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18.1 INTRODUCTION
A space elevator basically consists of a cable attached to the Earth surface for
carrying payloads into space [1]. If the cable is long enough, i.e. around 150 Mm
(a value that can be reduced by a counterweight), the centrifugal forces exceed
the gravity of the cable that will work under tension [2]. The elevator would stay
fixed geosynchronously; once sent far enough, climbers would be accelerated by
the Earth’s rotational energy. A space elevator would revolutionize the methodology
for carrying payloads into space at low cost, but its design is very challenging. The
most critical component in the space elevator design is undoubtedly the cable [3e5]
that requires a material with very high strength and low density.

Considering a cable with constant cross section and a vanishing tension at the
planet surface, the maximum stressedensity ratio, reached at the geosynchronous
orbit, is for the Earth equal to 63 GPa/(1300 kg/m3), corresponding to 63 GPa if
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the low carbon density is assumed for the cable. Only recently, after the rediscovery
of carbon nanotubes [6], such a large failure stress has been experimentally
measured, during tensile tests of ropes composed of single-walled carbon nanotubes
(SWCNTs) [7] and multiwalled carbon nanotubes consist of graphene [8], both
expected to have an ideal strength of w100 GPa. Note that for steel (density of
7900 kg/m3 and maximum strength of 1.5 GPa), the maximum stress expected in
the cable would be of 383 GPa, whereas for Kevlar (density of 1440 kg/m3 and
strength of 3.6 GPa) of 70 GPa, both much higher than their strengths [3].

However, an optimized cable design must consider a uniform tensile stress
profile rather than a constant cross-sectional area [2]. Accordingly, the cable could
be built of any material by simply using a large enough taper ratio, that is the ratio
between the maximum (at the geosynchronous orbit) and minimum (at the Earth’s
surface) cross-sectional area. For example, for steel or Kevlar, a giant and unrealistic
taper ratio would be required, 1033 or 108, respectively, whereas for carbon nano-
tubes and graphene, it must theoretically be only 29. Thus, the feasibility of the space
elevator seems to become only currently plausible [9,10] thanks to the discovery of
carbon nanotubes. The cable would represent the largest engineering structure, hier-
archically designed from the nano- (single nanotube or graphene ribbon with length
of the order of 100 nm) to the megascale (space elevator cable with a length of the
order of 100 Mm). Pushed by this problem we have worked on the design of nano-
tube or graphene fibers and composites during the last ten years.

In this chapter, the asymptotic analysis on the role of defects for the nanotubes or
graphene fibers and composites, based on new theoretical deterministic and statis-
tical approaches of quantized fracture mechanics (QFM) proposed by the author
[11e14], and their extension to nonasymptotic regimes, elastic-plasticity, rough
cracks and finite domains are reviewed. The role of thermodynamically unavoidable
atomistic defects with different size and shape is thus quantified on brittle fracture,
fatigue and elasticity for nanotubes, graphene and related bundles and composites.
The results are compared with atomistic and continuum simulations and nanotensile
tests Specific key simple formulas for the design of a flaw-tolerant space elevator
megacable are reported, suggesting that it would need a taper ratio (for uniform
stress) of about 1-2 orders of magnitude larger than as today erroneously proposed.

The chapter is organized in 10 short sections, as follows. After this introduc-
tion, reported as the first section, we start calculating the strength of nanotube
and graphene bundles and composites by using ad hoc hierarchical simulations,
discussing the related size effect. In Section 3, the strength reduction of a single
nanotube or graphene ribbon and of a nanotube bundle containing defects with
given size and shape is calculated; the taper ratio for a flaw-tolerant space elevator
cable is accordingly derived. In Section 4, elastic-plastic (or hyperelastic) mate-
rials, rough cracks and finite domains are discussed. In Section 5, the fatigue
life time is evaluated for a single nanotube or graphene and for a related bundle.
In Section 6, the related Young’s modulus degradations are quantified. In Sections
7 and 8, we compare our results on strength and elasticity with atomistic simula-
tions and tensile tests of carbon nanotubes. In Section 9, we demonstrate that
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defects are thermodynamically unavoidable, evaluating the minimum defect size
and corresponding maximum achievable strength. In Section 10, the fiber or
composite design against sliding failure is presented. The last section presents
our concluding remarks.

18.2 HIERARCHICAL SIMULATIONS AND SIZE EFFECTS
To evaluate the strength of carbon nanotube cables, the hierarchical fiber bundle
model, formerly proposed [3], hasbeen adopted [15].Multiscale simulations are neces-
sary in order to tackle the size scales involved, spanning overw10 orders ofmagnitude
from nanotube/graphene length (w100 nm) to kilometer-long cables, and also to
provide useful information about cable scaling properties with length.

The cable is modeled as an ensemble of stochastic “springs”, arranged in parallel
sections. Linearly increasing strains are applied to the fiber bundle, and at each
algorithm iteration, the number of fractured springs is computed (fracture occurs
when local stress exceeds the nanotube graphene failure strength) and the strain is
uniformly redistributed among the remaining intact springs in each section.

In silico stressestrain experiments have been carried out according to the
following hierarchical architecture. Level 1: the nanotubes graphene (single springs,
Level 0) are considered with a given elastic modulus and failure strength distribution
and composed a 40� 1000 lattice or fiber. Level 2: again a 40� 1000 lattice
composed by second level “springs,” each of them identical to the entire fiber
analyzed at the first level, is analyzed with the elastic modulus as input and
stochastic strength distribution derived as the output of the numerous simulations
to be carried out at the first level. And so on. Five hierarchical levels are sufficient
to reach the size scale of the megameter from that of the nanometer (Fig. 18.1).

The Level 1 simulation is carried out with springs L0¼ 10�7 m in length,
w0¼ 10�9 m in width, with Young’s modulus E0¼ 1012 Pa and strength sf randomly
distributed according to the nanoscale Weibull statistics [16] PðsfÞ ¼
1� exp½�ðsf=s0Þm�, where P is the cumulative probability. Fitting to the experiments
on carbon nanotubes [7,8], we have derived for carbon nanotubes s0¼ 34 GPa and
m¼ 2.7 [16]. Then, Level 2 is computed, and so on. The results are summarized
in Fig. 18.2, in which a strong size effect is observed, up to length ofw1 m.

Given the decaying sf vs cable length L obtained from simulations, it is inter-
esting to fit the behavior with simple analytical scaling laws. Various laws exist in
the literature, and one of the most used is the multifractal scaling law (MFSL
[17,18]). This law has been recently extended toward the nanoscale [19]:

sf

smacro
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lch

Lþ l0

r
(18.1)

where sf is the failure stress, smacro is the macrostrength, L is the structural char-
acteristic size, lch is the characteristic internal length and l0 is defined via

sfðl ¼ 0Þ ¼ smacro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lch

l0

r
h snano, where snano is the nanostrength. Note that
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FIGURE 18.1

Schematization of the adopted multiscale simulation procedure to determine the space elevator

cable strength. Here, N¼ 5, Nx1¼Nx2¼.Nx5¼ 40 and Ny1¼Ny2¼.Ny5¼ 1000, so that

the total number of nanotubes or graphene ribbons in the space elevator cable is

Ntot¼ (1000� 40)5z 1023 [15] From: Multiscale stochastic simulations as in-silico tensile

testing of nanotube-basedmegacables, Small 4, 2008. (For color versionof this figure, the reader

is referred to the online version of this book.)

