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Strength of Nanotubes and Megacables

Nicola M. Pugno

Abstract In this chapter my findings [mainly reported in N. Pugno, J. Phys.–
Condens. Matter, 18, S1971–S1990 (2006); N. Pugno, Acta Mater. 55, 5269–5279
(2007); N. Pugno, Nano Today 2, 44–47 (2007)] on the mechanical strength of nano-
tubes and megacables are reviewed, with an eye to the challenging project of the
carbon nanotube-based space elevator megacable. Accordingly, basing the design
of the megacable on the theoretical strength of a single carbon nanotube, as orig-
inally proposed at the beginning of the third millennium, has been demonstrated
to be naïve. The role on the fracture strength of thermodynamically unavoidable
atomistic defects with different size and shape is thus here quantified on brittle
fracture both numerically (with ad hoc hierarchical simulations) and theoretically
(with quantized fracture theories), for nanotubes and nanotube bundles. Fatigue,
elasticity, non-asymptotic regimes, elastic-plasticity, rough cracks, finite domains
and size-effects are also discussed.

Introduction

A space elevator basically consists of a cable attached to the Earth surface for carry-
ing payloads into space [1]. If the cable is long enough, i.e. around 150 Mm (a value
that can be reduced by a counterweight), the centrifugal forces exceed the gravity
of the cable, that will work under tension [2]. The elevator would stay fixed geosyn-
chronously; once sent far enough, climbers would be accelerated by the Earth’s
rotational energy. A space elevator would revolutionize the methodology for car-
rying payloads into space at low cost, but its design is very challenging. The most
critical component in the space elevator design is undoubtedly the cable [3–5], that
requires a material with very high strength and low density.
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Considering a cable with constant cross-section and a vanishing tension at the
planet surface, the maximum stress-density ratio, reached at the geosynchronous
orbit, is for the Earth equal to 63 GPa/(1,300 kg/m3), corresponding to 63 GPa if the
low carbon density is assumed for the cable. Only recently, after the re-discovery of
carbon nanotubes [6], such a large failure stress has been experimentally measured,
during tensile tests of ropes composed of single walled carbon nanotubes [7] or
multiwalled carbon nanotubes [8] both expected to have an ideal strength of ~100
GPa. Note that for steel (density of 7,900 kg/m3, maximum strength of 5 GPa) the
maximum stress expected in the cable would be of 383 GPa, whereas for kevlar
(density of 1,440 kg/m3, strength of 3.6 GPa) of 70 GPa, both much higher than
their strengths [3].

However, an optimized cable design must consider a uniform tensile stress profile
rather than a constant cross-section area [2]. Accordingly, the cable could be built
of any material by simply using a large enough taper-ratio, that is the ratio between
the maximum (at the geosynchronous orbit) and minimum (at the Earth’s surface)
cross-section area. For example, for steel or kevlar a giant and unrealistic taper-ratio
would be required, 1033 or 2.6×108 respectively, whereas for carbon nanotubes it
must theoretically be only 1.99. Thus, the feasibility of the space elevator seems to
become only currently plausible [9, 10] thanks to the discovery of carbon nanotubes.
The cable would represent the largest engineering structure, hierarchically designed
from the nano- (single nanotube with length of the order of a hundred nanometers)
to the mega-scale (space elevator cable with a length of the order of a hundred
megameters).

In this chapter the asymptotic analysis on the role of defects for the mega-
cable strength, based on new theoretical deterministic and statistical approaches of
quantized fracture mechanics proposed by the author [11–14], is extended to non
asymptotic regimes, elastic-plasticity, rough cracks and finite domains. The role of
thermodynamically unavoidable atomistic defects with different size and shape is
thus quantified on brittle fracture, fatigue and elasticity, for nanotubes and nanotube
bundles. The results are compared with atomistic and continuum simulations and
nano-tensile tests of carbon nanotubes. Key simple formulas for the design of a
flaw-tolerant space elevator megacable are reported, suggesting that it would need
a taper-ratio (for uniform stress) of about two orders of magnitude larger than as
today erroneously proposed.

The chapter is organized in 10 short sections, as follows. After this introduction,
reported as the first section, we start calculating the strength of nanotube bun-
dles by using ad hoc hierarchical simulations, discussing the related size-effect.
In Sect. ‘Brittle Fracture’ the strength reduction of a single nanotube and of a
nanotube bundle containing defects with given size and shape is calculated; the
taper-ratio for a flaw-tolerant space elevator cable is accordingly derived. In Sect.
‘Elastic-Plasticity, Fractal Cracks and Finite Domains’ elastic-plastic (or hyper-
elastic) materials, rough cracks and finite domains are discussed. In Sect. ‘Fatigue’
the fatigue life time is evaluated for a single nanotube and for a nanotube bundle. In
Sect. ‘Elasticity’ the related Young’s modulus degradations are quantified. In Sects.
‘Atomistic Simulations’, ‘Nanotensile Tests’ we compare our results on strength
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and elasticity with atomistic simulations and tensile tests of carbon nanotubes.
In Sect. ‘Thermodynamic Limit’ we demonstrate that defects are thermodynami-
cally unavoidable, evaluating the minimum defect size and corresponding maximum
achievable strength. The last section presents our concluding remarks.

Hierarchical Simulations and Size-Effects

To evaluate the strength of carbon nanotube cables, the SE3 algorithm, formerly
proposed [3] has been adopted [15]. Multiscale simulations are necessary in order
to tackle the size scales involved, spanning over ∼10 orders of magnitude from
nanotube length (∼100 nm) to kilometre-long cables, and also to provide useful
information about cable scaling properties with length.

