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Nanotribology of Spiderman

Nicola M. Pugno

Abstract Spiders can produce cobwebs with high strength to density ratio and
surprisingly display self-cleaning, strong and releasable adhesion (as geckos).
Nanointerlocking, capillary and van der Waals forces, all potential adhesive mech-
anisms, were thus discussed, demonstrating the key role played by hierarchy to
the design of super-hydrophobic, i.e. self-cleaning (by activating fakir drops as in
lotus’ leaves) and super-adhesive materials. The reversibility of the strong attach-
ment was quantified thanks to an improved nonlinear peeling model, for which
the solution in closed form was provided. Thus, mimicking Nature, thanks to car-
bon nanotube-based technology, we have suggested [N. Pugno, J. Phys. Condens.
Matter 19, 395001 (2007)] the feasibility of large invisible cables, as well as of self-
cleaning, super-adhesive and releasable hierarchical smart materials. We have found
that a man can be supported by a transparent cable with cross-section of 1 cm2 and
feasibly, with spider material gloves and boots, could remain attached even to a
ceiling: a preliminary step towards a Spiderman suit.

Introduction

The gecko’s ability to ‘run up and down a tree in any way, even with the head
downwards’ was firstly observed by Aristotle, almost twenty-fifth centuries ago, in
his Historia Animalium. A comparable ‘adhesive’ system is found in spiders, that in
addition have the ability of producing fascinating cobwebs.

In general, when two solid (rough) surfaces are brought into contact with each
other, physical/chemical/mechanical attractions occur (see [1]). The force devel-
oped that holds the two surfaces together is known as adhesion. Nanointerlocking
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112 N.M. Pugno

(or friction), intermolecular forces, including capillary and van der Waals forces,
suction, secretion of sticky fluids and electrostatic attraction are all potential
adhesive mechanisms in biological attachment systems (see the review by [2]).

Suction cups operate under the principle of air evacuation, i.e., when they come
into contact with a surface, air is forced out of the contact area, creating a pressure
differential. The adhesive force generated is simply the pressure differential mul-
tiplied by the cup area. Thus, in our (sea level) atmosphere the achievable suction
strength is σs ≈ 0.1 MPa, of the same order of magnitude of those observed in the
other mentioned adhesive mechanisms or in spider/gecko adhesion. Even if suction
can have an interesting role in producing synthetic adhesive materials, especially to
be used in high-pressure environments, its mechanics is rather trivial. Moreover,
although several insects and frogs rely on sticky fluids to adhere to surfaces,
synthetic materials cannot evidently secrete these fluids without uncomfortable
reservoirs. Furthermore, electrostatic attraction occurs only when two dissimilar het-
eropolar surfaces come in close contact. Accordingly, we will omit in our discussion
these three mechanisms.

In geckos the main adhesive mechanisms are capillary [3] and van der Waals
[4] forces, whereas in spiders [5], in addition to the main van der Waals adhesion,
nanointerlocking could have a role (e.g., during cobweb gripping). Accordingly, in
this paper, we focus our attention on these three adhesive mechanisms, with an eye
to the role played by hierarchy and to reversibility.

Hierarchical miniaturized hairs without adhesive secretions are characteristic fea-
tures of both spiders and geckos, see Fig. 1. In jumping spider evarcha arcuata [5],
in addition to the tarsal claws (hooks with radius of ∼50 μm), a scopula (with sur-
face area of 37,000 μm2) is found at the tip of the foot; the scopula is differentiated
in setae, each of them covered with numerous setules (with an average density of
∼2.1 μm−2,) terminating in a triangular contact (with surface area of ∼0.17 μm2.)
The total number of setules per foot can be calculated at 78,000 and thus all 8 feet
are provided with a total of ∼0.6 million points of contacts. The average adhe-
sion force per setule was measured to be ∼41 nN, corresponding for the 8 feet or
scopulae to σspider ≈ 0.24MPa and to a safety factor, that is the adhesive force over
the body weight (∼15.1 mg), of λspider ≈ 173.

Similarly, a tokay gecko (gecko gecko) foot consists of lamellae (soft ridges
∼1 mm in length), from which tiny curved setae (∼10 μm in diameter, density of
∼0.014 μm−2) extend, each of them composed by numerous spatulae (100–1,000
per seta, ∼0.1 μm in diameter) with terminal contact units (having surface area of
∼0.1 μm2) [6, 7]. The adhesive force of a single seta and even of a single spatula
has recently been measured to be respectively ∼194 μN [8] or ∼11 nN [9]. This
corresponds to an adhesive strength of σgecko ≈ 0.58 MPa [8] and a safety factor of
λgecko ≈ 102 (to compute this value we have assumed a weight of∼250 g and a sin-
gle foot surface area of ∼110 mm2), comparable only with those of spiders (∼173
[5]), cocktail ants (>100, [10]) or knotgrass leaf beetles (∼50, [11]).

Note that such safety factors are ideal and thus are expected to be reduced by
about one order of magnitude [12] as a consequence of the presence of ‘defects’ e.g.
spurious particles, located at the contact interfacial zone. According to the previous
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Fig. 1 Spider and gecko feet showed by SEM. In the Tokay gecko (Fig. 1f) the attachment sys-
tem is characterized by a hierarchical hairy structures, which starts with macroscopic lamellae
(soft ridges ∼1 mm in length, Fig. 1h), branching in setae (30–130 μm in length and 5–10 μm
in diameter, Fig. 1i,l; [5, 69–71]. Each seta consists of 100–1,000 substructures called spatulae
[5, 69], the contact tips (0.1–0.2 μm wide and 15–20 nm thick, Fig. 1M; [5, 69] responsible
for the gecko’s adhesion. Terminal claws are located at the top of each singular toe (Fig. 1g).
Van der Waals and capillary forces are responsible for the generated adhesive forces [36, 72]
whereas claws guarantee an efficient attachment system on surfaces with very large roughness.
Similarly, in spiders (e.g. Evarcha arcuata, [73]) an analogous ultrastructure is found. Thus, in
addition to the tarsal claws, which are present on the tarsus of all spiders (Fig. 1c), adhesive
hairs can be distinguished in many species (Figs. 1d, e). Like for insects, these adhesive hairs
are specialised structures that are not restricted only to one particular area of the leg, but may
be found either distributed over the entire tarsus, as for lycosid spiders, or concentrated on the
pretarsus as a tuft (scopula) situated ventral to the claws (Fig. 1a, 1b), as in the jumping spider
Evarcha arcuata [73]

values, we estimate for a gecko a total number of points of contacts of ∼3 billions,
thus much larger than in spiders, as required by their larger mass (the number of
contacts per unit area must scale as the mass to 2/3, see [13]). The total adhesive
force could easily be overcome by subsequently detaching single setules and not the
whole foot at once [14, 15].

Moreover several natural materials exhibit super-hydrophobicity, with contact
angles between 150◦ and 165◦; often a strategy for allowing a safe interaction with
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water. This is the case for the leaves of about 200 plants, including asphodelus,
drosera, eucalyptus, euphorbia, ginkgo biloba, iris, tulipa and, perhaps the most
famous, lotus [16, 17]. Similarly, animals can be super-hydrophobic, as for the case
of water strider legs, butterfly wings, duck feathers and bugs [18–20]. These surfaces
are generally composed of intrinsic hydrophobic material and N=2 hierarchical
micro-sized levels [21].

Superhydrophobia is extremely important in micro/nano-fluidic devices for
reducing the friction associated with the fluid flow, but also for self-cleaning:
super-hydrophobic materials are often called self-cleaning materials since drops are
efficiently removed taking with them the dirty particles which were deposit on them
[17, 22]. This effect is extremely important in super-adhesive materials. Hansen and
Autumn [23] have proved that gecko setae become cleaner with repeated use; this is
probably a consequence of the hierarchical nature of the gecko foot, as we are going
to demonstrate.