FIGURE 18.2

Comparison between simulations (dots) and analytical scaling law (Eqn (18.1)) for the failure

strength of the nanotube bundle as a function of its length; the asymptote is at 10.20 GPa [15].

The dotted line corresponds to Co¼o, thus to [17]. (For color version of this figure, the reader is

referred to the online version of this book.)



for l0¼ 0, this law is that reported in [17]. Here, we can choose snano as the nanotube
stochastic strength, i.e. snano¼ 34 GPa. The computed macrostrength is sma-

cro¼ 10.20 GPa. The fit with Eqn (18.1) is shown in Fig. 18.1 for the various L
considered at the different hierarchical levels. The best fit is obtained for
lch¼ 5� 10�5 m, where the analytical law is practically coincident with the simu-
lated results. Thus, for a carbon nanotube or graphene megacable, we have
numerically derived a plausible strength sC¼ smacroz 10 GPa.

18.3 BRITTLE FRACTURE
By considering QFM [11e14], the failure stress sN for a nanotube or graphene
having atomic size q (the “fracture quantum”) and containing an elliptical hole of
half-axes a perpendicular to the applied load (or nanotube or graphene axis) and
b can be determined including in the asymptotic solution [12] the contribution of
the far-field stress. We accordingly derive

sNða; bÞ
s
ðtheoÞ
N

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a=qð1þ 2a=bÞ�2

1þ 2a=q

s
; s

ðtheoÞ
N ¼ KICffiffiffiffiffiffiffiffiffiffiffi

qp=2
p (18.2)

where s
ðtheoÞ
N is the theoretical (defect-free) nanotube or graphene strength

(w100 GPa, see Table 18.1) and KIC is the material fracture toughness. The self-
interaction between the tips has been neglected here (i.e. a�pR, W with R the
nanotube radius or W , the graphene width) and would further reduce the failure
stress. For atomistic defects (having characteristic length of few Ångstrom) in
nanotubes or graphene (having characteristic diameter of several nanometers), this
hypothesis is fully verified. However, QFM can easily treat also the self-tip inter-
action starting from the corresponding value of the stress-intensity factor (reported
in the related handbooks). The validity of QFM has been recently confirmed by
atomistic simulations [3e5,12,13,20], but also at larger size scales [12,13,21] and
for fatigue crack growth [14,22,23].

Regarding the defect shape, for a sharp crack perpendicular to the applied load,

a/q¼ const and b/q/ 0; thus, sNzs
ðtheoÞ
N =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a=q

p
, and for a/q[ 1, i.e. large

cracks, sNzKIC=
ffiffiffiffiffiffi
pa

p
in agreement with linear elastic fracture mechanics (LEFM);

note that LEFM can (1) only treat sharp cracks and (2) unreasonably predict an infin-
ite defect-free strength. On the other hand, for a crack parallel to the applied load,
b/q¼ const and a/q/ 0, and thus, sN ¼ s

ðtheoÞ
N , as it must be. In addition,

regarding the defect size, for self-similar and small holes, a/b¼ const & a/q/ 0
and coherently sN ¼ s

ðtheoÞ
N ; furthermore, for self-similar and large holes, a/b¼ const

& a/q/N and we deduce sNzs
ðtheoÞ
N =ð1þ 2a=bÞ in agreement with the stress

concentration posed by elasticity; but elasticity (coupled with a maximum stress crite-
rion) unreasonablypredicts (3) a strength independent from the hole size and (4) tending
to zero for cracks. Note the extreme consistency of Eqn (18.2) that, removing all the
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Table 18.1 Atomistic Simulations [30–34] vs QFM Predictions, for Nanocracks of Size

n or Nanoholes of Sizem in carbon nanotubes or graphene ribbons. (From: The role

of defects in the design of the space elevator cable: from nanotube to megatube, Acta

Materialia 55 2007) [4]

Graphene/
Nanotube
Type

Nanocrack (n) and
Nanohole (m)
sizes

Strength [GPa] by QM (MTB-G2) and
MM (PM3; M) QM/MM Atomistic or
QFM Calculations

[5,5] Defect-free 105 (MTB-G2); 135 (PM3)

[5,5] n¼ 1 (Sym.þH) 85 (MTB-G2), 79 (QFM); 106 (PM3), 101
(QFM)

[5,5] n¼ 1 (Asym. þH) 71 (MTB-G2), 79 (QFM); 99 (PM3), 101
(QFM)

[5,5] n¼ 1 (Asym.) 70 (MTB-G2), 79 (QFM); 100 (PM3), 101
(QFM)

[5,5] n¼ 2 (Sym.) 71 (MTB-G2), 63 (QFM); 105 (PM3), 81
(QFM)

[5,5] n¼ 2 (Asym.) 73 (MTB-G2), 63 (QFM); 111 (PM3), 81
(QFM)

[5,5] m¼ 1 (þH) 70 (MTB-G2), 68 for long tube, 79
(QFM); 101 (PM3), 101 (QFM)

[5,5] m¼ 2 (þH) 53 (MTB-G2), 50 for long tube, 67
(QFM); 78 (PM3), 86 (QFM)

[10,10] Defect-free 88 (MTB-G2); 124 (PM3)

[10,10] n¼ 1 (Sym.þH) 65 (MTB-G2), 66 (QFM)

[10,10] n¼ 1 (Asym. þH) 68 (MTB-G2), 66 (QFM)

[10,10] n¼ 1 (Sym.) 65 (MTB-G2), 66 (QFM); 101 (PM3), 93
(QFM)

[10,10] n¼ 2 (Sym.) 64 (MTB-G2), 53 (QFM); 107 (PM3), 74
(QFM)

[10,10] n¼ 2 (Asym.) 65 (MTB-G2), 53 (QFM); 92 (PM3), 74
(QFM)

[10,10] m¼ 1 (þH) 56 (MTB-G2), 52 for long tube, 66
(QFM); 89 (PM3), 93 (QFM)

[10,10] m¼ 2 (þH) 42 (MTB-G2), 36 for long tube, 56
(QFM); 67 (PM3), 79 (QFM)

[50,0] Defect-free 89 (MTB-G2)

[50,0] m¼ 1 (þH) 58 (MTB-G2); 67 (QFM)

[50,0] m¼ 2 (þH) 46 (MTB-G2); 57 (QFM)

[50,0] m¼ 3 (þH) 40 (MTB-G2); 44 (QFM)

[50,0] m¼ 4 (þH) 36 (MTB-G2); 41 (QFM)

[50,0] m¼ 5 (þH) 33 (MTB-G2); 39 (QFM)

[50,0] m¼ 6 (þH) 31 (MTB-G2); 37 (QFM)

[100,0] Defect-free 89 (MTB-G2)

[100,0] m¼ 1 (þH) 58 (MTB-G2); 67 (QFM)
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Table 18.1 Atomistic Simulations [30–34] vs QFMPredictions, for Nanocracks of Size n

or Nanoholes of Sizem in carbon nanotubes or graphene ribbons. (From: The role

of defects in the design of the space elevator cable: from nanotube to megatube, Acta