The cable is modelled as an ensemble of stochastic ‘springs’, arranged in parallel
sections. Linearly increasing strains are applied to the fibre bundle, and at each
algorithm iteration the number of fractured springs is computed (fracture occurs
when local stress exceeds the nanotube failure strength) and the strain is uniformly
redistributed among the remaining intact springs in each section.

In-silico stress-strain experiments have been carried out according to the follow-
ing hierarchical architecture. Level 1: the nanotubes (single springs, Level 0) are
considered with a given elastic modulus and failure strength distribution and com-
posing a 40×1,000 lattice or fibre. Level 2: again a 40×1,000 lattice composed by
second level ‘springs’, each of them identical to the entire fibre analysed at the first
level, is analysed with in input the elastic modulus and stochastic strength distribu-
tion derived as the output of the numerous simulations to be carried out at the first
level. And so on. Five hierarchical levels are sufficient to reach the size-scale of the
megametre from that of the nanometre, Fig. 1.

The level 1 simulation is carried out with springs L0= 10–7 m in length,
w0= 10–9 m in width, with Young’s modulus E0= 1012 Pa and strength σ f ran-
domly distributed according to the nanoscale Weibull statistics [16] P

(
σf
) =

1 − exp[−(σf/σ0)m], where P is the cumulative probability. Fitting to experiments
[7, 8], we have derived for carbon nanotubes σ 0= 34 GPa and m= 2.7 [16]. Then
the level 2 is computed, and so on. The results are summarized in Fig. 2, in which a
strong size-effect is observed, up to length of ∼1 m.

Given the decaying σ f vs. cable length L obtained from simulations, it is inter-
esting to fit the behaviour with simple analytical scaling laws. Various exist in the
literature, and one of the most used is the Multi-Fractal Scaling Law (MFSL [17],
see also [18]) proposed by Carpinteri. This law has been recently extended towards
the nanoscale [19]:

σf

σmacro
=
√

1+ lch

L+ l0
(1)

where σ f is the failure stress, σmacro is the macrostrength, L is the structural
characteristic size, lch is a characteristic internal length and l0 is defined via
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Fig. 1 Schematization of the adopted multiscale simulation procedure to determine the space
elevator cable strength. Here, N= 5, Nx1=Nx2= . . . Nx5= 40 and Ny1=Ny2= . . . Ny5= 1,000,
so that the total number of nanotubes in the space elevator cable is Ntot= (1,000× 40)5≈1023 [15]

Fig. 2 Comparison between simulations and analytical scaling law Eq. 1 for the failure strength
of the nanotube bundle as a function of its length; the asymptote is at 10.20 GPa [15]

σf (l = 0) = σmacro

√
1+ lch

l0
≡ σnano, where σ nano is the nanostrength. Note

that for l0 = 0 this law is identical to the Carpinteri’ scaling law [17]. Here, we
can choose σ nano as the nanotube stochastic strength, i.e. σ nano= 34 GPa. The
computed macrostrength is σmacro= 10.20 GPa. The fit with Eq. 1 is shown in
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Fig. 1 (‘MFSL cut at the nanoscale’), for the various L considered at the different
hierarchical levels (and compared with the classical ‘MFSL’). The best fit is
obtained for lch= 5×10–5 m, where the analytical law is practically coincident with
the simulated results. Thus, for a carbon nanotube megacable we have numerically
derived a plausible strength σC = σmacro ≈ 10 GPa.

Brittle Fracture

By considering Quantized Fracture Mechanics (QFM; [11–14]), the failure stress
σN for a nanotube having atomic size q (the ‘fracture quantum’) and containing an
elliptical hole of half-axes a perpendicular to the applied load (or nanotube axis)
and b can be determined including in the asymptotic solution [12] the contribution
of the far field stress. We accordingly derive:

σN (a, b)

σ
(theo)
N

=
√

1+ 2a/q (1+ 2a/b)−2

1+ 2a/q
, σ

(theo)
N = KIC√

qπ/2
(2)

where σ
(theo)
N is the theoretical (defect-free) nanotube strength (∼100 GPa, see

Table 1) and KIC is the material fracture toughness. The self-interaction between
the tips has been here neglected (i.e. a << πR, with R nanotube radius) and
would further reduce the failure stress. For atomistic defects (having characteris-
tic length of few Ångstrom) in nanotubes (having characteristic diameter of several
nanometers) this hypothesis is fully verified. However, QFM can easily treat also
the self-tip interaction starting from the corresponding value of the stress-intensity
factor (reported in the related Handbooks). The validity of QFM has been recently
confirmed by atomistic simulations [3–5, 12, 13, 20], but also at larger size-scales
[12, 13, 21] and for fatigue crack growth [14, 22, 23].

Table 1 Atomistic simulations [30–33] vs. QFM predictions, for nano-cracks of size n or nano-
holes of size m [4]

Nanotube type

Nanocrack (n)
and nanohole
(m) sizes

Strength (GPa) by QM (MTB-G2) and MM
(PM3; M) QM/MM atomistic or QFM calculations

[5, 5] Defect-free 105 (MTB-G2); 135 (PM3)
[5, 5] n= 1 (Sym.+H) 85 (MTB-G2), 79 (QFM); 106 (PM3), 101 (QFM)
[5, 5] n= 1 (Asym.

+H)
71 (MTB-G2), 79 (QFM); 99 (PM3), 101 (QFM)

[5, 5] n= 1 (Asym.) 70 (MTB-G2), 79 (QFM); 100 (PM3), 101 (QFM)
[5, 5] n= 2 (Sym.) 71 (MTB-G2), 63 (QFM); 105 (PM3), 81 (QFM)
[5, 5] n= 2 (Asym.) 73 (MTB-G2), 63 (QFM); 111 (PM3), 81 (QFM)
[5, 5] m= 1 (+H) 70 (MTB-G2), 68 for long tube, 79 (QFM); 101

(PM3), 101 (QFM)
[5, 5] m= 2 (+H) 53 (MTB-G2), 50 for long tube, 67 (QFM); 78

(PM3), 86 (QFM)
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Table 1 (continued)

Nanotube type

Nanocrack (n)
and nanohole
(m) sizes

Strength (GPa) by QM (MTB-G2) and MM
(PM3; M) QM/MM atomistic or QFM calculations

[10, 10] Defect-free 88 (MTB-G2); 124 (PM3)
[10, 10] n= 1 (sym.+H) 65 (MTB-G2), 66 (QFM)
[10, 10] n= 1 (Asym.