A replication of the characteristics of gecko [24] or spider feet would enable the
development of a self-cleaning, as the lotus leaves (see the review by [21]), super-
adhesive and releasable hierarchical material and, with the conjunction of large
invisible cables [25], of a preliminary Spiderman suit, see Fig. 2 (Pugno, [26, 27].

Artificial spider silk: with 
transparent nanotube sheets

Self-cleaning surfaces:
mimicking lotus leaves 

Spider (left) or gecko (right) 
material gloves and boots

Towards a Spiderman’s suit

Super-adhesion controlled 
by the hair geometry

with hierarchically
branched nanotubes

Fd

Fa

θd

θa

p

F

F

Fig. 2 Spiderman (related inset from the web) must have large cobwebs and self-cleaning,
super-adhesive and releasable gloves and boots. Invisible large cables [24] could be realized
with nanotube bundles (related inset from [27]), whereas gloves and boots, mimicking spider
(related inset from [4]) or gecko (related inset from [50]) materials, with hierarchically branched
nanotubes (related inset from [64]) as suggested by our analysis. Note that nanotube forest is
super-hydrophobic (water repellent) and thus self-cleaning (related inset from [74]) as lotus leaves
(related inset: photo by the Author)



Nanotribology of Spiderman 115

Invisible Macroscopic Spider Silk

In this section we present just an idea, no more no less, for realizing large invisible
cables [25]; a discussion on their technological feasibility is also included. The
strength, stiffness and density of the invisible cable are estimated, and the condition
of invisibility is provided.

Consider a rectangular cable having width W, thickness T and length L; the cross-
section being composed of n×m (multiwalled) carbon nanotubes with inner and
outer diameter d− and d+ respectively and length L. Let us assume that they are
arranged in a square lattice with periodic spacing p=W/n=T/m (see Fig. 2, related
inset). Then, the strength σC of the bundle, defined as the failure tensile force divided
by the nominal area W×T, is predicted as:

σC = π

4

d2+ − d2−
p2

σNT , σ → E, ρ (1)

where σNT denotes the strength of the single carbon nanotube. To derive Eq. 1 we
have assumed a full transfer load between the nanotube shells, which seems to be
plausible if intertube bridgings are present, otherwise σNT would represent the nom-
inal multiwalled nanotube strength. The same relationship is derived for the cable
Young’s modulus EC considering in Eq. 1 the substitution σ → E and ENT as the
Young’s modulus of the single carbon nanotube. Similarly, the cable density ρC,
defined as the cable weight divided by the nominal volume W×T×L, is predicted
according to Eq. 1 with the substitution σ → ρ, where ρNT would denote the car-
bon (nanotube) density. Thus, the same (failure) strain εC = σC

/
EC= σNT

/
ENT

and strength over density ratio σC
/
ρC= σNT

/
ρNT is expected for the bundle and

for the single nanotube. This ratio is huge, at least theoretically, e.g., as required
in the megacable of the space elevator [12]. Thus, Eq. 1 is a law to connect the
nanoscale properties of the single nanotube with the macroscopic properties of the
bundle.

On the other hand, indicating with λ the light wavelength, the condition for a
nanotube to be invisible is:

d+ << λ (2a)

whereas to have a globally invisible cable, we require in addition to not have
interference between single nanotubes, i.e.:

p >> λ (2b)

We do not consider here the less strict limitations imposed by the sensitivity of the
human eye, that can distinguish two different objects only if their angular distance
is larger than ~1′. In other words, we want the cable to be intrinsically invisible.

Note that in the case of p << λ a transparence is still achievable considering a
sufficient thin sheet, as suggested by classical aerosol mixtures (here not applicable).



116 N.M. Pugno

Assuming d+
/
λ ≈ 1

/
10, p

/
λ ≈ 10, from the theoretical strength, Young’s

modulus and density of a single nanotube, we derive the following wavelength-
independent invisible cable properties:

σ
(theo)
C ≈ 10 MPa, EC ≈ 0.1 GPa, ρC ≈ 0.1 kg

/
m3 (3)

Meter-long multiwalled carbon nanotube cables can already be realized [28], sug-
gesting that our proposal could became soon technologically feasible. For such a
nanostructured macroscopic cable, a strength over density ratio of σC

/
ρC ≈ 120−

144KPa
/(

Kg
/

m3
)

was measured, dividing the breaking tensile force by the mass
per unit length of the cable (the cross-section geometry was not of clear iden-
tification). Thus, we estimate for the single nanotube contained in such a cable
σNT ≈ 170MPa (ρNT ≈ 1300 Kg

/
m3), much lower than its theoretical or mea-

sured nanoscale strength [29]. This result was expected as a consequence of the
larger probability to find critical defects in larger volumes [30]. Thus, defects
limit the range of applicability of long bundles based on nanotubes, e.g. reduc-
ing their strength by about one order of magnitude [12]. However, the cable
strength is expected to increase with the technological advancement. The cable
density was estimated to be ρC ≈ 1.5Kg

/
m3 [28], thus resulting in a cable

strength of σC ≈ 200 KPa. Note that a densified cable with a larger value of
σC
/
ρC ≈ 465 KPa

/(
Kg
/

m3
)

was also realized [29], suggesting the possibility
of a considerable advancement for this technology in the near future. For such
cables a degree of transparency was observed, confirming that our proposal is
realistic. Inverting Eq. 1 we deduce for them p ≈ 260 nm, in good agreement
with the Scanning Electron Microscope (SEM) image analysis [28]. The nan-
otube characteristic diameter was d+ ≈ 10 nm. Considering the visible spectrum,
λ ≈ 400− 600 nm, the condition (2a) was thus satisfied, whereas the condition (2b)
was not satisfied. Thus, only a partial degree of transparency was to be expected
(see Fig. 2, related inset).

Moreover, multiwalled carbon nanotubes with d+ ≈ 50nm (d− ≈ 0nm) spaced
by p ≈ 5 μm are expected to realize an invisible cable with the mechanical proper-
ties given in Eq. 3. For example, this would correspond to an invisible cable with a
cross-section of 1 cm2 and weight per unit length of only 0.01 g

/
m, capable of sup-

porting the weight of a man (1,000 N). However note that defects would decrease
the cable strength, e.g., by one order of magnitude [12].

The nanotubes will remain parallel satisfying the condition (2b), if the cable will
work under tension. A later force at the middle of the cable will tend to compact
the nanotubes and at a strain of ε ≈ 8

(
W
/

L
)2 all of them will be in contact. Since

for a cable W
/

L << 1 (e.g., 10−2), a strain of the order of ε ≈ 10−4, i.e. small

if compared with that at failure ε(theo)
NT ≈ σ

(theo)
NT

/
ENT ≈ 0.1, will activate the nan-

otube interaction. In such a situation the cable would ‘appear’ near to the point of
application of the lateral force, i.e. where the condition of Eq. 2b is not locally veri-
fied, to survive by activating the interaction; this behavior could help in visualizing
the cable after having trapped a victim.
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Obviously, reducing the requirement of invisibility to that of (a degree of) trans-
parency would automatically lead to strongest macroscopic synthetic cobwebs.
Graded cross-links are needed in order to improve the overall bundle strength [31].

Nanohooks

In this section an estimation of the elastic strength of hooks (Fig. 3a) with friction
is summarized [32], treating them as elastic arcs (see [33]). We have quantified,
as the intuition and Velcro R© material suggest, that hooks allow reversible strong
attachment, establishing elastic-plastic or hyper-elastic behaviours as dictated by
the competition between friction and large displacements [32]. In addition, size-
effects suggest that nano-contacts are safer. Thus, we describe here the main results
of a ‘Velcro nonlinear mechanics’[32], that could have interesting applications also
in different fields, as suggested by its recent observation in wood [34].

