is that it can shed insight into the cou-

pling of deformation modes and stress distributions in a molecular system, by simultaneously
and directly evaluating all components of stress. By calculating the virial stress, any direct
force–extension data (e.g., from an applied spring load) can be directly compared to the virial
stress and strain along the axis of extension. If there is limited coupling (e.g., no shear modes
under pure tension), the results of the virial stress–strain and the applied load–displacement
should agree both qualitatively and quantitatively. Disagreement between the axial stress
and “force over area” calculations can indicate either the dominance or coupling with a
second-order mode of deformation, such as shearing or twist. Moreover, while per atom
virial stresses may be inappropriate (in terms of an equivalence to the continuum interpretation
of stress), they can be used to map a virial stress field and indicate potential localizations of
high force and failure events. This can shed great insight into heterogeneous material systems
to indicate any potential “weak links” [50].
Virial stress combined with explicitly applied loads and displacements are powerful tools

in the determination of the mechanical properties of complex molecular systems. Ultimately,
they rely on fundamental stress–strain relationships formulated by continuum theory, and
effectively “translate” simulation results into representative mechanical characterization.
However, some systems require a more fundamental interpretation of mechanical behavior
when the system is unsuitable for applied loads or prescribed boundary conditions. For such
systems, fundamental energy methods can be prescribed [50].

8.4.2 Uniaxial Stress, Plane Stress, and Plane Strain

The exemplary “strength” of 2D materials is an attractive and ubiquitous indicator of their
potential in nanotechnology. Indeed, defect-free graphene is said to have an intrinsic strength
high than any other material. As such, we first focus on the characterization of ultimate stress.
Similar to macroscale counterparts, material strength is most commonly characterized by
simply loading a representative sample until failure. Simulated uniaxial tensile tests can be
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applied to a 2D material sheet by fixing the boundaries in the desired direction and deforming
a unit cell by stretching along tested direction at a uniform rate (thereby inducing a uniform
strain rate). It is noted that the fixed edges are free to move orthogonal to the applied strain, and
measurement of transverse deformation/contraction can thus be used to determine Poisson’s
ratio, 𝜈. Free edge and nonperiodic boundary conditions result in a sheet of finite size, enabling
size-dependent studies if desired. Due to the relatively high ratio of edge atoms to bulk atoms
in 2D materials, it has been shown that limiting the width of the system (e.g., nanosheets vs
nanoribbons) can greatly affect the mechanical response [53].
As stress is fundamentally a 3D concept (undergraduates are often introduced to stress in

terms of a force (1D vector) acting normal to a plane (2D surface), necessitating 3D), what is
the stress interpretation of an ideal 2D system? In continuum mechanics, a material is said to
be under plane stress if the stress vector is zero across a particular surface. When that situation
occurs over an entire element of a structure (as is often the case for thin plates), the stress anal-
ysis is considerably simplified, as the stress state can be represented by a tensor of dimension
two. A related notion, plane strain, is often applicable to very thick members, whereby strain
is limited to zero in a direction, but stress is allowed. Two-dimensional materials represent a
combination of both plane stress and plane strain, as neither stress nor strain can possibly be
induced out of plane. To illustrate, first, we consider the uniaxial extension of an elastic system.
If the extension is in the x-direction, and the material is presumed isotropic and homogeneous
and within its elastic limit, then Hooke’s law applies

𝜎x = E𝜀x (8.6)

where 𝜎x is the stress, 𝜀x the strain, and E is the Young’s modulus (e.g., uniaxial stiffness).
Ultimate stress or strength can easily be taken as the maximum stress experienced prior to
system failure during MD simulation.
Realizing, however, that extensions/strains in other directions are proportional to Poisson’s

ratio, 𝜈ij =−𝜀i∕𝜀j, the strains in three dimensions can be represented as

⎡⎢⎢⎣
𝜀x
𝜀y
𝜀z

⎤⎥⎥⎦ =
1
E

⎡⎢⎢⎣
1

−𝜈yx
−𝜈zx

⎤⎥⎥⎦ 𝜎x (8.7)

Similar relationships apply for stress in the other two directions, so we obtain the equations
that apply to any 3D stress problem where axial strains are only considered:

⎡⎢⎢⎣
𝜀x
𝜀y
𝜀z

⎤⎥⎥⎦ =
1
E

⎡⎢⎢⎣
1 −𝜈xy −𝜈xz

−𝜈yx 1 −𝜈yz
−𝜈zx −𝜈zy 1

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜎x
𝜎y
𝜎z

⎤⎥⎥⎦ (8.8a)

Typically, for the case of plane stress, the condition that 𝜎z = 0 would be applied, whereas
for plane strain, the condition that 𝜀z = 0 would be applied. These conditions result in the
plane stress and plane strain formulations that can be found in any traditional elasticity text.
However, for 2D materials, we can apply both conditions simultaneously, such that

⎡⎢⎢⎣
𝜀x
𝜀y
0

⎤⎥⎥⎦ =
1
E

⎡⎢⎢⎣
1 −𝜈xy −𝜈xz

−𝜈yx 1 −𝜈yz
−𝜈zx −𝜈zy 1

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜎x
𝜎y
0

⎤⎥⎥⎦ (8.8b)
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which results in the equations:

𝜀x =
1
E
(𝜎x − 𝜈xy𝜎y) (8.9a)

𝜀y =
1
E
(𝜎y − 𝜈yx𝜎x) (8.9b)

0 = 1
E
(−𝜈zx𝜎x − 𝜈zy𝜎y) (8.9c)

The first two equations are identical to the equations of plane stress, which can be rearranged
such that: [

𝜎x
𝜎y

]
= E

1 − 𝜈2

[
1 𝜈xy
𝜈yx 1

] [
𝜀x
𝜀y

]
(8.10)

The final equation above seems to imply that 𝜎x = −𝜎y, which does not seem reasonable (e.g.,
stretching in one direction does not cause graphene or similar 2D material to undergo equiv-
alent compression in the other direction). However, we realize that both Poisson ratios are in
terms of the component “z.” Since 𝜈ij = −𝜀i∕𝜀j where 𝜀z = 0, then vzx = vzy = 0, and

0 = 1
E
(−𝜈zx𝜎x − 𝜈zy𝜎y) =

1
E
(−(0)𝜎x − (0)𝜎y) (8.11)

So 2D materials can be represented by classical plane stress conditions while neglecting and
strain in the third direction. Introducing shear contributions and assuming, in plane, that 𝜈xy =
𝜈yx = 𝜈, results in ⎡⎢⎢⎣

𝜎x
𝜎y
𝜏xy

⎤⎥⎥⎦ =
E

1 − 𝜈2

⎡⎢⎢⎣
1 𝜈 0
𝜈 1 0
0 0 1

2
(1 − 𝜈)

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜀x
𝜀y
𝛾xy

⎤⎥⎥⎦ (8.12)

While it may be simple to state that 2D materials can be considered plane stress, it is critical
to understand that the underlying assumptions are different – the resulting formulation is just
a convenient interpretation.
With these formulations, multiaxial stress/strain conditions can be applied to extract a

number of critical properties via the calculation of virial stress as discussed in Section 8.4.1.
In terms of uniaxial strength (ultimate stress) or even biaxial strength (when 𝜎x = 𝜎y), the
maximum value is taken from the test simulation.