+H)
68 (MTB-G2), 66 (QFM)

[10, 10] n= 1 (Sym.) 65 (MTB-G2), 66 (QFM); 101 (PM3), 93 (QFM)
[10, 10] n= 2 (Sym.) 64 (MTB-G2), 53 (QFM); 107 (PM3), 74 (QFM)
[10, 10] n= 2 (Asym.) 65 (MTB-G2), 53 (QFM); 92 (PM3), 74 (QFM)
[10, 10] m= 1 (+H) 56 (MTB-G2), 52 for long tube, 66 (QFM); 89

(PM3), 93 (QFM)
[10, 10] m= 2 (+H) 42 (MTB-G2), 36 for long tube, 56 (QFM); 67

(PM3), 79 (QFM)

[50, 0] Defect-free 89 (MTB-G2)
[50, 0] m= 1 (+H) 58 (MTB-G2); 67 (QFM)
[50, 0] m= 2 (+H) 46 (MTB-G2); 57 (QFM)
[50, 0] m= 3 (+H) 40 (MTB-G2); 44 (QFM)
[50, 0] m= 4 (+H) 36 (MTB-G2); 41 (QFM)
[50, 0] m= 5 (+H) 33 (MTB-G2); 39 (QFM)
[50, 0] m= 6 (+H) 31 (MTB-G2); 37 (QFM)

[100, 0] Defect-free 89 (MTB-G2)
[100, 0] m= 1 (+H) 58 (MTB-G2); 67 (QFM)
[100, 0] m= 2 (+H) 47 (MTB-G2); 57 (QFM)
[100, 0] m= 3 (+H) 42 (MTB-G2); 44 (QFM)
[100, 0] m= 4 (+H) 39 (MTB-G2); 41 (QFM)
[100, 0] m= 5 (+H) 37 (MTB-G2); 39 (QFM)
[100, 0] m= 6 (+H) 35 (MTB-G2); 37 (QFM)

[29, 29] Defect-free 101 (MTB-G2)
[29, 29] m= 1 (+H) 77 (MTB-G2); 76 (QFM)
[29, 29] m= 2 (+H) 62 (MTB-G2); 65 (QFM)
[29, 29] m= 3 (+H) 54 (MTB-G2); 50 (QFM)
[29, 29] m= 4 (+H) 48 (MTB-G2); 46 (QFM)
[29, 29] m= 5 (+H) 45 (MTB-G2); 44 (QFM)
[29, 29] m= 6 (+H) 42 (MTB-G2); 42 (QFM)

[47, 5] Defect-free 89 (MTB-G2)
[47, 5] m= 1 (+H) 57 (MTB-G2); 67 (QFM)

[44, 10] Defect-free 89 (MTB-G2)
[44, 10] m= 1 (+H) 58 (MTB-G2); 67 (QFM)

[40, 16] Defect-free 92 (MTB-G2)
[40, 16] m= 1 (+H) 59 (MTB-G2); 69 (QFM)

[36, 21] Defect-free 96 (MTB-G2)
[36, 21] m= 1 (+H) 63 (MTB-G2); 72 (QFM)

[33, 24] Defect-free 99 (MTB-G2)
[33, 24] m= 1 (+H) 67 (MTB-G2); 74 (QFM)
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Table 1 (continued)

Nanotube type

Nanocrack (n)
and nanohole
(m) sizes

Strength (GPa) by QM (MTB-G2) and MM
(PM3; M) QM/MM atomistic or QFM calculations

[80, 0] Defect-free 93 (M)
[80, 0] n= 2 64 (M); 56 (QFM)
[80, 0] n= 4 50 (M); 43 (QFM)
[80, 0] n= 6 42 (M); 35 (QFM)
[80, 0] n= 8 37 (M); 32 (QFM)

[40, 0] (nested by a
[32, 0])

Defect-free 99 (M)

[40, 0] (nested by a
[32, 0])

n= 2 73 (M); 69 (QFM + vdW interaction ∼10GPa)

[40, 0] (nested by a
[32, 0])

n= 4 57 (M); 56 (QFM + vdW interaction ∼10GPa)

[40, 0] (nested by a
[32, 0])

n= 6 50 (M); 48 (QFM + vdW interaction ∼10GPa)

[40, 0] (nested by a
[32, 0])

n= 8 44 (M); 44 (QFM + vdW interaction ∼10GPa)

[100, 0] Defect-free 89 (MTB-G2)
[100, 0] n= 4 50 (M); 41 (QFM)
[10, 0] Defect free 124 (QM); 88 (MM);
[10, 0] n = 1 101 (QM) 95 (QM/MM) 93 (QFM); 65 (MM) 66

(QFM)

The QFM predictions are here obtained simply considering in Eq. 2 2a/q = n, 2b/q = 1 for
cracks of size n or a/q = b/q = (2m− 1)/