Materialia 55 2007) [4]dCont’d

Graphene/
Nanotube
Type

Nanocrack (n) and
Nanohole (m)
sizes

Strength [GPa] by QM (MTB-G2) and
MM (PM3; M) QM/MM Atomistic or
QFM Calculations

[100,0] m¼ 2 (þH) 47 (MTB-G2); 57 (QFM)

[100,0] m¼ 3 (þH) 42 (MTB-G2); 44 (QFM)

[100,0] m¼ 4 (þH) 39 (MTB-G2); 41 (QFM)

[100,0] m¼ 5 (þH) 37 (MTB-G2); 39 (QFM)

[100,0] m¼ 6 (þH) 35 (MTB-G2); 37 (QFM)

[29,29] Defect-free 101 (MTB-G2)

[29,29] m¼ 1 (þH) 77 (MTB-G2); 76 (QFM)

[29,29] m¼ 2 (þH) 62 (MTB-G2); 65 (QFM)

[29,29] m¼ 3 (þH) 54 (MTB-G2); 50 (QFM)

[29,29] m¼ 4 (þH) 48 (MTB-G2); 46 (QFM)

[29,29] m¼ 5 (þH) 45 (MTB-G2); 44 (QFM)

[29,29] m¼ 6 (þH) 42 (MTB-G2); 42 (QFM)

[47,5] Defect-free 89 (MTB-G2)

[47,5] m¼ 1 (þH) 57 (MTB-G2); 67 (QFM)

[44,10] Defect-free 89 (MTB-G2)

[44,10] m¼ 1 (þH) 58 (MTB-G2); 67 (QFM)

[40,16] Defect-free 92 (MTB-G2)

[40,16] m¼ 1 (þH) 59 (MTB-G2); 69 (QFM)

[36,21] Defect-free 96 (MTB-G2)

[36,21] m¼ 1 (þH) 63 (MTB-G2); 72 (QFM)

[33,24] Defect-free 99 (MTB-G2)

[33,24] m¼ 1 (þH) 67 (MTB-G2); 74 (QFM)

[80, 0] Defect-free 93 (M)

[80, 0] n¼ 2 64 (M); 56 (QFM)

[80, 0] n¼ 4 50 (M); 43 (QFM)

[80, 0] n¼ 6 42 (M); 35 (QFM)

[80, 0] n¼ 8 37 (M); 32 (QFM)

[40, 0] (nested
by a [32, 0])

Defect-free 99 (M)

[40, 0] (nested
by a [32, 0])

n¼ 2 73 (M); 69 (QFMþ vdW interaction
w10 GPa)

[40, 0] (nested
by a [32, 0])

n¼ 4 57 (M); 56 (QFMþ vdW interaction
w10 GPa)

[40, 0] (nested
by a [32, 0])

n¼ 6 50 (M); 48 (QFMþ vdW interaction
w10 GPa)

n¼ 8

(continued)
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limitations (1e4) represents the first law capable of describing in a unified manner all
the size and shape effects for the elliptical holes, including cracks as limit case. In other
words, Eqn (18.2) shows that the two classical strength predictions based on stress
intensifications (LEFM) or stress concentrations (elasticity) are only reasonable for
“large” defects; Eqn (18.2) unifies their results and extends its validity to “small”
defects (“large” and “small” are here with respect to the fracture quantum). Equation
(18.2) shows that even a small defect can dramatically reduce the mechanical strength.

An upper bound of the cable strength can be derived assuming the simultaneous
failure of all the defective nanotubes or graphene layers present in the bundle. Accord-
ingly, imposing the critical force equilibrium (mean-field approach) for a cable
composed of nanotubes or graphene layers in numerical fractions fab containing holes

of half-axes a and b, wefind the cable strengthsC (ideal ifs
ðtheoÞ
C ) in the following form:

sC

s
ðtheoÞ
C

¼
X
a;b

fab
sNða; bÞ
s
ðtheoÞ
N

(18.3)

The summation is extended to all the different holes; the numerical fraction
f00 of nanotubes/graphene is defect-free and

P
a;b

fab ¼ 1. If all the defective

Table 18.1 Atomistic Simulations [30–34] vs QFMPredictions, for Nanocracks of Size n

or Nanoholes of Sizem in carbon nanotubes or graphene ribbons. (From: The role

of defects in the design of the space elevator cable: from nanotube to megatube, Acta

Materialia 55 2007) [4]dCont’d

Graphene/
Nanotube
Type

Nanocrack (n) and
Nanohole (m)
sizes

Strength [GPa] by QM (MTB-G2) and
MM (PM3; M) QM/MM Atomistic or
QFM Calculations

[40, 0] (nested
by a [32, 0])

44 (M); 44 (QFMþ vdW interaction
w10 GPa)

[100,0] Defect-free 89 (MTB-G2)

[100,0] n¼ 4 50 (M); 41 (QFM)

[10,0] Defect free 124 (QM); 88 (MM);

[10,0] n ¼ 1 101 (QM) 95 (QM/MM) 93 (QFM); 65
(MM) 66 (QFM)

The QFM predictions are here obtained simply considering in Eqn (18.2) 2a/q¼ n, 2b/q¼ 1 for cracks of
size n or a=q ¼ b=q ¼ ð2m � 1Þ= ffiffiffi

3
p

for holes of size m. Quantum mechanics (QM) semiempirical
calculations (PM3method), molecular mechanics (MM) calculations (modified Tersoff–Brenner potential
of second generation (MTB-G2), modified Morse potential (M)) and coupled QM/MM calculations. The
symbol (þH) means that the defect was saturated with hydrogen. Symmetric and asymmetric bond
reconstructions were also considered; the tubes are “short”, if not otherwise specified. We have roughly
ignored in the QFM predictions the difference between symmetric and asymmetric bond reconstruction,
hydrogen saturation and length effect (for shorter tubes, an increment in the strength is always observed
as an intrinsic size effect), noting that themain differences in the atomistic simulations are imputable to the
used potential. For nested nanotubes, a strength increment ofw10 GPa is here assumed to roughly take
into account the van der Walls (vdW) interaction between the walls.
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nanotubes/graphene in the bundle contain identical holes fab¼ f¼ 1� f00, and
the following simple relation between the strength reductions holds:
1� sC=s

ðtheoÞ
C ¼ f ð1� sN=s

ðtheoÞ
N Þ.

Thus, the taper ratio l needed to have a uniform stress in a space elevator cable
[2], under the centrifugal and gravitational forces, must be larger than its theoretical
value, in order to design a flaw-tolerant megacable. In fact, according to our anal-
ysis, we deduce (l ¼ econst:rC=sC � lðtheoÞz1:9 for carbon nanotubes/graphene;
rC denotes the material density) the following:

l

lðtheoÞ
¼ l

ðtheoÞ

 
s
ðtheoÞ
C

sc
� 1

!
(18.4)

Equation (18.4) shows that a small defect can dramatically increase the taper
ratio required for a flaw-tolerant megacable and thus, nearly proportionally,
its mass.