8.4.3 Stiffness

Beyond strength, planar stiffness or axial rigidity is a key mechanical property of 2D mate-
rials. Quite different approaches have been employed to derive and measure the stiffness of
2D materials [16]. From a 3D continuum mechanics approach, the stiffness coefficients are
defined by

Cijkl =
𝜕2u

𝜕𝜀ij𝜕𝜀kl
(8.13)

where u is the potential energy density of the system, and 𝜀ij and 𝜀kl are strains along different
orientations. Again, for details, the reader is directed to any classical elasticity text. We note
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the relationship with Eq. (8.1) resulting in

Cijkl =
𝜕

𝜕𝜀kl
𝜎ij (8.14)

which leads to the colloquial (but useful) definition that the stiffness coefficients are simply
the derivative of the stress–strain relation. For uniaxial conditions, as described earlier, the
Young’s modulus (E) can be defined as

E = Cxxxx =
𝜕2u
𝜕𝜀xx

2
= 𝜕2u

𝜕𝜀x
2

(8.15)

where again u is the strain energy density and 𝜀x the strain in the uniaxial direction. Note
that, in Eq. (8.15), there is no need to calculate any stress quantities – merely the total strain
energy. This is beneficial in energetic or ab initio approaches, such as the aforementionedDFT
approach, which does neither applies potentials nor derives forces, negating the virial stress.
Typically, the strain energy density u is defined as the total energy U per volume V, or

u = U∕V . For 2D materials, however, the strain energy can be defined per unit area, as there
is no definitive “thickness.” As such, the 2D modulus can be defined as

E2D = 1
A0

𝜕2U(𝜀)
𝜕𝜀2

2
(8.16)

where U is the total energy of a 2D system of finite area A0. The ambiguity for the thickness
of monoatomic crystal structures such as graphene and other 2D nanomaterials has been
discussed in a previous study [54], and due to the buckled structure of some 2D nanomaterials
such as silicene, it is difficult to theoretically assign. This situation has been discussed in
previous studies [16], suggesting the stress and elastic moduli of monolayer systems be
reported in force per unit length (N/m) rather than force per unit area (N/m2 or Pa), consistent
with Eq. (8.15). As such, the in-plane stiffness and in-plane stress (maximum force per unit
length) are more accurately used to represent the stiffness and strength of the structure, for a
more apt comparison to other 2D crystals where 𝜎 and 𝜀 are the stress and strain [54, 55]. Note
that the 2D modulus can be derived for any thin 2D-like system, by scaling the traditional
modulus by the height of the system, or E2D = Eh.
Since, if using MD approaches, stress can be calculated, we can alternatively use the

stress–strain relation to determine uniaxial moduli. The modulus/stiffness can be then
calculated by

E =
𝜕𝜎x

𝜕𝜀x
(8.17)

where𝜎x and 𝜀x are the stress and strain, and the subscript “x” indicates the direction of loading.
Thus, a tangential fitting of the stress–strain response of a 2Dmaterial will indicate the stiffness
at a particular strain value. A linear fit of the initial small deformation regime is typically
associated with the Young’s modulus E.
A careful scrutiny between Eqs (8.14) and (8.17) indicates that they may not result in the

same quantity. If using viral stress, the definition of 𝜎x only considers components of force
in the x-direction, thus energetic components in other directions may be omitted from the
calculation. Coupling of deformation mechanisms may increase or decrease the strain energy
density, u, without emerging in the 𝜎x calculation. Thus, both approaches are necessary to
reveal any atomistic mechanisms that may not be apparent a prioriwhen calculating stiffness.
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Following the simple derivation of Young’s modulus as indicated by Eq. (8.17), other clas-
sical mechanical properties such as the shear modulus and bulk modulus can be calculated in
a similar manner. We first consider Hooke’s law in shear:

𝜏 = G𝛾 (8.18)

where the shear stress 𝜏 is related to the shear strain 𝛾 via the shear modulusG. The continuum
interpretation of the shear modulus can be stated as

G = Cxyxy =
𝜕2u
𝜕𝜀xy

2
= 𝜕

𝜕𝜀xy
𝜎xy =

𝜕𝜏xy

𝜕𝛾xy
(8.19)

where 𝜎xy = 𝜏xy. Subjecting a system to simple shear strain, 𝛾xy, we can again use tangential
or linear fits to attained data to derive a shear modulus. Of note, subjecting shear to 2D sys-
tem commonly results in out-of-plane buckling due to the compressive response, limiting the
applied shear strain range. In effect, the shear stiffness is relatively easy to determine in the
small deformation regime, but the shear strength is more difficult to achieve due to nonlinear
geometric effects.
Finally, the bulk modulus can be determined via a biaxial straining of a 2D system. While

bulk modulus K typically relates hydrostatic stress to volumetric change for 2D systems, the
equivalent K2D related biaxial stress to areal change defined by

𝜎biaxial = K2D
ΔA
A0

(8.20)

where ΔA is the change in area, A0 the initial area, and 𝜎biaxial is the stress simultaneously
applied in the x- and y-directions.

8.4.4 Effect of Bond Density

The remarkable strength and stiffness are commonly considered a function of their limited
“thickness,” as all chemical bonds are limited in-plane, and thus appear “stronger” in that
direction. Thus, the strength is merely a result of a higher, planar bond density due to 2D
structures. This idea can be explored if one could vary the bond density of a structure, while
the geometry remains the same. Theoretically, this is possible in extended graphynes.
We have established that the strain energy and deformation of graphene or silicene sheets

can be described by continuum elasticity theory [56–58], and as such the same assumptions
are applied to graphynes. Likewise, for the mechanical characterization, it is assumed that
under small deformation, graphyne can be approximated as a linear elastic material. Previous
studies have reported a continuous degradation of modulus with the introduction of acetylene
links (n) from graphyne (n= 1) to graphtetrayne (n= 4). The relatively smooth degradation as
a function of bond density through n can be extended and predicted via a simple spring model
formulation. The springs model can be used to predict the mechanical properties of graphynes
with arbitrarily long acetylenic linkages, considering the graphyne system as a network of
springs (see Figure 8.3). Such an elastic approximation (similar to a truss model) has been
introduced for graphene [59] and carbon nanotubes [60]. The stiffness of a single segment can
be written as

K =
[
1
k0

+ n
k

]−1
(8.21)
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where k0 is the stiffness of the aromatic group and k is the stiffness of a single acetylene link.
If we presume that k0 ≫ k (e.g., deformation occurs predominately in the link, supported by
previous MD results [61, 62], then k0

−1 →0, such that

K ≅
[n
k

]−1
≅ k

n
(8.22)

We associate this linear spring stiffness to an effective modulus, where K=EA0/L (for the
2D perspective, EA0 can be replaced with E2Db, where b is the planar width of the system).
The force required for unit strain can be written as

KL = EA0 (8.23)

We assume that strain predominately occurs along the acetylenic links (due to k0 ≫ k; see
Figure 8.3(a), such that L=Ln = nL0, where L0 is the summed distance of a carbon–carbon
single and carbon–carbon triple bond. Thus,

KL = KLn = KnL0 = kL0 = constant (8.24)

Thus, similar to adding equivalent springs in series, the material behavior is deemed
constant, regardless of the number of acetylene links. The effective area per spring, however,
changes as a function of n. The associated cross-sectional area per link can be represented
by An

cross = lnt, where t is the effective thickness of the graphyne plane (taken as the van der
Waals spacing, t= 3.2Å) and ln the equivalent length of the weighted area, and ln ∝ a, the
lattice spacing (see Figure 8.10(a) and (b)). From Eqs (8.23) and (8.24), it follows that Yn
An

cross = constant, and thus

En = E1

(
a1
an

)
(8.25)

In general, En ∝ Can
−1, where the constant here is fitted by the parameters of graphyne

(n= 1), for example,C=Y1a1. The simple spring formulation can be used to predict the elastic
modulus of arbitrary graph-n-yne and shows that the stiffness decreases as the bond density
(through n) decreases.