√
3 for holes of size m. Quantum mechanics (QM)

semi-empirical calculations (PM3 method), Molecular Mechanics (MM) calculations (modified
Tersoff-Brenner potential of second generation (MTB-G2), modified Morse potential (M)) and
coupled QM/MM calculations. The symbol (+H) means that the defect was saturated with hydro-
gen. Symmetric and asymmetric bond reconstructions were also considered; the tubes are ‘short’,
if not otherwise specified. We have roughly ignored in the QFM predictions the difference between
symmetric and asymmetric bond reconstruction, hydrogen saturation and length-effect (for shorter
tubes an increment in the strength is always observed, as an intrinsic size-effect), noting that the
main differences in the atomistic simulations are imputable to the used potential. For nested nano-
tubes a strength increment of ~10 GPa is here assumed to roughly take into account the van der
Walls (vdW) interaction between the walls

Regarding the defect shape, for a sharp crack perpendicular to the applied load
a/q = const & b/q → 0, thus σN ≈ σ

(theo)
N /

√
1+ 2a/q, and for a/q >> 1, i.e.

large cracks, σN ≈ KIC/
√
πa in agreement with Linear Elastic Fracture Mechanics

(LEFM); note that LEFM can (1) only treat sharp cracks and (2) unreasonably pre-
dicts an infinite defect-free strength. On the other hand, for a crack parallel to the
applied load b/q = const & a/q → 0 and thus σN = σ

(theo)
N , as it must be. In

addition, regarding the defect size, for self-similar and small holes a/b = const &
a/q→ 0 and coherently σN = σ

(theo)
N ; furthermore, for self-similar and large holes

a/b = const & a/q → ∞ and we deduce σN ≈ σ
(theo)
N /(1+ 2a/b) in agreement

with the stress-concentration posed by Elasticity; but Elasticity (coupled with a
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maximum stress criterion) unreasonably predicts (3) a strength independent from the
hole size and (4) tending to zero for cracks. Note the extreme consistency of Eq. 2,
that removing all the limitations (1–4) represents the first law capable of describing
in a unified manner all the size- and shape-effects for the elliptical holes, including
cracks as limit case. In other words, Eq. 2 shows that the two classical strength pre-
dictions based on stress-intensifications (LEFM) or -concentrations (Elasticity) are
only reasonable for ‘large’ defects; Eq. 2 unifies their results and extends its validity
to ‘small’ defects (‘large’ and ‘small’ are here with respect to the fracture quan-
tum). Eq. 2 shows that even a small defect can dramatically reduces the mechanical
strength.

An upper bound of the cable strength can be derived assuming the simultaneous
failure of all the defective nanotubes present in the bundle. Accordingly, impos-
ing the critical force equilibrium (mean-field approach) for a cable composed by
nanotubes in numerical fractions fab containing holes of half-axes a and b, we find
the cable strength σC (ideal if σ (theo)

C ) in the following form:

σC

σ
(theo)
C

=
∑

a,b

fab
σN (a, b)

σ
(theo)
N

(3)

The summation is extended to all the different holes; the numerical fraction f00 of
nanotubes is defect-free and

∑

a,b
fab = 1. If all the defective nanotubes in the bundle

contain identical holes fab = f = 1− f00, and the following simple relation between

the strength reductions holds: 1− σC/σ
(theo)
C = f

(
1− σN/σ

(theo)
N

)
.

Thus, the taper-ratio λ needed to have a uniform stress in the cable [2], under
the centrifugal and gravitational forces, must be larger than its theoretical value
to design a flaw-tolerant megacable. In fact, according to our analysis, we deduce
(λ = econst·ρC/σC ≥ λ(theo) ≈ 1.9 for carbon nanotubes; ρC denotes the material
density):

λ

λ(theo)
= λ(theo)

(
σ
(theo)
C
σC
−1

)

(4)

Equation 4 shows that a small defect can dramatically increase the taper-ratio
required for a flaw-tolerant megacable.

Elastic-Plasticity, Fractal Cracks and Finite Domains

The previous equations are based on linear elasticity, i.e., on a linear relationship
σ ∝ ε between stress σ and strain ε. In contrast, let us assume σ ∝ εκ , where
κ > 1 denotes hyper-elasticity, as well as κ < 1 elastic-plasticity. The power of the
stress-singularity will accordingly be modified [24] from the classical value 1/2 to
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α=κ/(κ + 1). Thus, the problem is mathematically equivalent to that of a re-entrant
corner [25], and consequently we predict:

σN (a, b,α)

σ
(theo)
N

=
(
σN (a, b)

σ
(theo)
N

)2α

, α = κ

κ + 1
(5)

A crack with a self-similar roughness, mathematically described by a fractal with
non-integer dimension 1 < D < 2, would similarly modify the stress-singularity,
according to [18, 26] α = (2− D)/2; thus, with Eq. 5, we can also estimate the
role of the crack roughness. Both plasticity and roughness reduce the severity of
the defect, whereas hyper-elasticity enlarges its effect. For example, for a crack
composed by n adjacent vacancies, we found σN/σ

(theo)
N ≈ (1+ n)−α .

However, note that among these three effects only elastic-plasticity may have
a significant role in carbon nanotubes; in spite of this, fractal cracks could play an
important role in nanotube bundles as a consequence of their larger size-scale, which
would allow the development of a crack surface roughness. Hyper-elasticity is not
expected to be relevant in this context.

According to LEFM and assuming the classical hypothesis of self-similarity
(amax ∝ L), i.e., the largest crack size is proportional to the characteristic struc-
tural size L, we expect a size-effect on the strength in the form of the power law
σC ∝ L−α . For linear elastic materials α = 1/2 as classically considered, but for
elastic-plastic materials or fractal cracks 0 ≤ α ≤ 1/2 [24], whereas for hyper-
elastic materials 1/2 ≤ α ≤ 1, suggesting an unusual and super-strong size-effect.
This parameter would represent the maximum slope (in a bi-log plot) of the scaling
reported in Fig. 1.