18.4 ELASTIC-PLASTICITY, FRACTAL CRACKS AND FINITE
DOMAINS
The previous equations are based on linear elasticity, i.e. on a linear relationship
sf ε between stress s and strain ε. In contrast, let us assume sf ε

k, where
k> 1 denotes hyperelasticity, as well as k< 1 denotes elastic-plasticity. The power
of the stress singularity will accordingly be modified [24] from the classical value
1/2 to a¼ k/(kþ 1). Thus, the problem is mathematically equivalent to that of a reen-
trant corner [25], and consequently, we predict

sNða; b;aÞ
s
ðtheoÞ
N

¼
 
sNða; bÞ
s
ðtheoÞ
N

!2a

; a ¼ k

kþ 1
(18.5)

A crack with a self-similar roughness, mathematically described by a fractal with
noninteger dimension 1<D< 2, would similarly modify the stress singularity,
according to a¼ (2�D)/2 [18,26]; thus, with Eqn (18.5), we can also estimate
the role of the crack roughness. Both plasticity and roughness reduce the severity
of the defect, whereas hyperelasticity enlarges its effect. For example, for a crack
composed by n adjacent vacancies, we found sN=s

ðtheoÞ
N zð1þ nÞ�a.

However, note that among these three effects, only elastic-plasticity may have
a significant role in carbon nanotubes/graphene; in spite of this, fractal cracks could
play an important role in nanotube/graphene bundles as a consequence of their larger
size scale, which would allow the development of a crack surface roughness. Hyper-
elasticity is not expected to be relevant in this context (but important for biological
materials such as spider silk).

According to LEFM and assuming the classical hypothesis of self-similarity
(amaxf L), i.e. the largest crack size is proportional to the characteristic structural
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size L, we expect a size effect on the strength in the form of the power law
sCf L�a. For linear elastic materials, a¼ 1/2 as classically considered, but for
elastic-plastic materials or fractal cracks, 0� a� 1/2 [24], whereas for hyperelas-
tic materials, 1/2� a� 1, suggesting an unusual and stronger size effect. This
parameter would represent the maximum slope (in a bi-log plot) of the scaling
as reported in Fig. 18.1.

Equation (18.2) does not consider the defecteboundary interaction. The finite
width 2W can be treated by applying QFM starting from the related expression of
the stress-intensity factor (reported in handbooks). However, to have an idea
of the defecteboundary interaction, we apply an approximated method [27],
deriving the following correction sN(a,b,W)z C(W)sN(a,b), CðWÞzð1� a=WÞ=
ðsNða; bÞjq/W�a=s

ðtheoÞ
N Þ (note that such a correction is valid also for Wza,

whereas for W[ a, it becomes C(W[ a)z 1� a/W). Similarly, the role of the
defect orientation b could be treated by QFM considering the related stress-
intensity factor; roughly, one could use the self-consistent approximation
sNða; b; bÞzsNða; bÞcos2bþ sNðb; aÞsin2b.

18.5 FATIGUE
The superstrong fibers can be cyclically loaded, e.g. in a space elevator cable by the
climbers carrying the payloads, thus fatigue could play a role on their design. By
integrating the quantized Paris’ law, that is an extension of the classical Paris’ law
recently proposed especially for nanostructure or nanomaterial applications
[14,22,23], we derive the following number of cycles to failure (or life time):

CNðaÞ
C
ðtheoÞ
N

¼ ð1þ q=WÞ1�m=2 � ða=W þ q=WÞ1�m=2

ð1þ q=WÞ1�m=2 � ðq=WÞ1�m=2
; ms2 (18.6a)

CNðaÞ
C
ðtheoÞ
N

¼ ln½ð1þ q=WÞ=ða=W þ q=WÞ�
ln½ð1þ q=WÞ=ðq=WÞ� ; m ¼ 2 (18.6b)

where m>0 is the material Paris’ exponent. Note that according to Wöhler,

C
ðtheoÞ
N ¼ KDs�k, where K and k are material constants and Ds is the amplitude of

the stress range during the oscillations. Even if fatigue experiments in nanotubes/gra-
phene are still to be performed, their behavior is expected to be intermediate between
those of Wöhler and Paris, as displayed by all the known materials, and the quantized
Paris’ law basically represents their asymptoticmatching (as QFMbasically represents
the asymptotic matching between the strength and toughness approaches).

Only defects remaining self-similar during fatigue growth have to be considered,
thus only a crack (of half-length a) is of interest in this context. By means of
Eqn (18.6), the time to failure reduction can be estimated, similarly to the brittle
fracture treated by Eqn (18.2).
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For a bundle, considering a mean-field approach (similarly to Eqn (18.3)) yields

CC

C
ðtheoÞ
C

¼
X
a

fa
CNðaÞ
C
ðtheoÞ
N

(18.7)

Better predictions could be derived integrating the quantized Paris’ law for a finite
width strip. However, we note that the role of the finite width is already included in
Eqn (18.6), even if these are rigorously valid in the limit of W tending to infinity.

18.6 ELASTICITY
Consider a nanotube/graphene of lateral surface A under tension and containing
a transversal crack of half-length a. Interpreting the incremental compliance, due
to the presence of the crack, as a Young’s modulus (here denoted by E) degradation,

we find
EðaÞ
EðtheoÞ ¼ 1� 2p

a2

A
[28]. Thus, recursively, considering Q cracks (in the

megacable, 1012e1020 defects are expected, see Section 2) having sizes ai or,

equivalently,M different cracks with multiplicity Qi ðQ ¼ PM
i¼ 1

QiÞ, noting that ni ¼
2ai
q

represents the number of adjacent vacancies in a crack of half-length ai, with q

atomic size, and vi ¼ Qini
A=q2

its related numerical (or volumetric) vacancy fraction,
we find [28]

E

EðtheoÞ ¼
YQ
i¼ 1

EðaiÞ
EðtheoÞz1� x

XM
i¼ 1

vini (18.8)

with x� p/2, where the equality holds for isolated cracks. Equation (18.8) can be
applied to nanotubes or graphene and related bundles containing defects in volu-
metric percentages vi.

Forcing the interpretation of our formalism, we note that ni¼ 1 would describe
a single vacancy, i.e. a small hole. Thus, as a first approximation, different defect
geometries from cracks to circular holes, e.g. elliptical holes, could in principle
be treated by Eqn (18.8); we have to interpret ni as the ratio between the transversal
and longitudinal (parallel to the load) defect sizes (ni¼ ai/bi). Introducing the i-th
defect eccentricity ei as the ratio between the lengths of the longer and shorter
axes, as a first approximation, niðbiÞzei cos

2bi þ 1=ei sin
2bi, where bi is the defect

orientation. For a single-defect typology,
E

EðtheoÞz1� xvn, in contrast to the

common assumption
E

EðtheoÞz1� v, rigorously valid only for the cable density,

for which
rC

r
ðtheoÞ
C

h1� v. Note that the failure strain for a defective nanotube, graphene

or related bundle can also be predicted by εN;C=ε
ðtheoÞ
N;C ¼ ðsN;C=sðtheoÞN;C Þ= ðE=EðtheoÞÞ.
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In contrast to what happens for the strength, large defectiveness is required to
have a considerable elastic degradation, even if we have shown that sharp transversal
defects could have a role. For example, too-soft space elevator cables would become
dynamically unstable [29].