8.4.5 Bending Rigidity

Theoretical studies and synthesis [63, 64] have suggested that bending stiffness of monolayer
graphene is critical in attaining the structural stability and morphology of graphene sheets,
which in turn could have important impacts on their electronic properties. This would similarly
hold for other 2D crystal structures such as silicene. Due to the relative flexibility and single
atom thickness of 2Dmonolayermaterials, a mechanical bending test is difficult to implement.
It is very difficult to apply a bending moment directly to such structures as local bending
on a membrane structure would induce local curvature only. To circumvent this issue, the
isotropic bending modulus is determined by 1D pure bending experiments using molecular
statics in which curvature is induced (and fixed) prior to energy minimization, similar to pre-
vious coarse-grain [65] and full atomistic [7, 57, 66] investigations. To calculate the bending
modulus of 2D monolayer materials, a rectangular sheet is bent into a section of a cylinder
with constant radius of curvature throughout the basal plane (Figure 8.11(b)). The neutral



Trim Size: 170mm x 244mm Silvestre c08.tex V3 - 11/16/2015 11:13 A.M. Page 220�

� �

�

220 Advanced Computational Nanomechanics

k0

L0

Ln = nL0

k

(1) (2) (n)

k k

Effective area per

“spring”

(a)

(b)

ln

½a

Figure 8.10 Simple spring–network model representation for scaling law. (a) Serial spring representa-
tion for the acetylene links. (b) The linear spring stiffness can be associated to an effective modulus via
an effective cross-sectional area

plane for pure bending is parallel to the layer and passes through the centroid of the bending
cross section.
The edges of the bent sheet are kept fixed and the bulk of the sheet is allowed to relax subject

via low-temperature equilibrium and energy minimization. To avoid boundary effects at the
fixed edges, the elastic energy is only considered for the interior portion of the sheet. At finite
temperatures, graphene, graphyne, and silicene exhibit ripples and undulations out-of-plane
(Figure 8.11(a)). As such, the material structure deviates from the ideal curvature initially
imposed and the derived stiffness can be considered the effective bending modulus. However,
both the low-temperature equilibrium andminimization process limit the observed ripples, and
the system curvature is maintained.
The bending modulus is obtained by curve fitting with energy versus curvature data points,

using the following expression for elastic bending energy

U = 1
2
D𝜅2 (8.26)

where U is the system strain energy per unit basal plane area (eV/nm2), D is the bending
modulus per unit width (eV), and 𝜅 is the prescribed beam curvature. A range of curvature is
imposed on the system and the minimized energies are plotted versus 𝜅 (Figure 8.11(c)).
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Figure 8.11 (a) Stable graphyne structure after minimization and equilibration of 0.5 ns at a tempera-
ture of 300K. (b) Schematic illustration of a 2D silicene sheet bended with an imposed radius of curvature
𝜅 = 1/r. (c) Energy versus curvature for a silicene sheet with 95% confidence bounds

We note that the bending rigidity, D, is equivalent in function to the bending rigidity of
a classical beam, EI, where E is the Young’s modulus of the material and I is the second
area moment of inertia. The inertia is involved due to the assumption that (1) a neutral axis
exists in the cross section of the beam and (2) the section is in both tension and compression,
changing once crossing the neutral axis. This core assumption, however, is meaningless for
monoatomistically thin structures – is a single carbon atom, once bent in a graphene sheet,
in compression or tension? The question is moot. The resistance to bending does not come
from inertia effects, but rather due to electron orbital deformation and overlap. This, in turn,
causes an energy increase and bending “rigidity.” However, for multilayer systems (bilayer
and greater), it has been shown that the bending modulus is proportional to the cube of the
height of the cross section (D ∝ Eh3), in agreement with continuum interpretations [7, 65].
Indeed, once the system has “thickness,” a neutral axis can be assumed and atoms can be in
compression or tension accordingly.Note that this interpretation does not change the definition
or utilization of D in the above-mentioned equation.
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8.4.6 Adhesion

Due to the relatively high ratio of surface area to mass (e.g., specific surface area) and the
propensity for surface interaction, the resulting adhesion plays an important role in many
important technological applications of 2D materials. Graphene and other 2D materials,
structures, and devices are increasingly influenced by surface forces due to the weak vdW
interactions, especially as their size moves into the nanometer range. This occurs because
the materials are often separated by small (interlayer) distances and are sensitive to the
operant range of surface forces, and the structural stiffness decreases as its size decreases. For
example, adhesive interactions are critical to nanomechanical devices [67] such as graphene
switches – actuated electrostatically to bring them into, or near, contact with an electrode,
while van der Waals forces can permit the release of the switch [68, 69]. Whether 2D mate-
rials are a promising nanoelectronics material depends predominantly on the nanostructure’s
mechanical integrity and ability to integrate or to adhere to electronic substrates.
Moreover, one of the most utilized fabrication methods of 2D materials involves CVD

growth on an appropriate substrate followed by batch transferring it from the host substrate
to a functional target material for device applications [70]. Another widely used technique
for exfoliation of few- and mono-layered graphene is based on tearing-off graphene layers
using adhesive tape [1, 71]. In both cases, the understanding of adhesion to both substrate
and target material plays a crucial role in this process. The engineering of the peeling, stamp-
ing, and other fabrication processes also depends on the adhesion of the 2D layers. There is,
therefore, an urgent need for experimental methods to characterize the mechanical properties
and adhesion behavior.
It is well demonstrated that adhesion energies for different crystallographic stacking con-

figurations for 2D materials such as graphene and BN show that the interlayer bonding and
adhesion are due to the long-range van der Waals (vdW) forces [72]. In MD simulation, the
vdW interaction is typically represented by a Lennard–Jones function – a mathematically
simple model that approximates the interaction between a pair of neutral atoms andmolecules.
A Lennard–Jones 12:6 function is given as

𝜙LJ = 4𝜀LJ

[(𝜎LJ
r

)12
−
(𝜎LJ

r

)6
]

(8.27)

where 𝜀LJ is the energetic depth of the potential well, 𝜎LJ is the finite distance at which the
interparticle potential is zero, and r is the distance between the particles. The Lennard–Jones
potential is a relatively good approximation to model dispersion and overlap interactions in
molecular models. Applied to a system of 2D materials (e.g., a bilayer of two sheets), the
interaction between the sheets at equilibrium is directly proportional to both the number of
atoms, n, and the energy per atom, 𝜀LJ. It follows that the adhesion energy will scale with the
area A of the sheets (assuming that the areal atomistic density, 𝜌A = n∕A, is constant). Thus,
one can conclude that the adhesion energy, Uadhesion, is proportional to both 𝜀LJ and A. Note
that Uadhesion ≠ n𝜀LJ due to the long-range multineighbor interaction of the vdW forces, but
Uadhesion ∝ 𝜀LJ.
Using DFT or MD methods, the adhesion energy can be easily determined by direct mea-

surement or by fitting the energy landscape. Direct measurement simply quantifies the energy
change, ΔU, between an adhered system and a detached system of two sheets, sheet with
substrate, sheet with molecule, and so on. Two simulations are required – one in which the 2D
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sheet is detached and beyond the interaction range of the vdW forces (r → ∞), and the other
in which the 2D sheet is adhered to the target at equilibrium (r = r0). The energy change can
be calculated by the simple difference of minimized system energies, where

Uadhesion = ΔU = U(r → ∞) − U(r = r0) (8.28)

If the area of 2D material is known, the adhesion energy can be calculated per area where

𝛾 =
Uadhesion

A0
(8.29)