The hook elastic critical force Fh (Fig. 3b) can be estimated according to:

Fh ≈
(
π
/

2+ ϕ)EI

πR2
(4)

where ϕ is the friction coefficient between hook and substrate (or loop), E is the
material Young modulus, I is the cross-sectional moment of inertia and R is the
hook radius. Thus, if a number of hooks per unit area ρh = m

/[
π (2R)2

]
is present,

corresponding to an equivalent number m of hooks per clamp, the corresponding
nominal strength will be:

σh = ρhFh = m
(
π
/

2+ ϕ)EI

4π2R4
= m

(
π
/

2+ ϕ)E

16π
(
R
/

r
)4

(5)

where r is the equivalent radius (in terms of inertia) of the cross-section. For
example, considering m=10, ϕ = 0, E=10 GPa (Young’s modulus for keratin

F

R

(a)

F

(b)

F

(c)

Fig. 3 Elastic hook with friction. Conditions of interlocking (a), ultimate “elastic” strength (b)
and hauling (c)
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material is E=1–20 GPa, see [35], and [36]) and R
/

r = 10 corresponds to
σh ≈ 0.3 MPa, comparable with the strength observed in evarcha arcuata spiders
of ∼0.24 MPa ([5], note the two spider hooks in the related inset of Fig. 2).

On the other hand, the maximum force for hooking (Fig. 3c) is:

F∗h = −
ϕEI

R2
(6)

Consequently the ratio:

μ = Fh∣
∣F∗h

∣
∣
= 1

π
+ 1

2ϕ
(7)

is expected to be very large (μ(ϕ→ 0) →∞), and thus strong and ‘reversible’
adhesion is expected in hooked materials. This can be easily verified in our
own home making experiments on Velcro materials, directly measuring μ and
thus deducing the related friction coefficient ϕ. For example for μ ≈ 10− 100,
ϕ ≈ 5× 10−(2−3).

If a contact area A supports the (e.g., animal body) weight W, the safety factor,
i.e. the ratio between the attachment force and the weight W = Mg = ρVg = ρALg
(ρ is the density, g is the gravitational acceleration, V is the body volume and M its
mass) is:

λ = σhA

W
= 1

ρg

σh

L
(8)

in which L=V/A is a characteristic size of the supported weight. Thus, smaller
is safer. For example, since we expect L ∝ M1/3, assuming σh ≈ const, the
predicted scaling is λ = kM−1/3; noting that in the evarcha arcuata spi-
ders [5] λspider ≈ 173 and Mspider ≈ 15mg we deduce kspider ≈ 43g1/3. Thus
for a Spiderman (Mman ≈ 70 kg), defined as a man having gloves and shoes
composed of spider material, we roughly (because self-similarity is assumed)
expect λspiderman ≈ 1. For gecko gloves, since for geckos λgeckos ≈ 102 and
Mgeckos ≈ 250 g, we would deduce kgeckos ≈ 643 g1/3 and thus λspiderman ≈ 15.
Accordingly, such gloves are sufficient to support Spiderman even on a ceiling.

The force carried by one hook scales as F1 ≡ Fh ∝ r4
/

R2, thus the bending,

tensile, and nominal stresses in the hook must scale as σb ∝ r
/

R, σt ∝
(
r
/

R
)2 and

σh ∝
(
r
/

R
)4 respectively. Accordingly, size-effects can be predicted. For example,

splitting up the contact into n sub-contacts, i.e., R→ R
/√

n, would result in a force
Fn = nβF1 with β = 0 if r ∝ R but β = 2 if r = const. Thus, for this last case,
sub-contacts are found to be stronger, even if the hook will be higher stressed and its
mechanical strength will impose a lower-bound to the radius of the smallest hook.
This explains why Nature uses nano-sized bio-contacts, since usually 0 < β < 2, as
recently discussed on the basis of contact mechanics (for which β = 1

/
2, see [13]).

Pugno [26] has shown that this enhancement cannot continue ad infinitum. If the
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hook weight is a constant fraction of the body weight, the scaling of the safety
factor is λ ∝ r2

/
R3, similarly to the prediction of Eq. 8.

Finally, the work of adhesion per unit area can be computed according to:

2γh = ρh

Fh∫

0

δ (F) dF =
(

1

2
+ κ

)

σhδ (Fh) (9)

where κ = 0 for linear systems. For example, considering κ = 0, σh =
0.3 MPa as previously computed, and δ (Fh) ≈ R = 100 nm we get γh ≈ 0.03N

/
m,

comparable with the work of adhesion observed in geckos (0.05 N/m, see [37]).
Nanohooks could be useful, in addition to classical mechanisms, in order to

reduce the dramatic role played by the surface roughness, that will imply contact
‘defects’ during especially macroscopic adhesion.

Self-Cleaning Super-Adhesive Materials

The contact angle (Fig. 4a) between a liquid drop and a solid surface was found by
Young [38] according to cos θ = (γSV − γSL)

/
γ C, where γC ≡ γLV and the sub-

scripts of the surface tensions describe the solid (S), liquid (L) and vapour (V)
phases. Note that for (γSV − γSL)

/
γ C > 1 the drop tends to spread completely on

the surface and θ = 0◦, whereas for (γSL − γSV)
/
γ C > 1 the drop is in a pure non-

wetting state and θ = 180◦. According to the well-known Wenzel’s model [39, 40]
the apparent contact angle θW is a function of the surface roughness w, defined as
the ratio of rough to planar surface areas, namely, cos θW = w cos θ (Fig. 4b). The
apparent contact angle varies also with the heterogeneous composition of the solid
surface, as shown by Cassie and Baxter [41]. Consider a heterogeneous surface
made up of different materials characterized by their intrinsic contact angles θi and
let ϕi be the area fraction of each of the species; the individual areas are assumed
to be much smaller than the drop size. Accordingly, the apparent contact angle θCB

can be derived as cos θCB =∑

i
ϕi cos θi [41].

(a) 

W

(b) 

F

(c) 

θ
θ

θ

Fig. 4 Contact angles for a drop on a flat surface (a) or on a rough surface in the Wenzel (b) or
Fakir (c) state
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A droplet can sit on a solid surface in two distinct configurations or states
(Fig. 4b, c). It is said to be in Wenzel state (Fig. 4b) when it is conformal with
the topography. The other state in which a droplet can rest on the surface is called
the Fakir state, after Quéré [42], where it is not conformal with the topography
and only touches the tops of the protrusions on the surface (Fig. 4c). The observed
state should be the one of smaller contact angle, as can be evinced by energy
minimization [43].

Let us consider a hierarchical surface (Fig. 5). The first level is composed by pil-
lars in fraction ϕ (as in Fig. 4b, c). Each pillar is itself structured in n sub-pillars in
a self-similar (fractal) manner, and so on. Thus, the pillar fraction at the hierarchical
level N is ϕN , whereas the related number of pillars at the level N is nN . Applying
the Cassie and Baxter law [41] for the described composite (solid/air) hierarchi-
cal surface (the contact angle in air is by definition equal to 180◦) we find for the
hierarchical fakir state:

cos θ(N)F = ϕN (cos θ + 1)− 1 (10)

Note that for N = 0 cos θ(0)F = cos θ as it must be, whereas for N=1 cos θ(1)F =
ϕ (cos θ + 1)−1, as already deduced for the case described in Fig. 4c [44]. Equation
10 quantifies the crucial role of hierarchy and suggests that hierarchical surfaces are
fundamental to realize super-hydrophobic materials (effective contact angle larger
than θSHpho ≈ 150◦), since we predict θ(∞)

F = 180◦. The minimum number of hier-
archical levels necessary to achieve super-hydrophobia in the Fakir state is thus:

N(F)
SHpho =

log
(

1+cos θSHpho
1+cos θ

)

logϕ
(11)

and the logarithmic dependence suggests that just a few hierarchical levels are
practically required.