Equation 2 does not consider the defect-boundary interaction. The finite
width 2W, can be treated by applying QFM starting from the related expres-
sion of the stress-intensity factor (reported in Handbooks). However, to have
an idea of the defect-boundary interaction, we apply an approximated method
[27], deriving the following correction σN (a, b, W) ≈ C (W) σN (a, b), C (W) ≈
(1− a/W)/

(
σN (a, b)

∣
∣
q→W−a/σ

(theo)
N

)
(note that such a correction is valid also for

W ≈ a, whereas for W >> a it becomes C (W >> a) ≈ 1 − a/W). Similarly, the
role of the defect orientation β could be treated by QFM considering the related
stress-intensity factor; roughly, one could use the self-consistent approximation
σN (a, b,β) ≈ σN (a, b) cos2 β + σN (b, a) sin2 β.

Fatigue

The space elevator cable will be cyclically loaded, e.g., by the climbers carrying
the payloads, thus fatigue could play a role on its design. By integrating the quan-
tized Paris’ law, that is an extension of the classical Paris’ law recently proposed
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especially for nanostructure or nanomaterial applications [14, 22, 23], we derive the
following number of cycles to failure (or life time):

CN (a)

C(theo)
N

= (1+ q/W)1−m/2 − (a/W + q/W)1−m/2

(1+ q/W)1−m/2 − (q/W)1−m/2
, m �= 2 (6a)

CN (a)

C(theo)
N

= ln {(1+ q/W) / (a/W + q/W)}
ln {(1+ q/W) / (q/W)} , m = 2 (6b)

where m > 0 is the material Paris’ exponent. Note that according to Wöhler C(theo)
N =

K�σ−k, where K and k are material constants and �σ is the amplitude of the stress
range during the oscillations. Even if fatigue experiments in nanotubes are still to be
performed, their behaviour is expected to be intermediate between those of Wöhler
and Paris, as displayed by all the known materials, and the quantized Paris’ law
basically represents their asymptotic matching (as quantized fracture mechanics
basically represents the asymptotic matching between the strength and toughness
approaches).

Only defects remaining self-similar during fatigue growth have to be considered,
thus only a crack (of half-length a) is of interest in this context. By means of Eq. 6
the time to failure reduction can be estimated, similarly to the brittle fracture treated
by Eq. 2.

For a bundle, considering a mean-field approach (similarly to Eq. 3) yields:

CC

C(theo)
C

=
∑

a

fa
CN (a)

C(theo)
N

(7)

Better predictions could be derived integrating the quantized Paris’ law for a finite
width strip. However, we note that the role of the finite width is already included in
Eq. 6, even if these are rigorously valid in the limit of W tending to infinity.

Elasticity

Consider a nanotube of lateral surface A under tension and containing a transversal
crack of half-length a. Interpreting the incremental compliance, due to the presence
of the crack, as a Young’s modulus (here denoted by E) degradation we find E(a)

E(theo) =
1−2π a2

A [28]. Thus, recursively, considering Q cracks (in the megacable 1012−1020

defects are expected, see Sect. ‘Hierarchical Simulations and Size-Effects’) having

sizes ai or, equivalently, M different cracks with multiplicity Qi (Q =
M∑

i=1
Qi), noting

that ni = 2ai
q represents the number of adjacent vacancies in a crack of half-length

ai, with q atomic size, and vi = Qini
A/q2 its related numerical (or volumetric) vacancy

fraction, we find [28]:
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E

E(theo)
=

Q∏

i=1

E (ai)

E(theo)
≈ 1− ξ

M∑

i=1

vini (8)

with ξ ≥ π/2, where the equality holds for isolated cracks. Eq. 8 can be applied to
nanotubes or nanotube bundles containing defects in volumetric percentages vi.

Forcing the interpretation of our formalism, we note that ni = 1 would describe
a single vacancy, i.e., a small hole. Thus, as a first approximation, different defect
geometries, from cracks to circular holes, e.g., elliptical holes, could in principle
be treated by Eq. 8; we have to interpret ni as the ratio between the transversal
and longitudinal (parallel to the load) defect sizes (ni = ai/bi). Introducing the
i-th defect eccentricity ei as the ratio between the lengths of the longer and shorter
axes, as a first approximation ni (βi) ≈ ei cos2 βi + 1/ei sin2 βi, where βi is the
defect orientation. For a single defect typology E

E(theo) ≈ 1 − ξvn, in contrast to the

common assumption E
E(theo) ≈ 1− v, rigorously valid only for the cable density, for

which ρC

ρ
(theo)
C

≡ 1−v. Note that the failure strain for a defective nanotube or nanotube

bundle can also be predicted, by εN,C/ε
(theo)
N,C =

(
σN,C/σ

(theo)
N,C

)
/
(
E/E(theo)

)
.

In contrast to what happens for the strength, large defectiveness is required to
have a considerable elastic degradation, even if we have shown that sharp transversal
defects could have a role. For example, too soft space elevator cables would become
dynamically unstable [29].

Atomistic Simulations

Let us study the influence on the strength of nano-cracks and circular nano-holes.
n atomic adjacent vacancies perpendicular to the load, correspond to a blunt nano-
crack of length 2a ≈ nq and thickness 2b ≈ q (or 2a ≈ nq with a radius at tips of
b2/a ≈ q/2). Similarly, nano-holes of size m can be considered: the index m= 1
corresponds to the removal of an entire hexagonal ring, m= 2 to the additional
removal of the six hexagons around the former one (i.e. the adjacent perimeter of
18 atoms), m= 3 to the additional removal of the neighbouring 12 hexagonal rings
(next adjacent perimeter), and so on (thus a = b ≈ q(2m− 1)/