18.7 ATOMISTIC SIMULATIONS
Let us study the influence on the strength of nanocracks and circular nanoholes.
n atomic adjacent vacancies perpendicular to the load correspond to a blunt nano-
crack of length 2az nq and thickness 2bz q (or 2az nq with a radius at tips of
b2/az q/2). Similarly, nanoholes of sizem can be considered: the indexm¼ 1 corre-
sponds to the removal of an entire hexagonal ring, m¼ 2 to the additional removal of
the six hexagons around the former one (i.e. the adjacent perimeter of 18 atoms),
m¼ 3 to the additional removal of the neighboring 12 hexagonal rings (next adjacent
perimeter), and so on (thus, a ¼ bzqð2m� 1Þ= ffiffiffi

3
p

). Quantum mechanics (QM),
semiempirical (PM3 method), molecular mechanics (MM; with a modified Tersoffe-
Brenner potential of second generation (MTB-G2) or a modified Morse potential
(M)) and coupled QM/MM calculations [30e34] are reported and extensively
compared in Table 18.1 with the QFM nonasymptotic predictions of Eqn (18.2)
(differently from the asymptotic comparison reported in Refs [3,12]). The compar-
ison shows a relevant agreement, confirming and demonstrating that just a few vacan-
cies can dramatically reduce the strength of a single nanotube/graphene, or of
a nanotube/graphene bundle as described by Eqn (18.3) that predicts for fz 1,

sC=s
ðtheoÞ
C zsN=s

ðtheoÞ
N . Assuming large holes (m/N) and applying QFM to

a defective bundle (fz 1), we predict 1� sC=s
ðtheoÞ
C z1� sN=s

ðtheoÞ
N z67%; but

nanocracks surely would be even more critical, especially if interacting with each
other or with the boundary. Thus, the expectation for a nanotube/graphene megacable
of strength larger than w33 GPa is unlikely.

Note that an elastic (kz 1), nearly perfectly plastic (kz 0) behavior with a flow
stress atw30e35 GPa for strains larger thanw3e5% has been recently observed in
tensile tests of carbon nanotubes [35], globally suggesting kz 0.6e0.7; similarly,
numerically computed stressestrain curves [36] reveal for an armchair (5,5) carbon
nanotube kz 0.8, whereas for a zigzag (9,0) nanotube kz 0.7, suggesting that the
plastic correction reported in Section 4 could have a role in nanotubes or graphene.

Regarding elasticity, we note that Eqn (18.8) can be viewed as a generalization of
the approach proposed in Ref. [37], being able to quantify the constants ki fitted by
atomistic simulations for three different types of defect [28]. In particular,
rearranging Eqn (18.8) and in the limit of three small cracks, we deduce
Eth

E
z1þ k1c1 þ k2c2 þ k3c3, identical to their law (Eqn (18.15)), in which ci¼

Qi /L is the linear defect concentration in a nanotube of length L and radius R and

ki ¼ xcin
2
i q

2

p2R
. These authors consider 1, 2 and 3 atoms missing, with and without
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reconstructed bonds; for nonreconstructed bonds two alternative defect orientations
were investigated for 2 and 3 atoms missing. Even if their defect geometries are
much more complex than the nanocracks that we consider here, the comparison
between our approach and their atomistic simulations, which does not involve best-
fit parameters, shows a good agreement [28].

18.8 NANOTENSILE TESTS
The discussed tremendous defect sensitivity, described by Eqn (18.2), is
confirmed by a statistical analysis based on Nanoscale Weibull Statistics
(NWS) [16] applied to nanotensile tests. According to this treatment, the proba-
bility of failure P for a nearly defect-free nanotube/graphene under a tensile stress
sN is independent from its volume (or surface), in contrast to classical Weibull
Statistics [38], namely,

P ¼ 1� exp� NN

�
sN

s0

�w

(18.9)

where w is the nanoscale Weibull modulus, s0 is the nominal failure stress (i.e.
corresponding to a probability of failure of 63%) and NNh 1. In classical Weibull
statistics, NNh V/V0 for volume dominating defects (or NN¼A/A0 for surface
dominating defects), i.e. NN is the ratio between the volume (or surface) of the
structure and a reference volume (or surface). The experimental data on carbon
nanotubes [7,8] were treated [16] according to nanoscale and classical Weibull
statistics: the coefficients of correlation were found to be much higher for the nano-
scale statistics than for the classical one (0.93 against 0.67, wz 2.7 and
s0z 31e34 GPa). The data set on MWCNT tensile experiments [39] has also been
statistically treated [3]. Thevery large, highestmeasured strengths denote interactions
between the external and internal walls, as pointed out by the same authors [39] and
recently quantified [14]. Thus, the measured strengths cannot be considered plausible
for describing the strength of a SWCNT. Such experiments were best-fitted with
s0z 108 GPa (but not significant for the strength of a single nanotube) and wz 1.8
(coefficient of correlation 0.94). In Fig. 18.3, the new data set [40] is treated [4] by
applying NWS (NNh 1, wz 2.2, s0z 25 GPa) and compared with the other
nanoscale statistics [3,4] deduced from the other data sets [7,8,39]. Note that volume-
or surface-based Weibull statistics are identical in treating the external wall of the
tested nanotubes, just an atomic layer thick. We have found a poor coefficient of
correlation also treating this newdata setwith classicalWeibull statistics, namely 0.51
(against 0.88 for NWS, see Fig. 18.3).

All these experimental data [7,8,39,40] are treated in Table 18.2, by applying
QFM in the form of Eqn (18.2): nonlinear multiple solutions for identifying the
defects corresponding to the measured strength clearly emerge; however, these are
quantifiable, showing that a small defect is sufficient to rationalize the majority of
the observed strong strength reductions.
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Finally, the new experimental results [39] are differently treated in Table 18.3,
with respect to both strength and elasticity, assuming the presence of transversal
nanocracks. The ideal strength is assumed to be of 100 GPa and the theoretical
Young’s modulus of 1 TPa; by Eqn (18.2), the crack length n is calculated and
introduced in Eqn (18.8) to derive the related vacancy fraction v (x¼ p/2).

18.9 THERMODYNAMIC LIMIT
Defects are thermodynamically unavoidable, especially at the megascale. At the
thermal equilibrium, the vacancy fraction f¼ n/N� 1 (n is the number of vacancies
and N is the total number of atoms) is estimated as follows [41]:

fze�E1ðkBTaÞ (18.10)

where E1z 7 eV is the energy required to remove one carbon atom and Ta is the
absolute temperature at which the carbon is assembled, typically in the range
between 2000 and 4000 K. Thus, fz 2.4� 10�18e1.6� 10�9. For example for
a space elevator megacable, having a carbon weight ofw5000 Kg, the total number
of atoms is Nz 2.5� 1029, thus a huge number of equilibrium defects in the range
nz 0.6� 1012e3.9� 1020 is expected in agreement with a recent discussion [42]
and observations [43].
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FIGURE 18.3