Beyond the simple strength of adhesion, the entire energy landscape during separation may
be required to indicate the decay of interaction and shed light on phenomena such as elec-
trostatic screening. Again, the simulation process is relatively trivial – instead of a two-point
difference of energy, from r = r0 to r → ∞, the energy is tracked in discrete steps, such that
Uadhesion = f (r) can be plotted, for example, the energy landscape. Variations in separation
procedure (e.g., shearing effects, introduction of nanoparticles) can explore different adhesion
phenomena.Once the energy landscape is determined, statistical fitting methods can be used to
describe the adhesion behavior. Energy can be scaled such that when r → ∞,Uadhesion(r) → 0,
and in such a case:

𝛾 =
min(Uadhesion(r))

A0
(8.30)

Using simulation methods to determine adhesion strength is trivial, as the simulation
interactions are formulated using potential energies and the values of any atom at any time
can be extracted. This is not the case for experimental measures – there is no method to
directly “measure” the potential energy of a single atom when adhered to a substrate. Rather,
indirect measurements may be made exploiting the presumed elastic and adhesion behavior
of a membrane-like system. Many ingenious methods have been derived by researchers in the
field. Here, for brevity, we discuss two examples.
Zong et al. developed a technique to characterize adhesion of monolayered/multilayered

graphene sheets on silicon wafer [73]. Nanoparticles trapped at graphene–silicon interface
act as point wedges to support axisymmetric blisters (see Figure 8.12(a)–(c)). Local adhesion
strength is found by measuring the particle height and blister radius using a scanning electron
microscope. It was assumed that graphene behaved as a flexible membrane with negligible
flexural rigidity. Using a continuum formulation, a governing equation was derived analogous
to that of a thin membrane clamped at the periphery and being transversely loaded at the
center [74]. At equilibrium, the blister contracts to a radius a and the adhesion energy can be
calculated by

𝛾 = Eh
( w
2a

)4
(8.31)

whereE is the Young’smodulus of the graphene, h the effective height of the multilayers (thus,
“Eh” representing the 2D modulus as previously discussed), w the height of the blister, and a
is the radius of the blister.
Alternatively, Lu and Dunn considered a 2D membrane that is adhered to a substrate over

a cavity by van der Waals forces [75]. In the ground state (absence of an external load),
the membrane adheres to the sidewalls over some distance, S, and is stretched flat between the
walls over a distance L. This adhered length on the sidewall S and the tension in the membrane
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(a)

(b)

(c)
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h W
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Figure 8.12 Nanoparticles trapped in a circular blister at graphene–silicon interface. (a) SEM image,
where the trapped particles appear dark. (b) 3D representation. (c) Blister model sketch. [73]

are determined by the balance of surface energy due to the van der Waals forces on the side-
walls and elastic energy associated with membrane stretching. The potential energy of the
system can be formulated [75], and minimizing the potential energy yields the equilibrium
length:

S = 𝛾
L(1 − 𝜈2)

2Eh
(8.32)

again,Eh appearing as the 2Dmodulus, L is the width of the cavity, and 𝜈 is the Poisson’s ratio.
If the equilibrium length can be measured, the adhesion energy can be calculated. The critical
assumptions in indirect experimental measurement of adhesion strength typically lie in the
selection of a continuum approximation (e.g., membrane-like behavior for both the described
approaches). Typically, such models are further validated against molecular simulation (if
possible) to indicate any deviations due to atomistic phenomenal.
Adhesion is critical to the multilayered 2D structures (e.g., graphene–graphene), het-

erogeneous stacked layers (e.g., graphene–BN [76]), 2D materials on substrates (e.g.,
graphdiyne on copper), self-folded geometries (see Section 8.4.7), among others. Combined



Trim Size: 170mm x 244mm Silvestre c08.tex V3 - 11/16/2015 11:13 A.M. Page 225�

� �

�

Mechanical Characterization of 2D Nanomaterials and Composites 225

with high flexibility, 2D materials behave as ultimate thin membranes, and with adhesion
conform more closely to a surface than any other solid. This provides new opportunities to
study solid–solid surface interactions including the effects of even the smoothest surface
topographies and potentially the nature of van der Waals and Casimir forces. The interplay
of elastic and adhesion energies is shown to lead to stacking disorder and moiré structures.
The dispersion, absolute band gaps, and low-energy electronic states are also dependent on
the resulting stacked/adhered structures [76], once again opening yet another potential design
variable.

8.4.7 Self-Adhesion and Folding

One of the consequences of a propensity of 2D layers to adhere in a multilayer manner is that,
upon folding, they may also self-adhere. Although planar sheets are the most common form of
such materials, scrolled and folded morphologies have attracted great interest because of their
potential properties [77]. Like a sticky piece of paper folded on itself, the relative flexibility
of 2D materials opens up a new field of topological possibilities and the so-called nano- or
meso-origami. Indeed, the folding of paper and fabrics has been used for millennia to achieve
enhanced articulation, curvature, and visual appeal for intrinsically flat, 2D materials [78]. For
2D materials, folding may transform it to complex shapes with new and distinct properties,
opening up an entirely new paradigm of material’s design.
From a mechanical perspective, recent studies show that suspended graphene sheets can

fold and form folded edges due to van der Waals (vdW) interaction [65, 79–81]. The folded
edges of graphene sheets show racket shapes with structures similar to carbon nanotube walls
(Figure 8.13(a)–(d)),which can have strong influence on the electronic andmagnetic properties
of graphene [82–84]. The folded racket-shape graphene consists of a curved region of length
2L and a flat region of length L0. The total length of the folded system is thus Ltotal = 2L +
2L0. Note the adhered layers still maintain an equilibrium interlayer distance, congruent with
the associated vdW adhesion. Clearly, the configuration of the folded graphene sheet results
from the competition between adhesion energy Uadhesion in the flat region and bending energy
Ubending in the curved region. This is a key behavior that also dictates the minimal crease size
in multiple folded [79, 85] or crumpled 2Dmaterials [86–88]. If the flat graphene is considered
as the ground state, the energy of the folded graphene sheet is simply:

Utotal = Ubending + Uadhesion (8.33)

The adhesion energy denotes the binding energy per unit area of graphene, and the bending
energy is due to the necessary imposed curvature. The adhesion energy can be expressed as
Uadhesion = −𝛾L0 with 𝛾 denoting the binding energy per unit area of graphene (as per the
previous section, 𝛾 ∝ 𝜀LJ). In terms of the curved length:

Utotal(L) = Ubending − 𝛾

(1
2
Ltotal − L

)
(8.34)

Two cases arise from this simple relation:

1. If the total length of graphene is too short, the total energy Utotal > 0, the resistance from
the curved region can overcome the adhesion from the flat region, and therefore the folded
configuration is unstable and can unfold.



Trim Size: 170mm x 244mm Silvestre c08.tex V3 - 11/16/2015 11:13 A.M. Page 226�

� �

�

226 Advanced Computational Nanomechanics

(c) (d)

L

x

L0

d

y

(b)

(a)

Figure 8.13 Folded configurations of graphene sheet. (a) Schematic of a folded single-layer graphene.
(b) Flat state and (c) folded configuration of monolayer graphene from MD model. (d) Enlarged view of
the folded graphene edge. [79, 85]

2. If the total length of graphene is long enough, the total energy Utotal < 0, the adhesion
energy over the flat region exceeds the resistance from the curved region, and therefore the
folded graphene is energetically preferred and stable.