√
3). Quantum

mechanics (QM), semi-empirical (PM3 method), Molecular Mechanics (MM; with
a modified Tersoff-Brenner potential of second generation (MTB-G2) or a modified
Morse potential (M)) and coupled QM/MM calculations [30–33] are reported and
extensively compared in Table 1 with the QFM non-asymptotic predictions of Eq. 2
(differently from the asymptotic comparison reported in [3, 12]). The comparison
shows a relevant agreement, confirming and demonstrating that just a few vacancies
can dramatically reduce the strength of a single nanotube, or of a nanotube bundle
as described by Eq. 3 that predicts for f ≈ 1, σC/σ

(theo)
C ≈ σN/σ

(theo)
N . Assuming

large holes (m→∞) and applying QFM to a defective bundle ( f ≈ 1), we predict
1− σC/σ

(theo)
C ≈ 1− σN/σ

(theo)
N ≈ 67%; but nano-cracks surely would be even
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more critical, especially if interacting with each other or with the boundary. Thus,
the expectation for the megacable of a strength larger than ∼33 GPa is unrealistic.

Note that an elastic (κ ≈ 1) nearly perfectly plastic (κ ≈ 0) behaviour, with a
flow stress at ~30–35 GPa for strains larger than ~3–5%, has been recently observed
in tensile tests of carbon nanotubes [34], globally suggesting κ ≈ 0.6 − 0.7; sim-
ilarly, numerically computed stress-strain curves [35] reveal for an armchair (5, 5)
carbon nanotube κ ≈ 0.8, whereas for a zig-zag (9, 0) nanotube κ ≈ 0.7, suggest-
ing that the plastic correction reported in Sect. ‘Elastic-Plasticity, Fractal Cracks and
Finite Domains’ could have a role.

Regarding elasticity, we note that Eq. 8 can be viewed as a generalization of the
approach proposed in [36], being able to quantify the constants ki fitted by atomistic
simulations for three different types of defect [28]. In particular, rearranging Eq. 8
and in the limit of three small cracks, we deduce Eth

E ≈ 1 + k1c1 + k2c2 + k3c3,
identical to their law (their Eq. 15), in which ci = Qi/L is the linear defect con-

centration in a nanotube of length L and radius R and ki = ξcin2
i q2

π2R
. These authors

consider 1, 2 and 3 atoms missing, with and without reconstructed bonds; for non-
reconstructed bonds two alternative defect orientations were investigated for 2 and 3
atoms missing. Even if their defect geometries are much more complex than the
nanocracks that we here consider, the comparison between our approach and their
atomistic simulations, which does not involve best-fit parameters, shows a good
agreement [28].

Nanotensile Tests

The discussed tremendous defect sensitivity, described by Eq. 2, is confirmed by
a statistical analysis based on Nanoscale Weibull Statistics [16] applied to the
nanotensile tests. According to this treatment, the probability of failure P for a
nearly defect-free nanotube under a tensile stress σN is independent from its volume
(or surface), in contrast to classical Weibull Statistics [37], namely:

P = 1− exp−NN

(
σN

σ0

)w

(9)

where w is the nanoscale Weibull modulus, σ0 is the nominal failure stress (i.e. cor-
responding to a probability of failure of 63%) and NN ≡ 1. In classical Weibull
statistics NN ≡ V/V0 for volume dominating defects (or NN = A/A0 for surface
dominating defects), i.e., NN is the ratio between the volume (or surface) of the
structure and a reference volume (or surface). The experimental data on carbon
nanotubes [7, 8] were treated [16] according to nanoscale and classical Weibull
statistics: the coefficients of correlation were found to be much higher for the
nanoscale statistics than for the classical one (0.93 against 0.67, w ≈ 2.7 and
σ0 ≈ 31 − 34 GPa). The data set on MWCNT tensile experiments [38] has also
been statistically treated [3]. The very large highest measured strengths denotes
interactions between the external and internal walls, as pointed out by the same
authors [38] and recently quantified [14]. Thus, the measured strengths cannot be
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Fig. 3 Nanoscale Weibull Statistics, straight lines, applied to the new nanotensile experiments on
carbon nanotubes [4]

considered plausible for describing the strength of a SWCNT. Such experiments
were best-fitted with σ0 ≈ 108 GPa (but not significant for the strength of a single
nanotube) and w ≈ 1.8 (coefficient of correlation 0.94). In Fig. 3, the new data
set [39] is treated [4] by applying NWS (NN ≡ 1, w ≈ 2.2, σ0 ≈ 25 GPa) and
compared with the other nanoscale statistics [3, 4] deduced from the other data sets
[7, 8, 38]. Note that volume- or surface-based Weibull statistics are identical in treat-
ing the external wall of the tested nanotubes, just an atomic layer thick. We have
found a poor coefficient of correlation also treating this new data set with classical
Weibull statistics, namely 0.51 (against 0.88 for NWS, see Fig. 3).

All these experimental data [7, 8, 38, 39] are treated in Table 2, by applying QFM
in the form of Eq. 2: non-linear multiple solutions for identifying the defects corres-
ponding to the measured strength clearly emerge; however these are quantifiable,
showing that a small defect is sufficient to rationalize the majority of the observed
strong strength reductions.

Finally, the new experimental results [38] are differently treated in Table 3, with
respect to both strength and elasticity, assuming the presence of transversal nano-
cracks. The ideal strength is assumed to be of 100 GPa and the theoretical Young’s
modulus of 1 TPa; by Eq. 2 the crack length n is calculated and introduced in Eq. 8
to derive the related vacancy fraction v (ξ = π/2).