By geometrical argument the roughness w of the introduced hierarchical surface
Fig. 5 can be calculated in closed form. The roughness at the hierarchical level k

is given by w(k) = 1 + S(k)L

/
A in which A is the nominal contact area and S(k)L is

the total lateral surface area of the pillars. The pillar at the level k has an equivalent
radius rk and a length lk and the pillar slenderness s, defined as the ratio between its
lateral and base areas, is s = 2lk

/
rk. The air surface area at the level k can be com-

puted as A
(
1− ϕk

)
or equivalently as A − nkπr2

k , thus we deduce rk = r0
(
ϕ
/

n
)k/2,

with A ≡ A0 ≡ πr2
0. Consequently:

N=2

Fig. 5 A hierarchical surface
with N=2 levels
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w(N) = 1+ 1

πr2
0

N∑

k=1

2πrklknk = 1+ s
N∑

k=1

ϕk = 1+ s
ϕ − ϕN+1

1− ϕ ∀n (12)

Note that the result becomes independent from n (and that w(0) (ϕ) = 1 =
w(N) (ϕ = 0), w(1) = 1 + sϕ, whereas w(N �=1) (ϕ = 1) = ∞). Thus we find for
the hierarchical Wenzel state:

cos θ(N)W = w(N) cos θ =
(

1+ s
ϕ − ϕN+1

1− ϕ
)

cos θ (13)

Equation 13 suggests that hierarchical surfaces can be interesting also to real-
ize super-hydrophilic materials, since we predict cos θ(∞)

W = w(∞) cos θ with

w(∞) = 1 + sϕ
/
(1− ϕ); thus if cos θ > 0 θ

(∞)
W → 0, for s→∞ or ϕ→ 1.

However note that for cos θ < 0, θ(∞)
W → 180◦ (s→∞ or ϕ→ 1), and thus

super-hydrophobia can take place also in the Wenzel state, without invoking fakir
drops. The minimum number of hierarchical levels necessary to render the surface
super-hydrophobic/hydrophilic in the Wenzel state is thus:

N(W)
SHpho, phi =

log
(

1+ (1−ϕ)
sϕ

(
1− cos θSHpho, phi

cos θ

))

logϕ
(14)

where effective contact angles smaller than θSHphi define super-hydrophily.

Comparing θ
(N)
W and θ

(N)
F , we find that the Fakir state is activated at each hier-

archical level for (we omit here second order problems, related to metastability,
contact angle hysteresis and limit of the Wenzel’s approach, for which the reader
should refer to the review by [21]):

θ > θWF , cos θWF = −
1− ϕN

w(N) − ϕN
= − 1

w(∞)
= − 1− ϕ

1+ ϕ (s− 1)
∀N (15)

Note that the result is independent from N and θWF → 90◦ for s→∞ or
ϕ→ 1, and thus a hydrophobic\hydrophilic material composed by sufficiently
slender or spaced pillars surely will/will not activate fakir drops and will become
super-hydrophobic\hydrophilic for a large enough number of hierarchical levels.
Thus hierarchy can enhance the intrinsic property of a material. The role of
hierarchy is summarized in the phase diagram of Fig. 6.

For example, for plausibly values of ϕ = 0.5 and s=10 we find from Eq. 15
θWF = 95.2◦; thus assuming θ = 95◦ the Fakir state is not activated and the Wenzel
state prevails (if the Fakir state still prevails it is metastable, see [21]). From Eq.
12 w(1) = 6, w(2) = 8.5, w(3) = 9.75 and w(4) = 10.375; accordingly from Eq.
13 θ

(1)
W ≈ 122◦, θ(2)W ≈ 138◦, θ(3)W ≈ 148◦ and θ

(4)
W ≈ 155◦, thus N=4 hierarchical

levels are required for activating super-hydrophobia (from Eq. 14 N(W)
SHpho = 3.2).

On the other hand, assuming θ = 100◦ fakir drops are activated and from Eq. 10
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N=∞

1/w
( Ν)

cos WF =

–1/w
(∞) cos θ
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Hydrophily
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–1/w

(∞ )

–1

–1+ϕΝ
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Fig. 6 Effective contact angle θ∗ = θ
(N)
F,W as a function of the intrinsic one θ by varying the

number N of hierarchical levels. Thus, super-hydrophobic/hydrophilic surfaces can be obtained by
an opportune design of the hierarchical architecture, according to this phase diagram and reported
equations (note that metastable fakir drops could be observed also in the Wenzel region, dotted
line, see [20])

θ
(1)
F ≈ 126◦, θ(2)F ≈ 143◦ and θ

(3)
F ≈ 154◦, thus N=3 hierarchical levels are suffi-

cient to achieve super-hydrophobia (from Eq. 11 N(F)
SHpho = 2.6).

Some insects, such as the beetle Hemisphaerota cyanea, use capillary to stick
to their substrate, generating a force close to 1 g (i.e. 60 times its body mass) for
more than 2 min [45], allowing them to resist attacking ants; tokay geckos use the
same principle (in addition to van der Waals forces) to generate their tremendous
adhesion [3].

Between a spherical surface (contact angle θ ) of radius r0 and a flat plate
(contact angle θP), the capillary attractive or repulsive force is predicted to be
FC = 2πr0γC (cos θ + cos θP) [46]. Thus, for a pillar of size r0 composed by N
hierarchical levels the force is F(N)

C = nN2πrNγC (cos θ + cos θP) and the nominal

strength σ (N)C = F(N)
C

/(
πr2

0

)
becomes:

σ
(N)
C = 2 (ϕn)N/2

r0
γC

(
cos θ(N)W, F + cos θP

)
(16)

Note that for N=0 such a capillary strength corresponds to the previously discussed
law. For N=1 the strength scales as

√
n, in agreement with a recent discussion [14]:

splitting up the contact into n sub-contacts would result in a stronger interaction
(with a cut-off at the theoretical strength): smaller is stronger (see [30]). This
explains the observed miniaturized size of biological contacts. Introducing the pre-
viously computed contact angle related to the hierarchical surface allows one to
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evaluate the hierarchical capillary force, with or without activation of the Fakir
state. Super-attraction/repulsion can thus be achieved thanks to hierarchy, since
σ
(N)
C ≈ σ

(0)
C (ϕn)N/2.

Thus, the analysis demonstrates and quantifies that super-hydrophobic/
hydrophilic and simultaneously super-attractive/repulsive surfaces can be realized,
mimicking Nature thanks to hierarchical architectures. Assuming ϕ = 0.5, n=s=10
and θ ≈ 120◦ (as in lotus leaves), the analysis shows that fakir drops are activated
and only two hierarchical levels are required to achieve super-hydrophobia (θ >

θWF = 95.2◦, N(F)
SHpho = 1.9; θ(1)F ≈ 139◦, θ(2)F ≈ 151◦), in agreement with direct

observations on super-hydrophobic plants (see our discussing in the Introduction).
Simultaneously, we deduce σ

(1)
C ≈ 2.2σ (0)C , σ (2)C ≈ 5.0σ (0)C and σ

(3)
C ≈ 11.2σ (0)C ,

i.e. just three hierarchical levels (or even two, if ϕ ≈ 1 and n ≈ 10) are suffi-
cient to enhance the capillary strength by one order of magnitude, generating
super-attractive (σ (0)C > 0) or super-repulsive (σ (0)C < 0) surfaces. Thus, the
analysis suggests the feasibility of innovative self-cleaning and simultaneously
super-adhesive hierarchical materials, as observed in spiders and geckos.