Obviously, there exists a critical length Lcritical such that Utotal = 0, which separates the stable
and the unstable folded configurations of graphene.
A recent study by Cranford et al. [65] established a small deformation mechanics model to

reveal the critical folding length of multilayered graphene sheets. Modeling the folded length
of the graphene sheet as two symmetric linear elastic beams, the bending energy per unit length
can be defined as

Ubending ≅ 2Dmulti ∫

L

0

(
d2u
dx2

)2

dx (8.35)

where Dmulti is the bending stiffness of a multilayer system (per unit width) and u(x) is the
presumed beam deflection. Applying the Euler–Bernoulli beam equation to derive u(x) with
associated small deformationboundaryconditions, the total energy of the system per unitwidth
can be expressed as

Utotal(L) =
2𝜋2

L
Dmulti − 𝛾

(1
2
Ltotal − L

)
(8.36)

Through minimization of the above with respect to L, we find

Lcritical = 𝜋

√
2Dmulti

𝛾
(8.37)
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While approximated with small deformation assumptions, the above relation was validated
with simulations of single-layer graphene and multilayer systems (up to 10 layers) with little
appreciable error [65]. As predicted by Eq. (8.37), the folded length of the graphene sheet is
proportional to the square root of the bending stiffness. It is also noted that the total length
of the graphene, Ltotal, must be such that a folded confirmation is energetically favorable (i.e.,|Uadhesion| > |Ubending|), but does not affect the critical folded length (however, the total length
does result in a change in the absolute value of the energyminima). However, predicted shapes
of the folded graphene edges are not accurately described by the above formulation, partly
because small deformation models cannot accurately predict the shapes of folded graphene
edges.Meng et al. [79] developed a finite deformation theoretical model to study the folding of
single-layer graphene, which can accurately predict not only the critical length of single-layer
graphene folding but also the shape of the folded edge. In a follow-up study, Meng et al. [80]
also exploredmultilayered graphene-foldedstructures, using a similar finite deformation beam
theory approach. For both single- and multilayered racket shapes, the deformed geometry of
the sheets can be completely described by two quantities, 𝜅0 and 𝜅1, defined by the Cartesian
coordinates of the curved region of the middle plane under curvature (e.g., the neutral axis in
classical beam theory). The bending energy in the racket-shaped curved region, Ubending, can
be obtained by a first-order approximation as [79, 80]:

Ubending = 2Dmulti ∫

𝛼

0

√
𝜅2
0 − (𝜅2

1 − 𝜅2
0 ) sin 𝜃d𝜃 + Dmulti ∫

𝜋

2

0

√
𝜅2
0 + (𝜅2

1 − 𝜅2
0 ) sin 𝜃d𝜃

(8.38)

where Dmulti is the bending stiffness of the multilayer graphene, 𝛼 = sin−1(𝜅2
0∕𝜅

2
1 − 𝜅2

0 ), and
the governing equations for 𝜅0 and 𝜅1 can be solved numerically [79], leading to the numerical
solution forUbending. The total energy of the folded/adhered graphene sheet is still equal to Eq.
(8.38), with a more complex (and accurate) term substituted for Ubending. Minimization of the
total energy can then give a precise solution to multilayer folding via numerical methods. For
brevity, complete solution details can be found in the original works by Meng et al. [79, 80].
Beyond racket-type folding, other self-adhering and folding phenomena has been investi-

gated in a similar mechanistic manner, including self-scrolling graphene [89, 90], nanoscrolls
with carbon nanotubes [91, 92], graphene peeling [7, 93], surface crumpling [87], surface
folding [94], and self-opening capsules [95, 96], to name a few. We note that the energy
balance approach described here does not consider an external energy source, which can be
used as control mechanisms. Indeed, mechanical stimulation can help initiate self-folding and
overcome energy barriers [97] or, alternatively, trigger unfolding [77] depending on system
stability. Also complicating matters depending on the direction or location of initial folding
line formations, certain directions of folding, may be more energetically favorable than others
[97, 98]. Exploiting the potential of folding 2D materials is still in its infancy. In principle,
single or periodic hems, pleats, creases, ripples, and ruffles can be tailored from such planar
sheets. Critical to such applications is the mechanistic understanding of folding, stability, and
limit states, as outlined earlier.

8.5 Failure

In addition to stiffness and strength, of utmost importance for 2D materials is how they
fail. Characterized by repeating crystalline structures, such materials are typically prone to
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lattice defects of various types (e.g., vacancies, Stone–Wales defects) and the associated
stress concentrations when subjected to load. Thus, failure is typically characterized by local
fracturing and dependent on the concentration of defects – a probabilistic metric. As such, we
apply the mechanical tools of fracture analysis and failure statistics to 2D materials.
Here, in this section, the failure of 2D sheets, multilayers, or related composites with 2D

crystallinity in the extreme condition is addressed based on the recent theoretical deterministic
or statistical approaches of (1) quantized fracture mechanics (QFM) and (2) nanoscaleWeibull
statistics (NWS) proposed by Pugno and collaborators [99–101] and already extensively
compared with experiments and atomistic simulations (also at the nanoscale). The role
of thermodynamically unavoidable atomistic defects with different size and shape is thus
quantified on brittle fracture and fatigue and even elasticity.

8.5.1 Quantized Fracture Mechanics

QFM is a reformulation of classical linear fracture mechanics with an explicit treatment of
the discrete nature of atomistic bonds and crystallinity, and thus a “quantized” limit of crack
growth and propagation. The reader is referred to the original works of Pugno and Ruoff for
the complete formulations [101]. By considering QFM, the failure stress 𝜎N for a 2D material
having “atomic size” q (the so-called “fracture quantum”) and containing an elliptical hole of
half-axes a perpendicular to the applied load and b parallel can be determined including in the
asymptotic solution [101] the contribution of the far-field stress. We accordingly derived

𝜎N(a, b)

𝜎
(theo)
N

=

√
1 + 2a∕q(1+ 2a∕b)−2

1 + 2a∕q
(8.39a)

where

𝜎
(theo)
N =

KIC√
q𝜋∕2

(8.39b)

where 𝜎
(theo)
N is the theoretical (defect-free) material strength (e.g., ∼100GPa for carbon

nanotubes or graphene) and KIC is the material fracture toughness. The self-interaction
between the defect tips has been neglected here (i.e., a ≪ W, withW the effective layer width
of the 2D sheet) and would further reduce the failure stress. For atomistic defects (having
characteristic length of few angstrom) in nanostructures (having characteristic size of several
nanometers), this hypothesis is fully verified. However, QFM can also easily treat the self-tip
interaction starting from the corresponding value of the stress-intensity factor (reported in the
related Fracture Handbooks). The validity of QFM has been recently confirmed by atomistic
simulations [99–102], and also at larger size scales [99, 100, 103], and for fatigue crack
growth [100, 104, 105].
Regarding the defect shape, for a sharp crack perpendicular to the applied load a∕q =

const & b∕q → 0, then 𝜎N ≈ 𝜎
(theo)
N ∕

√
1 + 2a∕q and for a∕q >> 1, that is, large cracks, 𝜎N ≈

KIC∕
√
𝜋a in agreement with linear elastic fracture mechanics (LEFM). We note that LEFM

can (1) only treat sharp cracks, and (2) unreasonably predict an infinite defect-free strength.
On the other hand, for a crack parallel to the applied load b∕q = const and a∕q → 0, and thus
𝜎N = 𝜎