Thermodynamic Limit

Defects are thermodynamically unavoidable, especially at the megascale. At the
thermal equilibrium the vacancy fraction f = n/N << 1 (n is the number of
vacancies and N is the total number of atoms) is estimated as [40]:

f ≈ e−E1/kBTa (10)
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Table 2 Experiments vs. QFM predictions; strength reduction σN (a, b)/σ (theo)
N derived according

to Eq. 2 [4]

σN/σ
(theo)
N 2b/q

2a/q 0 1 2 3 4 5 6 7 8 9 10 ∞
0 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00
1 0.71∗ 0.75 0.79 0.82 0.85 0.87∗ 0.88∗ 0.90 0.91 0.91 0.92 1.00
2 0.58 0.60∗ 0.64∗ 0.68 0.71∗ 0.73 0.76 0.78∗ 0.79 0.81 0.82 1.00
3 0.50 0.52 0.54∗ 0.58 0.61 0.64∗ 0.66∗ 0.68 0.70∗ 0.72 0.74 1.00
4 0.45 0.46 0.48 0.51∗ 0.54∗ 0.56 0.59 0.61 0.63 0.65 0.67 1.00
5 0.41 0.42 0.44∗ 0.46 0.48 0.51∗ 0.53∗ 0.55∗ 0.58 0.59 0.61 1.00
6 0.38 0.38 0.40 0.42 0.44∗ 0.47 0.49∗ 0.51∗ 0.53∗ 0.55∗ 0.57 1.00
7 0.35 0.36 0.37 0.39 0.41 0.43 0.45 0.47 0.49∗ 0.51∗ 0.53∗ 1.00
8 0.33 0.34 0.35 0.37 0.38 0.40 0.42 0.44∗ 0.46 0.48 0.49∗ 1.00
9 0.32 0.32 0.33 0.34 0.36 0.38 0.40 0.41 0.43 0.45 0.46 1.00
10 0.30∗ 0.30∗ 0.31 0.33 0.34 0.36 0.37 0.39 0.41 0.42 0.44∗ 1.00
11 0.29 0.29 0.30∗ 0.31 0.32 0.34 0.35 0.37 0.39 0.40 0.42 1.00
12 0.28 0.28 0.29 0.30∗ 0.31 0.32 0.34 0.35 0.37 0.38 0.40 1.00
13 0.27 0.27 0.28 0.29 0.30∗ 0.31 0.32 0.34 0.35 0.36 0.38 1.00
14 0.26 0.26 0.27 0.27 0.29 0.30∗ 0.31 0.32 0.34 0.35 0.36 1.00
15 0.25 0.25 0.26 0.27 0.27 0.29 0.30∗ 0.31 0.32 0.34 0.35 1.00
16 0.24∗ 0.24∗ 0.25 0.26 0.27 0.28 0.29 0.30∗ 0.31 0.32 0.33 1.00
17 0.24∗ 0.24∗ 0.24∗ 0.25 0.26 0.27 0.28 0.29 0.30∗ 0.31 0.32 1.00
18 0.23 0.23 0.24∗ 0.24∗ 0.25 0.26 0.27 0.28 0.29 0.30∗ 0.31 1.00
19 0.22∗ 0.22∗ 0.23 0.23 0.24∗ 0.25 0.26 0.27 0.28 0.29 0.30∗ 1.00
20 0.22∗ 0.22∗ 0.22∗ 0.23 0.24∗ 0.24∗ 0.25 0.26 0.27 0.28 0.29 1.00
21 0.21 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 0.25 0.25 0.26 0.27 0.28 1.00
22 0.21 0.21 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 0.25 0.26 0.27 0.28 1.00
23 0.20 0.21 0.21 0.21 0.22∗ 0.23 0.23 0.24∗ 0.25 0.26 0.27 1.00
24 0.20 0.20 0.20 0.21 0.21 0.22∗ 0.23 0.24∗ 0.24∗ 0.25 0.26 1.00
25 0.20 0.20 0.20 0.20 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 0.25 0.26 1.00
26 0.19 0.19 0.20 0.20 0.20 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 0.25 1.00
27 0.19 0.19 0.19 0.20 0.20 0.21 0.21 0.22∗ 0.23 0.24∗ 0.24∗ 1.00
28 0.19 0.19 0.19 0.19 0.20 0.20 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 1.00
29 0.18 0.18 0.19 0.19 0.19 0.20 0.20 0.21 0.22∗ 0.23 0.23 1.00
30 0.18 0.18 0.18 0.19 0.19 0.19 0.20 0.21 0.21 0.22∗ 0.23 1.00
31 0.18 0.18 0.18 0.18 0.19 0.19 0.20 0.20 0.21 0.22∗ 0.22∗ 1.00
32 0.17∗ 0.17∗ 0.18 0.18 0.18 0.19 0.19 0.20 0.21 0.21 0.22∗ 1.00
33 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 0.20 0.21 0.21 1.00
34 0.17∗ 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 0.20 0.21 1.00
35 0.17∗ 0.17∗ 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 0.21 1.00
36 0.16 0.16 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 0.20 1.00
37 0.16 0.16 0.16 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 1.00
38 0.16 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 1.00
39 0.16 0.16 0.16 0.16 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 1.00
40 0.16 0.16 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 1.00
41 0.15 0.15 0.16 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 0.19 1.00
42 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 0.19 1.00
43 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 1.00
44 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 1.00
45 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 1.00
46 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.17∗ 0.17∗ 0.18 1.00
47 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 1.00
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Table 2 (continued)

σN/σ
(theo)
N 2b/q

2a/q 0 1 2 3 4 5 6 7 8 9 10 ∞
48 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.17∗ 0.17∗ 1.00
49 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 1.00
50 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.17∗ 1.00
∞ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (1+2a/b)-1

In bold type are represented the 15 different nanostrengths measured on single walled carbon
nanotubes in bundle [7]; whereas in italic we report the 19 nanostrengths measured on multi walled
carbon nanotubes [8], and in underlined type the most recent 18 observations [34]. All the data are
reported with the exception of the five smallest values of 0.08, 0.10 [34], 0.11 [8], 0.12 [8, 34] and
0.13 [7], for which we would need for example adjacent vacancies (2b/q~1) in number n= 2a/q=
138–176, 90–109, 75–89, 64–74 and 55–63 respectively. The 26 strengths measured in [38] are
also treated (asterisks), simply assuming two interacting walls for 100 < σ

(exp)
N ≤ 200 gigapascals

(thus σN = σ
(exp)
N /2) or 3 interacting walls for 200 < σ

(exp)
N ≤ 300 gigapascals (σN = σ

(exp)
N /3).