Analogously, hierarchy simultaneously enhances the work of adhesion, and thus
the corresponding force, per unit nominal area, due to the larger effective surface
area. Accordingly, the maximum (assuming all the surfaces in contact) effective
work of adhesion can be derived by the following energy equivalence:

γ (N1, N2)
max ≈ γC

(
w(N1)

1 + w(N2)
2

)
(17)

in which the subscripts 1 and 2 refer to the two surfaces in contact. For example,
the adhesive force between two-hierarchical level surfaces, defined by w(2)

1,2 = 1.75
(ϕ = 0.5, s=1), is enhanced by hierarchy by a factor of 3.5 (with respect to
the two corresponding flat surfaces). Note that for s=10 this factor becomes 18
and remains significantly larger than one (i.e. 10) even if one of the two surfaces
becomes perfectly flat.

However we have to note that the Wenzel approach must loose its validity for
large roughness w, for which an effective micro- (rather than macro-) roughness
have to be considered.

Capillary and van der Waals Forces

The capillary force can also be derived according to the well-known Laplace’s
law [47]. The attractive force between two flat plates of areas A, separated by a liq-
uid of thickness t, with (liquid/vapour) surface tension γC and (liquid/solid) contact
angle θ is (see the review by [21]):

FC = 2AγC cos θ

t
(18)
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Note that σC = FC
/

A is a function of the liquid thickness but not of the size of the
contact. Considering for example γC = 0.05N

/
m, θ = 80◦ and t=1 nm would yield

σC ≈ 9 MPa. The force described by Eq. 17 is attractive for θ < 90◦ (hydrophilic) or
repulsive for θ > 90◦ (hydrophobic). An additional viscous force can be generated
F(η)

C ∝ η
/
τ , where η is the dynamic viscosity of the liquid and τ is the separation

time interval.
Note the differences between the force predictions of Eq. 18 and that considered

in the previous section [46], i.e.:

FC = 2πr0γC (cos θ + cos θP) (19)

in the limit of r0 →∞, which suggest that we are far from a full understand-
ing of the mechanism. In addition, both the approaches predict σC = FC

/
A =

FC
/(
πr2

0

)→∞ for t, r0 → 0 in contrast to the common sense of a finite theo-

retical strength σ
(th)
C . This cut-off could be a consequence of a quantized (instead

of a continuous) crack propagation, as discussed in the example reported by
Pugno [26]. Thus, the following asymptotic matching can be straightforwardly
proposed:

σC ≈
(

2

r0 + c
+ 1

t + c

)

γC (cos θ + cos θP) , c ≈ 3γC (cos θ + cos θP)
/
σ
(th)
C

(20)

Similarly, the van der Waals force between two parallel surfaces of area A is ([48];
see also [49]):

FvdW = HA

6π t3
(21)

where H is the Hamaker’s constant, with a typical value around 10−20J (as before,
t<30 nm is the separation between the two surfaces). Note that σvdW = FvdW

/
A is

a function of the liquid thickness but not of the size of the contact. Considering for
example t=1 nm would yield σvdW ≈ 0.5 MPa.

For the case of a spherical surface of radius r0 and a flat plate, the contact force
predicted according to the ‘JKR’ model of contact mechanics [50] is:

FvdW = 3
/

2πγvdWr0 (22)

Thus also in this case, as formerly discussed by Arzt et al. [13], Fn = √nF1.
Moreover, since FvdW ∝ r0 the results reported in the previous section are still
applicable.

As for capillary, note the differences between the two approaches summarized in
Eqs. 21 and 22, which suggest that we are far from a full understanding of the mech-
anism. In addition, Eqs. 21 and 22 predict σvdW = FvdW

/
A = FvdW

/(
πr2

0

)→∞
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for t, r0 → 0 in contrast to the common sense of a finite theoretical strength σ
(th)
vdW

(and of a quantized crack propagation, see [26]). Thus, the following asymptotic
matching can be straightforwardly proposed:

σvdW ≈ 3
/

2γvdW

(
1

r0 + c
+ H

9γvdWπ (t + c)3

)

, c = X
(

6πσ (th)vdW ;−9πγvdW ; 0;−H
)

(23)

where X (a ; b ; c; d) denotes the solution of the three-order polynomial equation
ax3 + bx2 + cx + d = 0, derived imposing c : σvdW (r0, t→ 0) = σ

(th)
vdW (one

could also consider valid Eq. 23 with c→ 0, with a cut-off at σ (th)vdW ). To have an

idea of the theoretical strength note that σ (th)vdW ≈ 20 MPa (see [51]).
The different force predictions for plausible values are of the same order of

magnitude. Using Eq. 22, as done by Autumn et al. [4] and Arzt et al. [13],
(γvdW ≈ 0.05 N

/
m) for the gecko spatula (r0 ≈ 0.05 μm) we get Fspatula ≈ 12 nN,

comparable to the observed value of ∼11 nN [9]. Thus, for a seta composed
by 1,000 spatulae, Fseta ≈ 12 μN [4, 8] measured values of ∼194 and ∼40
μN respectively); for a non hierarchical seta from Eq. 22 one would deduce
(r0 ≈ 5 μm) F/

seta ≈ 1.2 μN and thus for a real, thus hierarchical, seta having
1,000 spatulae, Fseta ≈

√
1000 × 1.2 μN ≈ 38 μN. Similarly for the setula of a

spider Req ≈
√

0.17
/
πμm ≈ 0.2 μm (terminal surface area of ∼0.17 μm2) and

Fsetula ≈ 47 nN (observed value ∼41 nN, [5]).
Finally, we note that since different mechanisms could be simultaneously

activated, the real adhesive force (or strength or fracture energy) could be
computed as:

F =
∑

i

Fi fi (24)

in which Fi is the force activated by the i-th mechanism having weight fi(
∑

i
fi = 1

)

.

For example, for geckos a still partially unsolved question is to quantify the par-
ticipation of capillary and van der Waals forces in their adhesion (nanohook and
suction mechanisms in geckos have been ruled out, see the review by [2]). We note
that Huber et al. [3] observed a humidity (U) dependence of the adhesion force in
gecko spatulae, thus, from Eq. 24 we could write:

F = Fdry fdry + Fwet fwet ≈ FvdW (1− U)+ (FvdW + FC)U (25)

By fitting their data we find FvdW ≈ 7nN and FC ≈ 5nN, thus FvdW
/

FC ≈ 1.4, i.e.,
van der Waals are expected to be the main adhesive forces in geckos even if capillary
ones play a significant role too.
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Equations 20 and 23 can be straightforwardly extended to hierarchical surfaces
according to our findings reported in the previous Section.

Smart Adhesion

Consider the detachment as the peeling of a thin film of (free-) length l, width b
and thickness h, pulled at an angle ϑ by a force F Fig. 7. A non-linear stress-strain
relationship σ = E (ε) ε is considered. The total potential energy (elastic energy

minus external work) of the film is � = bhl
ε∫

0
E (ε) ε dε−Fl (1− cosϑ + ε). Thus,

the energy release rate is:

2�γ ≡ −1

b

d�

dl
= −h

ε∫

0

E (ε) ε dε + F

b
(1− cosϑ + ε) (26)

The detachment will take place when �γ ≡ γ ≡ γ1 + γ2 − γ12, where γ1,2 are the
surface energies of the two materials in contact and γ12 is that of the interface.