(theo)
N , as it must be. In addition, regarding the defect size, for self-similar and small
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holes a∕b = const and a∕q → 0 and coherently 𝜎N = 𝜎
(theo)
N ; furthermore, for self-similar and

large holes a∕b = const and a∕q → ∞, and we deduce 𝜎N ≈ 𝜎
(theo)
N ∕(1 + 2a∕b) in agreement

with the stress concentration posed by elasticity; but elasticity (coupledwith a maximum stress
criterion) unreasonably predicts (3) a strength independent of the hole size and (4) tending to
zero for cracks. Note the extreme consistency of Eq. (8.39) – that removing all the limitations
of LEFM – represents the first law capable of describing in a unified manner all the size and
shape effects for the elliptical holes, including cracks as limit case. In other words, Eq. (8.39)
shows that the two classical strength predictions based on stress intensifications (LEFM) or
stress concentrations (elasticity) are only reasonable for “large” defects; Eq. (8.39) unifies their
results and extends its validity to “small” defects (“large” and “small” are here with respect
to the fracture quantum). Finally, Eq. (8.39) shows that even a small defect can dramatically
reduce the mechanical strength.
For multilayered composites, imposing the critical force equilibrium (mean-field approach),

having different layers in numerical fractions fabN containing holes of half-axesa and b for each
material type N, we find the bundle/composite strength 𝜎C (ideal if 𝜎(theo)

C ) in the following
form:

𝜎C

𝜎
(theo)
C

=
∑
a,b,N

fabN
𝜎N(a, b)

𝜎
(theo)
N

(8.40)

The summation is extended to all the different holes and material types; the numerical frac-
tion f00N is that of defect-free material N and

∑
a,b,N fabN = 1. If all the defective layers are

of the same material and contain identical holes fabN = f = 1 − f00N , and the following simple
relation between the strength reductions holds:

1 − 𝜎C∕𝜎
(theo)
C = f

(
1 − 𝜎N∕𝜎

(theo)
N

)
(8.41)

The previous equations are based on linear elasticity, that is, on a linear relationship 𝜎 ∝ 𝜀

between stress 𝜎 and strain 𝜀. In contrast, let us assume 𝜎 ∝ 𝜀𝜅 , where 𝜅>1 denotes hyperelas-
ticity, as well as 𝜅 <1 elastic–plasticity. The power of the stress-singularity will accordingly
be modified [106] from the classical value 1/2 to 𝛼 =𝜅/(𝜅 +1). Thus, the problem is mathe-
matically equivalent to that of a re-entrant corner [107], and consequently we predict

𝜎N(a, b, 𝛼)

𝜎
(theo)
N

=

(
𝜎N (a, b)

𝜎
(theo)
N

)2𝛼

(8.42)

A crackwith a self-similar roughness,mathematically described by a fractal with noninteger
dimension 1<D< 2, would similarly modify the stress-singularity, according to [108] 𝛼 =
(2 − D)∕2; thus, with Eq. (8.42), we can also estimate the role of the crack roughness. Both
plasticity and roughness reduce the severity of the defect, whereas hyperelasticity enlarges
its effect. For example, for a crack composed by n adjacent vacancies, we find 𝜎N∕𝜎

(theo)
N ≈

(1 + n)−𝛼.
According to LEFM and assuming the classical hypothesis of self-similarity (amax ∝ L),

that is, the largest crack size is proportional to the characteristic structural size L, we expect a
size effect on the strength in the form of the power law 𝜎C ∝ L−𝛼 . For linear elastic materials
𝛼 = 1∕2 as classically considered, but for elastic–plastic materials or fractal cracks 0 ≤ 𝛼 ≤
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1∕2, whereas for hyperelastic materials 1∕2 ≤ 𝛼 ≤ 1, suggesting an unusual and superstrong
size effect.
Equations (8.39)–(8.42) do not consider the defect–boundary interaction. The finite width

2W can be treated by applyingQFM starting from the related expression of the stress-intensity
factor (reported in relevant Handbooks). However, to have an idea of the defect–boundary
interaction, we applied an approximated method, deriving the following correction
𝜎N(a, b,W) ≈ C(W)𝜎N(a, b), C(W) ≈ (1 − a∕W)∕(𝜎N(a, b)|q→W−a∕𝜎

(theo)
N ) (note that such a

correction is valid also for W ≈ a, whereas for W >> a it becomes C(W >> a) ≈ 1 − a∕W).
Similarly, the role of the defect orientation 𝛽 could be treated by QFM considering the
related stress-intensity factor; roughly, one could use the self-consistent approximation
𝜎N(a, b, 𝛽) ≈ 𝜎N(a, b)cos2𝛽 + 𝜎N(b, a)sin2𝛽.
By integrating the quantized Paris’ law, that is, an extension of the classical Paris’ law

recently proposed especially for nanostructure or nanomaterial applications [100, 104, 105],
we derive the following number of cycles to failure (or life time):

CN(a)

C(theo)
N

=
(1 + q∕W)1−m∕2 − (a∕W + q∕W)1−m∕2

(1 + q∕W)1−m∕2 − (q∕W)1−m∕2
,m ≠ 2 (8.43a)

and
CN(a)

C(theo)
N

=
ln{(1 + q∕W)∕(a∕W + q∕W)}

ln{(1 + q∕W)∕(q∕W)}
,m = 2 (8.43b)

where m>0 is the material Paris’ exponent. Note that according to Wöhler C(theo)
N = KΔ𝜎−k,

where K and k are material constants and Δ𝜎 is the amplitude of the stress range during the
oscillations.
Even if fatigue experiments in 2D materials are still to be performed, their behavior is

expected to be intermediate between those of Wöhler and Paris, as displayed by all the known
materials, and the quantizedParis’ law basically represents their asymptoticmatching (asQFM
basically represents the asymptoticmatching between the strength and toughness approaches).
Only defects remaining self-similar during fatigue growth have to be considered, thus only a
crack (of half-length a) is of interest in this context. By means of Eq. (8.43) the time to failure
reduction can be estimated, similar to the brittle fracture treated by Eq. (8.39).
For a bundle or multilayered composite, considering a mean-field approach (similar to Eq.

8.40) yields
CC

C(theo)
C

=
∑
a,N

faN
CN (a)

C(theo)
N

(8.44)

Better predictions could be derived integrating the quantized Paris’ law for a finite width
strip. However, we note that the role of the finite width is already included in Eq. (8.44), even
if these are rigorously valid in the limit ofW tending to infinity.
Regarding elasticity, interpreting the incremental compliance, due to the presence of the

crack, as a Young’smodulus (here denoted byE) degradation,we find E(a)
E(theo)

= 1 − 2𝜋 a2

A
[109].

Thus, recursively, considering Q cracks having sizes ai or, equivalently, M different cracks
with multiplicity Qi (Q =

∑M
i=1Qi), noting that ni =

2ai
q

represents the number of adjacent
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vacancies in a crack of half-length ai, with q atomic size, and vi =
Qini
A∕q2 its related numerical

(or volumetric) vacancy fraction, we find [109]:

E
E(theo)

=
Q∏
i=1

E(ai)
E(theo)

≈ 1 − 𝜉

M∑
i=1

vini (8.45)

with 𝜉 ≥ 𝜋∕2, where the equality holds for isolated cracks. Equation (8.45) can be applied
to 2D materials and the related bundles or composites containing defects in volumetric
percentage vi.
Forcing the interpretation of our formalism, we note that ni = 1 would describe a single

vacancy, that is, a small hole. Thus, as a first approximation, different defect geometries from
cracks to circular holes, for example, elliptical holes, could in principle be treated byEq. (8.45);
we have to interpret ni as the ratio between the transversal and longitudinal (parallel to the load)
defect sizes (ni = ai∕bi). Introducing the ith defect eccentricity ei as the ratio between the
lengths of the longer and shorter axes, as a first approximation ni(𝛽i) ≈ eicos

2𝛽i + 1∕eisin2𝛽i,
where 𝛽i is the defect orientation. For a single-defect typology E

E(theo)
≈ 1 − 𝜉vn, in contrast

to the common assumption E
E(theo)

≈ 1 − v, rigorously valid only for the density, for which
𝜌C

𝜌
(theo)
C

≡ 1 − v. Note that the failure strain for a defective 2D materials or related bundle can

also be predicted by 𝜀N,C∕𝜀
(theo)
N,C = (𝜎N,C∕𝜎

(theo)
N,C )∕(E∕E(theo)). In contrast to what happens for

the strength, large defectiveness is required to have a considerable elastic degradation, even if
we have shown that sharp transversal defects could have a role.