Nanoscale Weibull statistics, straight lines, applied to nanotensile experiments on carbon

nanotubes. From: The role of defects in the design of the space elevator cable: from

nanotube to megatube, Acta Materialia 55 2007 [4]. (For color version of this figure, the

reader is referred to the online version of this book.)
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Table 18.2 Experiments vs QFM Predictions; Strength Reduction sNða; bÞ=sðtheoÞN Derived According to Eqn (18.2) for carbon nanotubes

and graphene. From: The role of defects in the design of the space elevator cable: from nanotube to megatube, Acta Materialia 55 2007 [4]

sN/s
ðtheoÞ
N 2a/q 2b/q 0 1 2 3 4 5 6 7 8 9 10 N

0 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00

1 0.71* 0.75 0.79 0.82 0.85 0.87* 0.88* 0.90 0.91 0.91 0.92 1.00

2 0.58 0.60* 0.64* 0.68 0.71* 0.73 0.76 0.78* 0.79 0.81 0.82 1.00

3 0.50 0.52 0.54* 0.58 0.61 0.64* 0.66* 0.68 0.70* 0.72 0.74 1.00

4 0.45 0.46 0.48 0.51* 0.54* 0.56 0.59 0.61 0.63 0.65 0.67 1.00

5 0.41 0.42 0.44* 0.46 0.48 0.51* 0.53* 0.55* 0.58 0.59 0.61 1.00

6 0.38 0.38 0.40 0.42 0.44* 0.47 0.49* 0.51* 0.53* 0.55* 0.57 1.00

7 0.35 0.36 0.37 0.39 0.41 0.43 0.45 0.47 0.49* 0.51* 0.53* 1.00

8 0.33 0.34 0.35 0.37 0.38 0.40 0.42 0.44* 0.46 0.48 0.49* 1.00

9 0.32 0.32 0.33 0.34 0.36 0.38 0.40 0.41 0.43 0.45 0.46 1.00

10 0.30* 0.30* 0.31 0.33 0.34 0.36 0.37 0.39 0.41 0.42 0.44* 1.00

11 0.29 0.29 0.30* 0.31 0.32 0.34 0.35 0.37 0.39 0.40 0.42 1.00

12 0.28 0.28 0.29 0.30* 0.31 0.32 0.34 0.35 0.37 0.38 0.40 1.00

13 0.27 0.27 0.28 0.29 0.30* 0.31 0.32 0.34 0.35 0.36 0.38 1.00

14 0.26 0.26 0.27 0.27 0.29 0.30* 0.31 0.32 0.34 0.35 0.36 1.00

15 0.25 0.25 0.26 0.27 0.27 0.29 0.30* 0.31 0.32 0.34 0.35 1.00

16 0.24* 0.24* 0.25 0.26 0.27 0.28 0.29 0.30* 0.31 0.32 0.33 1.00

17 0.24* 0.24* 0.24* 0.25 0.26 0.27 0.28 0.29 0.30* 0.31 0.32 1.00

18 0.23 0.23 0.24* 0.24* 0.25 0.26 0.27 0.28 0.29 0.30* 0.31 1.00

19 0.22* 0.22* 0.23 0.23 0.24* 0.25 0.26 0.27 0.28 0.29 0.30* 1.00

20 0.22* 0.22* 0.22* 0.23 0.24* 0.24* 0.25 0.26 0.27 0.28 0.29 1.00

21 0.21 0.21 0.22* 0.22* 0.23 0.24* 0.25 0.25 0.26 0.27 0.28 1.00

(Continued)
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Table 18.2 Experiments vs QFM Predictions; Strength Reduction sN(a,b)/sN
(theo) Derived According to Eqn (18.2) for carbon nanotubes and

graphene. From: The role of defects in the design of the space elevator cable: from nanotube to megatube, Acta Materialia 55 2007 [4]d

Cont’d

sN/s
ðtheoÞ
N 2a/q 2b/q 0 1 2 3 4 5 6 7 8 9 10 N

22 0.21 0.21 0.21 0.22* 0.22* 0.23 0.24* 0.25 0.26 0.27 0.28 1.00

23 0.20 0.21 0.21 0.21 0.22* 0.23 0.23 0.24* 0.25 0.26 0.27 1.00

24 0.20 0.20 0.20 0.21 0.21 0.22* 0.23 0.24* 0.24* 0.25 0.26 1.00

25 0.20 0.20 0.20 0.20 0.21 0.22* 0.22* 0.23 0.24* 0.25 0.26 1.00

26 0.19 0.19 0.20 0.20 0.20 0.21 0.22* 0.22* 0.23 0.24* 0.25 1.00

27 0.19 0.19 0.19 0.20 0.20 0.21 0.21 0.22* 0.23 0.24* 0.24* 1.00

28 0.19 0.19 0.19 0.19 0.20 0.20 0.21 0.22* 0.22* 0.23 0.24* 1.00

29 0.18 0.18 0.19 0.19 0.19 0.20 0.20 0.21 0.22* 0.23 0.23 1.00

30 0.18 0.18 0.18 0.19 0.19 0.19 0.20 0.21 0.21 0.22* 0.23 1.00

31 0.18 0.18 0.18 0.18 0.19 0.19 0.20 0.20 0.21 0.22* 0.22* 1.00

32 0.17* 0.17* 0.18 0.18 0.18 0.19 0.19 0.20 0.21 0.21 0.22* 1.00

33 0.17* 0.17* 0.17* 0.18 0.18 0.19 0.19 0.20 0.20 0.21 0.21 1.00

34 0.17* 0.17* 0.17* 0.17* 0.18 0.18 0.19 0.19 0.20 0.20 0.21 1.00

35 0.17* 0.17* 0.17* 0.17* 0.17* 0.18 0.18 0.19 0.19 0.20 0.21 1.00

36 0.16 0.16 0.17* 0.17* 0.17* 0.18 0.18 0.19 0.19 0.20 0.20 1.00

37 0.16 0.16 0.16 0.17* 0.17* 0.17* 0.18 0.18 0.19 0.19 0.20 1.00

38 0.16 0.16 0.16 0.16 0.17* 0.17* 0.18 0.18 0.19 0.19 0.20 1.00

39 0.16 0.16 0.16 0.16 0.17* 0.17* 0.17* 0.18 0.18 0.19 0.19 1.00
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sN/s
ðtheoÞ
N 2a/q 2b/q 0 1 2 3 4 5 6 7 8 9 10 N

40 0.16 0.16 0.16 0.16 0.16 0.17* 0.17* 0.18 0.18 0.19 0.19 1.00

41 0.15 0.15 0.16 0.16 0.16 0.16 0.17* 0.17* 0.18 0.18 0.19 1.00

42 0.15 0.15 0.15 0.16 0.16 0.16 0.17* 0.17* 0.18 0.18 0.19 1.00

43 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17* 0.17* 0.18 0.18 1.00

44 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17* 0.17* 0.18 0.18 1.00

45 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17* 0.17* 0.18 1.00

46 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.17* 0.17* 0.18 1.00

47 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17* 0.17* 1.00

48 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.17* 0.17* 1.00

49 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.16 0.16 0.16 0.17* 1.00

50 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.17* 1.00

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (1+2a/b)-1

In bold type are represented the 15 different nanostrengths measured on single-walled carbon nanotubes in bundle [7]; whereas in italic, we report the 19 nano-
strengths measured on multiwalled carbon nanotubes [8], and in underlined type, the most recent 18 observations [35]. All the data are reported with the exception of
the five smallest values of 0.08, 0.10 [35], 0.11 [8], 0.12 [8,35] and 0.13 [7], for which we would need for example adjacent vacancies (2b/qw 1) in number
n¼ 2a/q¼ 138–176, 90–109, 75–89, 64–74 and 55–63 respectively. The 26 strengths measured in Ref. [39] are also treated (asterisks), simply assuming two
interacting walls for 100 < s

ðexpÞ
N � 200 Gpa (thus, sN ¼ s

ðexpÞ
N =2) or three interacting walls for 200 < s

ðexpÞ
N � 300 GpaðsN ¼ s

ðexpÞ
N =3Þ. All the experiments are

referred to s
ðtheoÞ
N ¼ 100 GPa (qw 0.25 nm). If all the nanotubes in the cable contain identical holes, sC=s

ðtheoÞ
C ¼ sN=s

ðtheoÞ
N .