For quadratic nonlinearities, i.e., E (ε) = E + E/ε, a closed form solution is still
reachable. Note that E/ < 0 describes elastic-plastic materials (e.g., hooked surface
with ϕ > ϕC ≈ π

/
39, see [26]), whereas E/ > 0 hyper-elastic ones (e.g., hooked

surface with ϕ < ϕC). The detachment force is found in the following form:

εC =X
(
4E/; 3E + 6E/ (1− cosϑ) ; 6E (1− cosϑ) ; −12γ

/
h
)

, FC

=AE (εC) εC
(27)

(as before X (a ; b ; c; d) denotes the solution of the three-order polynomial equa-
tion ax3 + bx2 + cx + d = 0). For E/→ 0 the classical Kendall [52] prediction is
recovered. Varying the pulling angle strong force variations are found, as can eas-
ily be evinced considering the simplest case in the limit of E−1, E/→ 0, deducing
FC = 2γ b

/
(1− cosϑ). Note that, also according to fracture mechanics, sub-

contacts are safer (b→ b
/√

n , Fn = √nF1; the paper by Pugno [26] shows that
this cannot be ad infinitum).

Moreover the strongest attachment is achieved for ϑ = 0 whereas the easier
detachment for ϑ = π . The ratio between the corresponding forces is:

l

F

θ

Fig. 7 Peeling of a thin film
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Fa

Fd
≡ FC (ϑ = 0)

FC (ϑ = π)
= g

(
E/
) 1+√χ + 1√

χ
,χ ≡ γ

/
(hE) (28)

where g
(
E/
)

is a known function describing the constitutive nonlinearity, which
could have an important role for soft matter, and in particular g (0) = 1; in this case
Fa
/

Fd → 1,∞ for χ →∞, 0. For example taking γ = 0.05N
/

m (of the order of
the previously discussed γh,C,vdW ), h=100 nm, E=10 GPa we find Fa

/
Fd ≈ 283.

This value is of the same order of magnitude of the safety factor found in spiders [5],
i.e., 173. Such a geometrical control can thus explain the smart safety factor reduc-
tion during detachment up to ∼1, needed for animal walk. Thus, this pulling angle
control can represent the main mechanism to achieve reversible adhesion. For exam-
ple, for a man with adhesive gloves capable of supporting 300 kg at ϑ ≈ π , only
∼1 kg must be applied at ϑ ≈ 0 to detach them. Probably the proper use of such
hypothetical gloves would require opportune training, similarly to the use of a pair
of skis, a paragliding or a wet suit.

The value of FC corresponds to a delamination (opening and/or sliding) and not
necessarily to a detachment (opening prevails on sliding). To distinguish between

these two different mechanisms we note that 2γ =
(

K2
op + K2

sl

)/
E, where Kop,sl

are the stress intensity factors at the tip of the interfacial crack for opening (mode I)
or sliding (mode II) and Kop ∝ F⊥ ∝ sinϑ whereas Ksl ∝ F// ∝ cosϑ ; assuming

as a first approximation a detachment for Ksl

/
Kop ≈ tan−1 ϑ < 1 we derive a crit-

ical value of ∼45◦. A similar behaviour has recently been confirmed by numerical
simulations on gecko seta [51]: for forces applied at an angle less than ∼30◦ the
predominant failure mode was sliding, whereas larger angles correspond to detach-
ment. Using the previous parameters we find FC (ϑ = 30◦)

/
FC (ϑ = 150◦) ≈ 14,

which can still be sufficient to control adhesion of nonideal contacts, for which the
strength is expected to be reduced by a factor of about one order of magnitude [12].
However note that in any case (i.e., also at ϑ ≈ 0) the total adhesive force could
be overcome by subsequently detaching single points of contacts and not the whole
surface at once [14], even if, when not in vivo, this mechanism could be hard to
be activated. Note that the ratio predicted by Eq. 28 is compatible with homemade
experiments that we have performed using adhesive tape. For larger thickness the
behaviour would be that of a beam rather than of a film [26].

Observation on Living Geckos

In this section we summarize recent observations on adhesion of living geckos [53].
We report experimental observations on the times of adhesion of living Tokay
geckos (Gekko geckos) on polymethylmethacrylate (PMMA) inverted surfaces. Two
different geckos (male and female) and three surfaces with different root mean
square (RMS) roughness (RMS=42, 618 and 931 nm) have been considered, for
a total of 72 observations. The measured data are proved to be statistically sig-
nificant, following the Weibull Statistics with coefficients of correlation between
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0.781 and 0.955. The unexpected result is the observation of a maximal gecko adhe-
sion on the surface with intermediate roughness of RMS=618 nm, that we note has
waviness comparable to the seta size.

Surface roughness strongly influences the animal adhesion strength and abil-
ity. Its role was shown in different measurements on flies and beetles, walking
on surfaces with well defined roughness [54], [55, 56], on the chrysomelid bee-
tle Gastrophysa viridula [57], on the fly Musca domestica ([56]) as well as on the
Tokay geckos [58]. Peressadko and Gorb [56] and Gorb [57] report a minimum of
the adhesive/frictional force, spanning surface roughness from 0.3 to 3 μm. The
experiments on the reptile Tokay gecko [58] showed a minimum in the adhesive
force of a single spatula at an intermediate root mean square (RMS) surface rough-
ness around 100–300 nm, and a monotonic increase of adhesion times of living
geckos by increasing the RMS, from 90 to 3,000 nm. There are several observa-
tions and models in the literature, starting with the pioneer paper by Fuller and
Tabor [59], in which roughness was seen to decrease adhesion monotonically. But
there is also experimental evidence in the literature, starting with the pioneer paper
by Briggs and Briscoe [60], which suggests that roughness need not always reduce
adhesion. For example, Persson and Tosatti [61] and Persson [62], in the framework
of a reversible model, have shown that for certain ranges of roughness parame-
ters, it is possible for the effective surface energy to first increase with roughness
amplitude and then eventually decreasing. Including irreversible processes, due to
mechanical instabilities, Guduru [63] has demonstrated, under certain hypotheses,
that the pull-out force must increase by increasing the surface wave amplitude. We
have suggested [53] that roughness alone could not be sufficient to describe the
three-dimensional topology of a complex surface and additional parameters have to
be considered for formulating a well-posed problem.

Accordingly, we have machined and characterized three different
Polymethylmethacrylate surfaces (PMMA 1,2,3; surface energy of ∼41 mN/m)
with a full set of roughness parameters, as reported in Table 1: Sa represents the
surface arithmetical average roughness; Sq=RMS is the classical mean square
roughness; Sp and Sv are respectively the height of the highest peak and the
deepness of the deepest valley (absolute value); Sz is the average distance between
the five highest peaks and the five deepest valleys (detected in the analyzed area);

Table 1 Roughness parameters for the three different Polymethylmethacrylate (PMMA 1,2,3)
surfaces

PMMA1 PMMA2 PMMA3

Sa(μm) 0.033±0.0034 0.481±0.0216 0.731±0.0365
Sq(μm) 0.042±0.0038 0.618±0.0180 0.934±0.0382
Sp(μm) 0.252±0.0562 2.993±0.1845 4.620±0.8550
Sv(μm) 0.277±0.1055 2.837±0.5105 3.753±0.5445
Ssk −0.122±0.1103 0.171±0.1217 0.192±0.1511
Sz (μm) 0.432±0.1082 4.847±0.2223 6.977±0.2294
Sdr (%) 0.490±0.0214 15.100±1.6093 28.367±2.2546
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Ssk indicates the surface skewness; Sdr is the effective surface area minus the
nominal one and divided by the last one.