8.5.2 Nanoscale Weibull Statistics

The discussed tremendous defect sensitivity, described by Eq. (8.39), is confirmed by a
statistical analysis based on NWS [110], applied to the nanotensile tests. According to this
treatment, the probability of failure P for a nearly defect-free structure under a tensile stress
𝜎N is independent of its volume (or surface), in contrast to classical Weibull statistics, namely:

P = 1 − exp−NN

(
𝜎N

𝜎0

)w

(8.46)

wherew is the nanoscaleWeibull modulus, 𝜎0 is the nominal failure stress (i.e., corresponding
to a probability of failure of 63%), and NN ≡ 1. In classical Weibull statistics NN ≡ V∕V0 for
volume-dominating defects (or NN = A∕A0 for surface-dominating defects), that is, NN is the
ratio between the volume (or surface) of the structure and a reference volume (or surface).
Moreover, defects are thermodynamically unavoidable, especially at the large size scale. At

the thermal equilibrium, the vacancy fraction f = n∕N << 1 (n is the number of vacancies and
N is the total number of atoms) can be estimated as

f ≈ e−E1∕kBTa (8.47)

where E1 is on the order of a few eV, the energy required to remove one atom of the system
to create the vacancy and Ta is the absolute temperature at which the material is assembled
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(e.g., for carbon E1 ≈ 7eV and Ta typically in the range between 2000 and 4000K, thus f ≈
2.4 × 10−18 − 1.6 × 10−9). The strength of the structure will be dictated by the largest transver-
sal crack on it, according to the weakest link concept. The probability of finding a nanocrack
of size m in a bundle with vacancy fraction f is P(m) = (1 − f )f m, and thus the number M of
such nanocracks in a bundle or composite composed byN atoms isM(m) = P(m)N. The size of
the largest nanocrack, which typically occurs once, is found from the solution to the equation
M(m) ≈ 1, which implies [111]:

m ≈ − ln[(1 − f )N]∕ ln f ≈ − lnN∕ ln f (8.48)

Inserting Eqs (8.47) and (8.48) into Eq. (8.39) evaluated for a transversal crack (b ≈ 0 and
2a∕q ≈ m), we deduce the statistical counterpart of Eq. (8.39) and thus the following thermo-
dynamical maximum achievable strength:

𝜎N(N)

𝜎
(theo)
N

≤
𝜎
(max)
N (N)

𝜎
(theo)
N

= 1√
1 + kBTa

E1
lnN

(8.49)

The fracture mechanics approach could be of interest to evaluate the strength or assuming a
different failure mechanism, not intrinsic fracture as previously treated but rather as a sliding
failure mode [112]. Thus, we assume the interactions between adjacent layers as the weakest
links, that is, the fracture of the bundle or composites is caused by layers sliding rather than
by their intrinsic fracture.
Accordingly, the energy balance during a longitudinal delamination (here “delamination”

has the meaning of Mode II crack propagation at the interface between adjacent nanotubes) dz
under the applied force F is

dΦ − Fdu − 2𝛾(PC + PvdW)dz = 0 (8.50)

where dΦ and du are the strain energy and elastic displacement variation due to the infinites-
imal increment in the compliance caused by the delamination dz; Pvdw describes the still
existing van der Waals attraction (e.g., attractive part of the Lennard–Jones potential) for
vanishing nominal contact perimeter (e.g., the shear force between two graphite single layers
becomes zero for nominally negative contact area); 𝛾 is the surface energy of the layer–layer
or layer–matrix interactions in bundles or composites. Elasticity poses dΦ

dz
= − F2

2ES
, where S

is the cross-sectional surface area of the layers, whereas according to Clapeyron’s theorem
Fdu= 2dΦ. Thus, the following simple expression for the bundle or composite strength (𝜎C =
FC∕S, effective stress and cross-sectional surface area are considered here; FC is the force at
fracture) is predicted:

𝜎
(theo)
C = 2

√
E𝛾

P
S

(8.51)

in which it appears the ratio between the effective perimeterP in contact and the cross-sectional
surface area of the layers. Equation (8.51) can also be considered valid for the entire bundle,
since we are assuming here the same value P/S for all the layers in the bundle. Note that Eq.
(8.51) is basically the asymptotic limit for sufficiently long overlapping length, that is, the
length along with two adjacent layers is nominally in contact; for overlapping length smaller
than a critical value the strength increases by increasing the overlapping length; for a single
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atomic layer this overlapping length is of the order of 10 nm, [113] it is expected to be larger for
layers in bundles or composites, for example, of the order of several millimeters, as confirmed

experimentally. This critical length is 𝓁C ≈ 6
√

hES
PG

where h andG are the thickness and shear

modulus of the interface. It suggests that increasing the size-scaleL ∝
√
S ∝ P ∝ h this critical

length increases too, namely 𝓁 ∝ L, thus the strength increases by increasing the overlapping
length in a wider range; however, note that the achievable strength is reduced since 𝜎(theo)

C ∝√
h𝓁−1 ∝

√
P∕S ∝ L−1∕2, if L ∝ 𝓁 ∝ h: increasing the overlapping length ad infinitum is not

a way to indefinitely increase the strength. The real strength could be significantly smaller,
not only because 𝓁 < 𝓁C but also as a consequence of the misalignment of the layers with
respect to the load axis. Assuming a nonperfect alignment of the layers in the bundle, described
by a nonzero angle 𝛽, the longitudinal force carried by the layers will be F∕ cos 𝛽; thus, the
equivalent Young’ modulus of the bundle or composites will be Ecos2𝛽, as can be evinced by
the corresponding modification of the energy balance during delamination; accordingly

𝜎C = 2 cos 𝛽

√
E𝛾

P
S

(8.52)

For example, for graphene, the surface area for load transfer is doubled with respect to the
case of the single carbon nanotube (the inner surface area does not contribute), the previous
equation predicts for bundles or composites:

𝜎
(max,G)
C =

√
2𝜎(max,CNT)

C (8.53)

For a comparison of QFM or NWS with experiments or simulations, see also [114–116].