1
8
.9

T
h
e
rm

o
d
yn
a
m
ic

L
im

it
5
1
1



The strength of the cable will be dictated by the largest transversal crack on it,
according to the weakest link concept. The probability of finding a nanocrack of
size m in a bundle with vacancy fraction f is P(m)¼ (1� f) f m, and thus, the number
M of such nanocracks in a bundle composed by N atoms isM(m)¼ P(m)N. The size

Table 18.3 Fracture strength, Young’s modulus, non-linear elasticity, crack size and

defect content estimations from Modulus nanotensile tests. From: Modulus, fracture

strength, and brittle vs plastic response of the outer shell of arc-grown multiwalled

carbon nanotubes, Experimental Mechanics 47 2006 [35]

MWCNT Number and
Fracture Typology

Strength
[GPa]

Young’s
Modulus
[GPa] k n v (%)

1 (multiple load A) 8.2 1100 1.01 148 0.07

2 (clamp failed) 10 840 0.98 100 0.23

3 12 680 1.00 69 0.44

4 (failure at the clamp) 12 730 0.98 69 0.40

5 (multiple load B) 14 1150 1.02 51 0.14

6 (multiple load a) 14 650 0.97 51 0.62

7 15 1200 1.05 44 0.11

8 16 1200 1.02 39 0.13

9 17 960 1.00 34 0.49

10 19 890 0.97 27 0.74

11 (multiple load b) 21 620 0.99 22 1.51

12 (multiple load I) 21 1200 0.99 22 0.22

13 (multiple load II) 23 1250 0.99 18 0.17

14 30 870 1.00 11 1.92

15 (plasticity observed) 31 1200 0.59 (0.99) 10 0.49

16 (plasticity observed) 34 680 0.69 (1.02) 8 3.80

17 (multiple load III) 41 1230 1.03 5 0.69

18 (failure at the clamp) 66 1100 0.98 2 4.90

The new results [35] are here treated with respect to both strength and elasticity, assuming the presence
of transversal nanocracks composed by n adjacent vacancies [4]. The constitutive parameter k has been
estimated as kzlnðεNÞ=lnðsN=EÞ for all the tests: note the low values for the two nanotubes that revealed
plasticity (in brackets, the values calculated up to the incipient plastic flow are also reported). The ideal
strength is assumed tobeof 100 GPaand the theoretical Young’smodulus of 1300 GPa;byEqn (18.2), the
crack length n is calculated and introduced in Eqn (18.8) to derive the related vacancy fraction v (x¼p/2).
Fracture in two cases was observed at the clamp; in one case, the clamp itself failed, thus the deduced
strength represents a lower bound of the nanotube strength. Three nanotubesweremultiple loaded (in two
a,b and A,B or in three I,II, and III steps), i.e. after the breaking in two pieces of a nanotube, one of the two
pieceswasagain testedand fracturedatahigher stress. Twonanotubesdisplayedaplastic flow.Avacancy
fraction of the order of few& is estimated, suggesting that such nanotubes are muchmore defective than
as imposed by the thermodynamic equilibrium, even if the defects are small and isolated. However, note
that other interpretations are still possible, e.g. assuming the nanotubes coated by an oxide layer and
rationalizing the ratio between the observed Young’s modulus and its theoretical value as the volumetric
fraction (for softer coating layers) of carbon in the composite structure.
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of the largest nanocrack, which typically occurs once, is found from the solution to
the equation M(m)z 1, which implies [44]:

m z� ln½ð1� f ÞN�=ln fz� lnN=ln f (18.11)

For example, we deduce a size mz 2e4 for the largest thermodynamically
unavoidable defect in the considered megacable. Inserting Eqns (18.11) and
(18.10) into Eqn (18.2) evaluated for a transversal crack (bz 0 and 2a/qzm),
we deduce the statistical counterpart of Eqn (18.2) and thus, the following thermo-
dynamical maximum achievable strength:

sNðNÞ
s
ðtheoÞ
N

� s
ðmaxÞ
N ðNÞ
s
ðtheoÞ
N

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kBTa

E1
lnN

r (18.12)

Then, inserting Eqn (18.12) into Eqns (18.3) and (18.4), the maximum cable
strength and minimum taper ratio can be statistically deduced. The corresponding
maximum achievable strength, at unavoidable limit (at least at the thermodynamic
equilibrium), is w45 GPa and the corresponding flaw-tolerant taper ratio is w4.6.
But the larger taper ratio implies a large cable mass and thus a large number N of
atoms. Updating N in our statistical calculation yields the same, thus self-
consistent, predictions. Statistically, we expect an even smaller strength, as previ-
ously discussed.

18.10 SLIDING FAILURE
The fracture mechanics approach could be of interest to evaluate the strength of
nanotube/graphene bundles assuming a sliding failure mode [45]. This hypothesis
is complementary to that of intrinsic nanotube/graphene fracture, already treated
in the previous sessions. Thus we assume the interactions between adjacent nano-
tubes/graphene as the weakest links, i.e. that the fracture of the bundle composite
is caused by nanotube sliding rather than by their intrinsic fracture.

Accordingly, the energy balance during a longitudinal delamination (here
“delamination” has the meaning of Mode II crack propagation at the interface
between adjacent nanotubes/graphene ribbons) dz under the applied force F is

dF� Fdu� 2gðPC þ PvdWÞdz ¼ 0 (18.13)

where dF and du are the strain energy and elastic displacement variation, respec-
tively, due to the infinitesimal increment in the compliance caused by the delami-
nation dz; Pvdw describes the still existing van der Waals attraction (e.g. attractive
part of the Lennard-Jones potential) for vanishing nominal contact nanotube
perimeter PC¼ 6a (the shear force between two nanotube/graphene layers becomes
zero for nominally negative contact area); g is the surface energy of the interface.
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Elasticity poses
dF

dz
¼ � F2

2ES
, where S is the cross-sectional surface area of the

nanotube, whereas according to Clapeyron’s theorem Fdu¼2dF. Thus, the
following simple expression for the bundle composite strength (sC¼ FC/S, effective
stress and cross-sectional surface area are here considered; FC is the force at frac-
ture) is predicted:

s
ðtheoÞ
C ¼ 2

ffiffiffiffiffiffiffiffiffiffi
Eg

P

S

r
(18.14)

in which it appears as the ratio between the effective perimeter (P¼ PCþ PvdW) in
contact and the cross-sectional surface area of the nanotubes.

Equation (18.14) can be considered valid also for the entire bundle composite,
since we are assuming here the same value P/S for all the nanotubes/graphene
ribbons; the fact that the strength is not a function of the numbers or bundle
composite size is for the same reason, i.e. because we are not assuming here
a “defect” size distribution for S/Pdthat basically represents a characteristic
defect sizedbut a constant value; of course, assuming a statistical distribution
for the characteristic defect size S/P with the upper limit proportional to the struc-
tural size (the larger the structure the larger the largest defect) would imply a size
effect, thus a dependence on the nanotube/graphene numbers or bundle composite
size. Nevertheless, here we are interested in the simplest model (1) and in the
upperbound strength predictions (2), thus we do not consider statistics into
Eqn (18.14).