Two different Tokay gecko’s, female (G1, weight of∼46 g) and male (G2, weight
of ∼72 g), have been considered. The gecko is first placed in its natural position on
the horizontal bottom of a box (50× 50× 50 cm3). Then, slowly, we rotated the
box up to the gecko reaches a natural downwards position and, at that time, we start
the measurement of the gecko time of adhesion. We excluded any trial in which
the gecko walks on the inverted surface. The time measurement was stopped when
gecko breaks loose from the inverted surface and falls on the bottom of the box
(for G1) or at the first detachment movement of the gecko’s foot (for G2). The time
between one measurement and the following, pertaining to the same set, is only that
needed to rotate the box and placed the gecko again on the upper inverted surface
(∼14 s). The experiments were performed at ambient temperature (∼22◦C) and
humidity (∼75%). The measured adhesion times are summarized in Table 2 and
confirmed to be statistically significant by applying Weibull Statistics, see Fig. 8.

Table 2 Gecko adhesion times on PMMA 1,2,3 surfaces

Test No. PMMA 1 PMMA 2 PMMA 3

1 8 137 15
2 13 215 22
3 36 243 22
4 37 280 25
5 48 498 27
6 62 610 29
7 67 699 32
8 87 900 35
9 88 945 48

10 93 1,194 51
11 116 1,239 53
12 134 1,320 91
13 145 2,275 97
14 160 2,740 102
15 197 4,800 109
16 212 114
17 215 148
18 221 207
19 228 424
20 292 645
21 323
22 369
23 474
24 550
25 568
26 642
27 660
28 700
29 707
30 936
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Table 2 (continued)

Test No. PMMA 1 PMMA 2 PMMA 3

31 1,268
32 1,412
33 1,648
34 1,699
35 2,123
36 2,703
37 2,899
Scale Parameter t0 (s) 800 1,251.7 108.4
Sq (μm) 0.042±0.0038 0.618±0.0180 0.934±0.0382

Note that, as an index of the gecko adhesion ability, here we use the Weibull scale parameter t0 (in
seconds) of the distribution of the detachment/failure F (closely related to its mean value)

Fig. 8 Weibull Statistics (F is the cumulative probability of detachment/failure and ti are the mea-
sured adhesion times) applied to the measured adesion times on PMMA surfaces. PMMA 1 (green,
for which we made the measurements in four different days and with both geckos G1 and G2),
PMMA 2 (black, for which we made the measurements in two different days, one with gecko G1
and one with gecko G2) and PMMA 3 (red, for which we made the measurements in a single day
with gecko G2)

We have observed a maximum in the gecko’s adhesion times on PMMA 2, having
an intermediate roughness of RMS=618 nm. An oversimplified explanation could
be the following. For PMMA 1 (Sq=42 nm, waviness of λ≈3–4 μm, h≈0.1 μm),
the gecko’s seta (diameter of ~10 μm, represented in blue in Fig. 9, that must not be
confused with the terminal nearly two dimensional spatualae) cannot penetrate in
the characteristic smaller valleys and adhere on the side of each single one Fig. 9a,
thus cannot optimally adapt to the surface roughness. For PMMA 2 (Sq=618 nm,
λ≈7–8 μm, h≈1 μm) the gecko’s setae are able to adapt better to the roughness,
adhering this time on the top of and on the side of a single asperity: in this way
the effective number of setae in contact increases and, as a direct consequence, also
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Fig. 9 A simple interpretation of our experimental results on the adhesion tests of living geckos
on PMMA surfaces having different roughness. (A) Setae cannot adapt well on PMMA 1; (B) on
PMMA 2 the adhesion is enhanced thanks to the higher compatibility in size between setae and
roughness; (C) on PMMA 3 only partial contact is achieved. On the right, we report the analyzed
three-dimensional profiles of the roughness for all the three investigated surfaces (from the top:
PMMA 1,2 and 3)

the adhesion ability of the gecko increases Fig. 9b. On PMMA 3 (Sq=931 nm,
λ≈10–12 μm and h≈2 μm) the waviness characterizing the roughness is larger
than the seta’s size: as a consequence, a decrease in the number of setae in contact
is expected Fig. 9c . As a result, on PMMA 2 an adhesion increment, of about 45%,
is observed. According to Briggs and Briscoe [60] an increment of 40%, thus close
to our observation, is expected for an adhesion parameter α equal to 1/3. Such a
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parameter was introduced as the key parameter in governing adhesion by Fuller and
Tabor [59] as:

α = 4σ

3

(
4E

3π
√
βγ

)2/3
(29)

where σ is the standard deviation of the asperity height distribution (assumed to be
Gaussian), β is the mean radius of curvature of the asperity, γ is the surface energy
and E is the Young modulus of the soft solid (gecko foot). Even if the value of
E of the entire foot cannot be simply defined, as a consequence of its non compact
structure, we note that considering it to be of the order of 10 MPa (thus much smaller
than that of the keratin material), with γ ≈ 0.05N

/
m [8], σ ≈ Sq, β ≈ λ would

correspond to values of α close to 0.5.
The reported maximal adhesion was not observed by Huber et al. [58]. Note that

their tested polished surfaces were of five different types, with a nominal asperity
size of 0.3, 1, 3, 9 and 12 μm, which correspond to RMS values of 90, 238, 1,157,
2,454 and 3,060 nm respectively. Huber et al. [58] have observed sliding of geckos
on polishing paper with a RMS value of 90 nm for slopes larger than 135◦. On a
rougher substrate, with a RMS value of 238 nm, two individual geckos were able to
cling to the ceiling for a while, but the foot-surface contact had to be continuously
renewed because gecko toes slowly tend to slid off the substrate. Finally, on the
remaining tested rougher substrates, animals were able to adhere stably to the ceiling
for more than 5 min.

These different observations (assuming that the influences of claws and moult
were minimized also by Huber et al. [58] suggest that the RMS parameter is not
sufficient alone to describe all the aspects of the surface roughness. The use of a
‘complete’set of roughness parameters could help in better understanding the animal
adhesion and thus in optimizing the Spiderman suit design.

Towards a Spiderman Suit

According to our analysis, a man (palm surfaces of ∼200 cm2) and gecko-material
gloves (σgecko ≈ 0.58 MPa) could support a mass of ∼1,160 kg (safety factor ∼14),
or with spider-material gloves (σspider ≈ 0.24 MPa) a mass of ∼480 kg (safety
factor ∼6). We expect, due to non ideal contact, a safety factor reduction of about
one order of magnitude [12], thus we still conclude that Spiderman suits could
become feasible in the near future. Note that theoretical van der Waals gloves
(σ (th)vdW ≈ 20 MPa) would allow one to support a mass of ∼40,000 kg (safety fac-
tor of ∼500). Carbon nanotubes could be one of the most promising candidates for
our applications: on a small scale a carbon nanotube surface was able to achieve
adhesive forces ∼200 times greater than those of gecko foot hairs [64], even if it
could not replicate large scale gecko adhesion perhaps due to a lack of compliance
and hierarchy. Thus, we propose the use of hierarchical branched long (to have the
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sufficient compliance) nanotubes [65] as good material for a Spiderman suit, with a
number of hierarchical levels sufficient to activate self-cleaning, as quantifiable by
our calculations. Their aspect ratio must not be too large, to avoid bunching [66, 67]
and elastic self-collapse under their own weight, but sufficiently large to conform to
a rough surface by buckling under the applied stress (see [2]), similar to the opti-
mization done by Nature in spiders and geckos. In particular, following Glassmaker
et al. [67] and Yao and Gao [68] for the bunching and introducing our result for

the pillar radius at the level N (rN = r0
(
ϕ
/

n
)N/2) we find the anti-bunching and

anti-self-collapse [69] conditions at the hierarchical level N in the following form:

s < min

⎧
⎨

⎩
2

(
33π4

25
(
1− v2

)

)1/12 (
Er0

γ

)1/3 (ϕ

n

)N/6
(√(
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/
ϕN
)− 1

)1/2
,

(
8π2E
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(
ϕ
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⎫
⎬

⎭
,

(29)

where v is the Poisson’s ratio, ρ is the material density and ϕmax = π
/

2
√

3,

ϕmax = π
/

4 or ϕmax = π
/

3
√

3 for triangular, square or hexagonal pillar lattices

respectively. In order to have a uniform contact, the buckling [69] must be activated
under the applied stress σa (e.g., ~10 KPa, see [2]), thus imposing:

s > π

√
4
/

3ϕN/2
√(

σa
/

E
)
, (30)

Equations 29 and 30 can be used for an optimal design of hierarchical super-
adhesive materials.