8.6 Multilayers and Composites

Two-dimensional nanostructures such as graphene, hBN, and molybdenum disulfide (MoS2)
have attracted considerable attention because of their novel properties and versatile potential
applications. These novel nanostructures have complementary physical properties. Therefore,
2D layers can be integrated into a multilayer stack to create 2D heterostructures that mitigate
the negative properties of each individual constituent [117]. Layered crystals are characterized
by strong intralayer covalent bonding and relatively weak interlayer van der Waals bonding.
Since various methods have been proposed to make atomic layered 2D materials, such as
graphene, hBN, TMDs, and oxides, it becomes possible to stack monolayers into variable
configurations to build unique structures with desired functionalities [41].
Because of their equivalent structural parameters and distinct electronic properties,

graphene and BN have been used in several studies to explore the possibility of making a
graphene/BN composite. Several configurations of layered graphene/BN had been studied,
such as graphene/BN to form a bilayer system [118], two or more BN layers [119], and
3D superlattice with alternate stacking of graphene and BN monolayers [120]. Other
heterostructures such as monolayer [121] and bilayer [122] graphene sandwiched between
two BN layers or monolayer BN sandwiched between two graphene layers [123] have also
been constructed. Similarly, Jiang and Park [117] performedMD simulations to investigate the
mechanical properties of single-layer MoS2 and a graphene/MoS2/graphene heterostructure
under uniaxial tension. The results show that the Young’s modulus of the heterostructure is
about three times that of MoS2. Although the stiffness is enhanced, the yield strain of the
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heterostructure is considerably smaller than the MoS2 due to lateral buckling of the outer
graphene layers owing to the applied mechanical tension. Creating artificial heterostructures
via stacking different 2D nanostructures on top of each other establishes a whole family
of amazing materials with unusual characteristics and exciting possibilities for novel 2D
devices [41].
Composite materials have advantages over traditional materials, where nanosized reinforce-

ments are arranged in the matrix, presenting superior properties and added functionalities [2].
The excellent mechanical properties of 2D nanostructures, such as graphene, graphdiyne, and
MoS2, are promising reinforcements in high performance composites. The potential benefits
of high strength and stiffness of 2D nanomaterial sheets in nanocomposites, combined with
its low density compared with the density of metallic substrates, are easily recognized and are
powerful incentives for the use of such materials in structural applications.
Metal–graphene nanolayered composites have been studied recently due to its promising

applications (i.e., nuclear reactor structural material) and the effectiveness of graphene
of significantly strengthening of metals. A reported study has demonstrated that the 2D
geometry and low atomistic thickness of graphene can effectively constrain dislocation
motion in polycrystalline metals, resulting in an engineered strengthening mechanism [124].
In a similar graphene/polymer composite (carbon monolayer + thin substrate), Gong et al.
[125] demonstrated unambiguously that stress transfer takes place from the polymer matrix
to monolayer graphene, showing that the graphene acts as a reinforcing phase. Graphene-like
metal nanocomposites represent one of the most technologically promising developments of
high-performancematerial systems.
Roman and Cranford [126] evaluated the mechanical properties of graphdiyne–copper

nanocomposites, combining varied numbers of layers of graphdiyne sheets on copper
substrate, as well as sandwich-structured copper/graphdiyne layers (see Figure 8.14(a)–(d)).

(c) (d)

(a) (b)

Figure 8.14 Nanocomposite configurations: (a) single graphdiyne with copper substrate, (b) bilayer
graphdiyne with copper substrate, (c) single graphdiyne with copper sandwich, (d) bilayer graphdiyne
with copper sandwich. [126]
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Using full atomistic MD, the elastic stiffness, toughness, and limit states of these nanocom-
posite materials were explored considering an atomistically large model at finite temperature
through direct tensile loads, using defect-free and defective copper substrates. The nature of
the bonding interaction between the copper and graphdiyne is noncovalent; therefore, there is
no energetic cost to bond the composite. The results show that a relatively slight amount of
graphdiyne can dramatically increase the tensile strength and toughness of copper, although it
is only a single atomic layer in thickness, representing nominal increases in both system size
and weight. Also, it is demonstrated that combining copper with layers of graphdiyne can
increase substantially the failure strain by confining the copper crystal during deformation.
More interestingly is the effect on the copper component in the composite – the graphdiyne
allows the copper to carry stress as if the imperfections were not present. This strengthening
mechanism (e.g., constraining dislocations) acts in combinationwith classical rule-of-mixture
enhancements (e.g., proportional stiffness) such that the contribution of copper is near-optimal
in the composite system – graphdiyne improves the response of the composite material [126].
Proving the applicability of continuum mechanics, including micromechanics, to

composites at the atomic level, many recent works have reported that continuum mechanics
can be employed to analyze the behavior of nanocomposites. The well-known rule of mixture
(RoM) for composites can be utilized to predict the tensile modulus of the nanocomposites.
The modulus of the composite, Ycomposites, can be calculated from the equation:

Ycomposite =
1
V

∑
i
YiVi = Y2Dn2D + Ymatrixnmatrix (8.54)

where Y2D is the tensile modulus of the 2D nanostructure sheet, Ymatrix is the tensile modulus
of the matrix, n2D and nmatrix are the volume fractions (ni =Vi/V) of the 2D nanostructure
sheet and matrix, respectively. Equation (8.54) can be extended to any two-phase composites,
regardless the shape of the reinforcement. Note that in these formulas, only three parameters
are involved, that is, modulus of the 2D nanomaterial layer and thematrix, and the volume frac-
tion [2, 126]. Similarly, Gong et al. [125] have modeled the behavior of graphene monolayer
nanocomposites using shear-lag theory, where it is assumed that the graphene is a mechanical
continuum and surrounded by a layer of elastic polymer resin, and that there is an elastic stress
transfer from the matrix to the graphene layer through a shear stress at the graphene–matrix
interface. For a given level of matrix strain, em, it is predicted that the variation of strain in the
graphene monolayer, ef, with position, x, across the monolayer will be of the form:

ef = em

⎡⎢⎢⎢⎣
1 −

cos h
(
ns x

l

)
cos h

(
ns
2

)
⎤⎥⎥⎥⎦

(8.55)

where

n =

√
2Gm

Eg

( t
T

)
(8.56)

and Gm is the matrix shear modulus, Ef is the Young’s modulus of the graphene flake, l is the
length of the graphene flake in the x direction, t is the thickness of the graphene, T is the total
resin thickness, and s is the aspect ratio of the graphene (l/t) in the x-direction. The parameter
n is widely accepted in composite micromechanics to be an effective measure of the interfacial
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stress transfer efficiency, so ns depends on both the morphology of the graphene monolayer
and the degree of interaction it has with the matrix. The variation of shear stress, 𝜏 i, at the
polymer graphene interface is given by

𝜏i = nEgem

⎡⎢⎢⎢⎣
sin h

(
ns x

l

)
cos h

(
ns
2

)
⎤⎥⎥⎥⎦

(8.57)

Reviewing these equations, it can be noted that the graphene monolayer is subjected to the
highest level of stress, when the value of the product ns is high. This implies that for good
reinforcement a high aspect ratio, s, is desirable along with a high value of n. This analysis
relies on the assumption that both the graphenemonolayer and polymer behave as linear elastic
continua [2, 125, 127].

8.7 Conclusion

Herein, we have discussed the emergence of 2D materials and the basic mechanical char-
acterization thereof. Clearly then, the importance of graphene is not only that it has unique
properties but also that it has paved the way for, and promoted interest in, the isolation and
synthesis of many other 2D materials. We can now talk about a whole new class of materials,
2D atomic crystals, and already have examples with a large variety of properties (from large
band-gap insulators to the very best conductors, the extremely mechanically strong to the soft
and fragile, and the chemically active to the very inert). Furthermore, many of the proper-
ties of these 2D materials are very different from those of their 3D counterparts, leading to
interesting discoveries in previously assumed 3D crystals (e.g., silicon to silicene). Because of
their unique properties, 2D materials have attracted significant interest for both fundamental
research and practical applications. In addition to the research on individual graphene-like 2D
materials, a lot of effort has also been focused on the creation of multilayered heterostructures
and composites as well. With most of these extraordinary materials characterized, experimen-
tally and theoretically, we are getting to the point of convergence where the focus will be to
turn these wonder properties in useful applications. Themechanical behavior of suchmaterials
is intriguing, acting as both crystals in membranes, requiring prudence in assigning traditional
properties such as a Young’s modulus (e.g., in MPa or N-m). Indeed, many of the low hanging
fruits of these materials – characterizing and investigating the fundamental mechanical prop-
erties as discussed – have been harvested. At the same time, in terms of their material potential
in future technological applications, we have merely scratched the 2D surface.
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