Note that Eqn (18.14) is basically the asymptotic elastic limit for sufficiently
long overlapping length, that is, the length along with two adjacent nanotubes/
graphene ribbons are nominally in contact; for overlapping length smaller than
a critical value, the strength increases by increasing the overlapping length; for
a single nanotube/graphene, this overlapping length is of the order of 10 mm,
whereas it is expected to be larger for bundles/composites, (e.g. of the order of
several millimeters, as confirmed experimentally). This critical length is

[Cz6

ffiffiffiffiffiffiffiffi
hES

PG

r
where h and G are the thickness and shear modulus of the interface,

respectively. It suggests that increasing the size scale Lf
ffiffiffi
S

p
fPfh, this critical

length increases too, namely [f L, thus the strength increases by increasing the
overlapping length in a wider range; however, note that the achievable strength is

reduced since, s
ðtheoÞ
C f

ffiffiffi
h

p
[�1f

ffiffiffiffiffiffiffiffi
P=S

p
fL�1=2, if Lf [f h: increasing the over-

lapping length ad infinitum is not a way to indefinitely increase the strength. The
real strength could be significantly smaller, not only because [< [C but also as
a consequence of the misalignment of the nanotubes/graphene ribbons with respect
to the bundle axis.

Assuming a nonperfect alignment in the bundle, described by a non-zero angle
b (here assumed identical for all the nanotubes/graphene ribbons, even ifdalso in
this case, as for the characteristic defect size S/Pda proper statistics could
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be invoked for this parameter), the longitudinal force carried by the nanotubes/
graphene ribbons will be F/cosb, thus the equivalent Young’ modulus of the
bundle/composite will be E cos2b, as can be evinced by the corresponding modifi-
cation of the energy balance during delamination; accordingly,

sC ¼ 2 cos b

ffiffiffiffiffiffiffiffiffiffi
Eg

P

S

r
(18.15)

Applying eq. 18.15 to nanotubes, The maximal achievable strength is predicted
for collapsed [45] perfectly aligned (sufficiently overlapped) nanotubes in a bundle

or nanotubes even not collapsed in a composite, i.e.
P

S
z

1

Nt
; b ¼ 0:

s
ðtheo;NÞ
C ¼ 2

ffiffiffiffiffiffi
Eg

Nt

r
(18.16)

Taking E¼ 1 TPa (Young’s modulus of graphene), g¼ 0.2 N/m (surface energy
of graphene; however, note that in reality, g could be also larger as a consequence of
additional dissipative mechanisms, e.g. fracture and friction in addition to adhesion,
or presence of a matrix in a nanotube/graphene composites), the predicted maxi-
mum strength for single walled nanotube (N¼ 1) fiber/composite is

s
ðmax;CNTÞ
C ¼ s

ðtheo;1Þ
C ¼ 48:5 GPa, whereas for double- or triple-walled nanotubes,

s
ðtheo;2Þ
C ¼ 34:3 GPa or s

ðtheo;3Þ
C ¼ 28:0 GPa. For graphene, the surface area for

load transfer is doubledwith respect to the case of the single carbon nanotube (the inner
surface area does not contribute) and thus from eqn (18.15) we predict [46],

s
ðmax;GÞ
C ¼

ffiffiffi
2

p
s
ðmax;CNTÞ
C (18.17)

This result is important and suggests that graphene is superior even to nanotubes
for designing superstrong fibers and composites. These maximum stress predictions
assume a vanishing matrix content in the fibers/composites; in general we expect:

s
ðCompositeÞ
C y s

ðG;CNTÞ
C f þ s

ðmatrixÞ
C ðr � PÞ

where P is the volumetric content of graphene or carbon nanotubes in the composite.

18.11 CONCLUSIONS
The strength of a real, thus defective, carbon nanotube or graphene superstrong
fibers is expected to be greatly reduced with respect to the theoretical strength of
carbon nanotubes or graphene. Accordingly, in this chapter, key simple formulas
for the design of superstrong carbon nanotube and graphene fibers and composites
have been reviewed based on the analysis reported in previous papers by the same
author. Graphene has been demonstrated to be superior even with respect to carbon
nanotubes.
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the Paris’ regime, Engineering Fracture Mechanics 74 (2007) 595e601.

[24] J.R. Rice, G.F. Rosengren, Plane strain deformation near a crack tip in a power-law
hardening material, Journal of the Mechanics and Physics of Solids 16 (1968) 1e12.

[25] A. Carpinteri, N. Pugno, Fracture instability and limit strength condition in structures
with re-entrant corners, Engineering Fracture Mechanics 72 (2005) 1254e1267.

[26] A. Carpinteri, B. Chiaia, Crack-resistance behavior as a consequence of self-similar
fracture topologies, International Journal of Fracture 76 (1996) 327e340.

[27] Q.Z. Wang, Simple formulae for the stress-concentration factor for two- and
three-dimensional holes in finite domains, Journal of Strain Analysis 73 (2002)
259e264.

[28] N. Pugno, Young’s modulus reduction of defective nanotubes, Applied Physics Letters
90 (2007) 043106.

[29] N. Pugno, H. Troger, A. Steindl, M. Schwarzbart, On the stability of the track of the
space elevator, Proc. of the 57th International Astronautical Congress, October 2e6,
2007b, (Valencia, Spain).

[30] S.L. Mielke, D. Troya, S. Zhang, J.-L. Li, S. Xiao, R. Car, R.S. Ruoff, G.C. Schatz,
T. Belytschko, The role of vacancy defects and holes in the fracture of carbon
nanotubes, Chemical Physics Letters 390 (2004) 413e420.

[31] N. Pugno. Mimicking nacre with super-nanotubes for producing optimized super-
composites. Nanotechnology 17 (2006) 5480-5484.

[32] T. Belytschko, S.P. Xiao, R. Ruoff, Effects of Defects on the Strength of Nanotubes:
Experimental-Computational Comparisons, Los Alamos National Laboratory, 2002.
Preprint Archive, Physics, arXiv:physics/0205090.

[33] S. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, T. Belytschko,
Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations,
Physical Review B 71 (2005) 115403 1e12.

[34] R. Khare, S.L. Mielke, J.T. Paci, S. Zhang, R. Ballarini, G.C. Schatz, T. Belytschko,
Coupled quantum mechanical/molecular mechanical modelling of the fracture of
defective carbon nanotubes and grapheme sheets, Physical Review B 75 (2007)
075412.

[35] W. Ding, L. Calabri, K.M. Kohlhaas, X. Chen, D.A. Dikin, R.S. Ruoff, Modulus,
fracture strength, and brittle vs plastic response of the outer shell of arc-grown mul-
tiwalled carbon nanotubes, Experimental Mechanics 47 (2006) 25e36.

[36] M. Meo, M. Rossi, Tensile failure prediction of single wall carbon nanotube, Engi-
neering Fracture Mechanics 73 (2006) 2589e2599.

[37] M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski, Mechanical
properties of carbon nanotubes with vacancies and related defects, Physical Review B
70 (2004) 245416e245421/8.

[38] W. Weibull, A statistical theory of the strength of materials, Ingeniörsvetens
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