All the experiments are referred to σ(theo)
N = 100GPa (q~0.25 nm). If all the nanotubes in the cable

contain identical holes, σC/σ
(theo)
C = σN/σ

(theo)
N

where E1 ≈ 7 eV is the energy required to remove one carbon atom and Ta is
the absolute temperature at which the carbon is assembled, typically in the range
between 2,000 and 4,000 K. Thus, f ≈ 2.4 × 10−18 − 1.6 × 10−9. For the mega-
cable, having a carbon weigh of ~5,000 kg, the total number of atoms is N ≈ 2.5×
1029 thus a huge number of equilibrium defects, in the range n ≈ 0.6×1012−3.9×
1020 is expected, in agreement with a recent discussion [41] and observations [42].

The strength of the cable will be dictated by the largest transversal crack on it,
according to the weakest link concept. The probability of finding a nanocrack of size
m in a bundle with vacancy fraction f is P (m) = (1− f ) f m, and thus the number
M of such nanocracks in a bundle composed by N atoms is M (m) = P (m)N27.
The size of the largest nanocrack, which typically occurs once, is found from the
solution to the equation M (m) ≈ 1, which implies [43]:

m ≈ −ln
[
(1− f )N

]
/ln f ≈ −ln N/ln f (11)

Accordingly, we deduce a size m ≈ 2−4 for the largest thermodynamically unavoid-
able defect in the megacable. Inserting Eqs. 11 and 10 into Eq. 2 evaluated for a
transversal crack (b ≈ 0 and 2a/q ≈ m), we deduce the statistical counterpart of Eq.
2 and thus the following thermodynamical maximum achievable strength:

σN (N)

σ
(theo)
N

≤ σ
(max)
N (N)

σ
(theo)
N

= 1
√

1+ kBTa
E1

ln N
(12)

Then, inserting Eq. 12 into Eqs. 3 and 4, the maximum cable strength and minimum
taper-ratio can be statistically deduced. The corresponding maximum achievable
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Table 3 The new results [34] are here treated with respect to both strength and elasticity, assuming
the presence of transversal nanocracks composed by n adjacent vacancies [4]

MWCNT number
and fracture
typology Strength (GPa)

Young’s modulus
(GPa) κ n V (%)

1 (multiple load A) 8.2 1,100 1.01 148 0.07
2 (clamp failed) 10 840 0.98 100 0.23
3 12 680 1.00 69 0.44
4 (failure at the

clamp)
12 730 0.98 69 0.40

5 (multiple load B) 14 1,150 1.02 51 0.14
6 (multiple load a) 14 650 0.97 51 0.62
7 15 1,200 1.05 44 0.11
8 16 1,200 1.02 39 0.13
9 17 960 1.00 34 0.49

10 19 890 0.97 27 0.74
11 (multiple load b) 21 620 0.99 22 1.51
12 (multiple load I) 21 1,200 0.99 22 0.22
13 (multiple load II) 23 1,250 0.99 18 0.17
14 30 870 1.00 11 1.92
15 (plasticity

observed)
31 1,200 0.59 (0.99) 10 0.49

16 (plasticity
observed)

34 680 0.69 (1.02) 8 3.80

17 (multiple load III) 41 1,230 1.03 5 0.69
18 (failure at the

clamp)
66 1,100 0.98 2 4.90

The constitutive parameter κ has been estimated as κ ≈ ln (εN)/ln (σN/E) for all the tests: note
the low values for the two nanotubes that revealed plasticity (in brackets the values calculated
up to the incipient plastic flow are also reported). The ideal strength is assumed to be of 100GPa
and the theoretical Young’s modulus of 1,300 GPa; by Eq. 2 the crack length n is calculated and
introduced in Eq. 8 to derive the related vacancy fraction v (ξ = π/2)
Fracture in two cases was observed at the clamp; in one case the clamp itself failed, thus the
deduced strength represents a lower bound of the nanotube strength. Three nanotubes were mul-
tiple loaded (in two a,b and A,B or in three I,II,III steps), i.e., after the breaking in two pieces of a
nanotube, one of the two pieces was again tested and fractured at a higher stress. Two nanotubes
displayed a plastic flow
A vacancy fraction of the order of few ‰ is estimated, suggesting that such nanotubes are much
more defective than as imposed by the thermodynamic equilibrium, even if the defects are small
and isolated. However, note that other interpretations are still possible, e.g., assuming the nanotube
is coated by an oxide layer and rationalizing the ratio between the observed Young’s modulus and
its theoretical value as the volumetric fraction (for softer coating layers) of carbon in the composite
structure

strength, a unavoidable limit (at least at the thermodynamic equilibrium), is ∼45
GPa and the corresponding flaw-tolerant taper-ratio is ∼4.6. But the larger taper-
ratio implies a large cable mass and thus a large number N of atoms. Updating
N in our statistical calculation yields the same, thus self-consistent, predictions.
Statistically we expect and even smaller strength, as previously discussed.
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Conclusions

The strength of a real, thus defective, carbon nanotube macroscopic cable is
expected to be strongly reduced with respect to the theoretical strength of a car-
bon nanotube. Accordingly, in this chapter key simple formulas for the design of
nanotube bundles (e.g. the space elevator megacable) have been reported.
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