Accompanied by large transparent (if not fully invisible, to dispose of a higher
strength) nanotube based cobwebs, a complete preliminary Spiderman suit could be
realized, Fig. 2.

Conclusions

We have proposed [26] new laws to design futuristic self-cleaning, super-adhesive
and releasable hierarchical smart materials, as well as large invisible cables, based
on carbon nanotube technology.

Thus the formulas suggest the possibility of scaling up the amazing adhesion
properties of a spider to the size of a man, thus the feasibility of a Spiderman suit.
Strong attachment and self-cleaning are all properties that must be achieved simul-
taneously. Even if this seems to be impossible, since these mechanisms are in strong
competitions, lotus leaves and gecko feet suggest the opposite. But one could deduce
that this high nanotech project is unfeasible, since no adhesive-based animals larger
than geckos exist in Nature. This is not fully right: Nature has often different scopes
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with respect to ours, for example animals are not interested in going into space, as
we are. Consequently, rather than mimicking Nature we must be inspired by Nature:
an airplane is not a big bird. Thus, the project could be feasible. We think that it is
feasible, since for a Spiderman Suit we need an adhesive strength that is much lower
(two order of magnitudes) than the theoretical (e.g. van der Waals) strength. This
safety factor could allow us to produce a flaw-tolerant, a very important requirement
since larger contact imperfections are expected at larger size scales, super-adhesive
smart material.

The analysis thus represents a first step towards the feasibility of a Spiderman
suit [26].
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Strength of Nanotubes and Megacables

Nicola M. Pugno

Abstract In this chapter my findings [mainly reported in N. Pugno, J. Phys.–
Condens. Matter, 18, S1971–S1990 (2006); N. Pugno, Acta Mater. 55, 5269–5279
(2007); N. Pugno, Nano Today 2, 44–47 (2007)] on the mechanical strength of nano-
tubes and megacables are reviewed, with an eye to the challenging project of the
carbon nanotube-based space elevator megacable. Accordingly, basing the design
of the megacable on the theoretical strength of a single carbon nanotube, as orig-
inally proposed at the beginning of the third millennium, has been demonstrated
to be naïve. The role on the fracture strength of thermodynamically unavoidable
atomistic defects with different size and shape is thus here quantified on brittle
fracture both numerically (with ad hoc hierarchical simulations) and theoretically
(with quantized fracture theories), for nanotubes and nanotube bundles. Fatigue,
elasticity, non-asymptotic regimes, elastic-plasticity, rough cracks, finite domains
and size-effects are also discussed.

Introduction

A space elevator basically consists of a cable attached to the Earth surface for carry-
ing payloads into space [1]. If the cable is long enough, i.e. around 150 Mm (a value
that can be reduced by a counterweight), the centrifugal forces exceed the gravity
of the cable, that will work under tension [2]. The elevator would stay fixed geosyn-
chronously; once sent far enough, climbers would be accelerated by the Earth’s
rotational energy. A space elevator would revolutionize the methodology for car-
rying payloads into space at low cost, but its design is very challenging. The most
critical component in the space elevator design is undoubtedly the cable [3–5], that
requires a material with very high strength and low density.
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Considering a cable with constant cross-section and a vanishing tension at the
planet surface, the maximum stress-density ratio, reached at the geosynchronous
orbit, is for the Earth equal to 63 GPa/(1,300 kg/m3), corresponding to 63 GPa if the
low carbon density is assumed for the cable. Only recently, after the re-discovery of
carbon nanotubes [6], such a large failure stress has been experimentally measured,
during tensile tests of ropes composed of single walled carbon nanotubes [7] or
multiwalled carbon nanotubes [8] both expected to have an ideal strength of ~100
GPa. Note that for steel (density of 7,900 kg/m3, maximum strength of 5 GPa) the
maximum stress expected in the cable would be of 383 GPa, whereas for kevlar
(density of 1,440 kg/m3, strength of 3.6 GPa) of 70 GPa, both much higher than
their strengths [3].

However, an optimized cable design must consider a uniform tensile stress profile
rather than a constant cross-section area [2]. Accordingly, the cable could be built
of any material by simply using a large enough taper-ratio, that is the ratio between
the maximum (at the geosynchronous orbit) and minimum (at the Earth’s surface)
cross-section area. For example, for steel or kevlar a giant and unrealistic taper-ratio
would be required, 1033 or 2.6×108 respectively, whereas for carbon nanotubes it
must theoretically be only 1.99. Thus, the feasibility of the space elevator seems to
become only currently plausible [9, 10] thanks to the discovery of carbon nanotubes.
The cable would represent the largest engineering structure, hierarchically designed
from the nano- (single nanotube with length of the order of a hundred nanometers)
to the mega-scale (space elevator cable with a length of the order of a hundred
megameters).

In this chapter the asymptotic analysis on the role of defects for the mega-
cable strength, based on new theoretical deterministic and statistical approaches of
quantized fracture mechanics proposed by the author [11–14], is extended to non
asymptotic regimes, elastic-plasticity, rough cracks and finite domains. The role of
thermodynamically unavoidable atomistic defects with different size and shape is
thus quantified on brittle fracture, fatigue and elasticity, for nanotubes and nanotube
bundles. The results are compared with atomistic and continuum simulations and
nano-tensile tests of carbon nanotubes. Key simple formulas for the design of a
flaw-tolerant space elevator megacable are reported, suggesting that it would need
a taper-ratio (for uniform stress) of about two orders of magnitude larger than as
today erroneously proposed.

The chapter is organized in 10 short sections, as follows. After this introduction,
reported as the first section, we start calculating the strength of nanotube bun-
dles by using ad hoc hierarchical simulations, discussing the related size-effect.
In Sect. ‘Brittle Fracture’ the strength reduction of a single nanotube and of a
nanotube bundle containing defects with given size and shape is calculated; the
taper-ratio for a flaw-tolerant space elevator cable is accordingly derived. In Sect.
‘Elastic-Plasticity, Fractal Cracks and Finite Domains’ elastic-plastic (or hyper-
elastic) materials, rough cracks and finite domains are discussed. In Sect. ‘Fatigue’
the fatigue life time is evaluated for a single nanotube and for a nanotube bundle. In
Sect. ‘Elasticity’ the related Young’s modulus degradations are quantified. In Sects.
‘Atomistic Simulations’, ‘Nanotensile Tests’ we compare our results on strength
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and elasticity with atomistic simulations and tensile tests of carbon nanotubes.
In Sect. ‘Thermodynamic Limit’ we demonstrate that defects are thermodynami-
cally unavoidable, evaluating the minimum defect size and corresponding maximum
achievable strength. The last section presents our concluding remarks.

Hierarchical Simulations and Size-Effects

To evaluate the strength of carbon nanotube cables, the SE3 algorithm, formerly
proposed [3] has been adopted [15]. Multiscale simulations are necessary in order
to tackle the size scales involved, spanning over ∼10 orders of magnitude from
nanotube length (∼100 nm) to kilometre-long cables, and also to provide useful
information about cable scaling properties with length.

The cable is modelled as an ensemble of stochastic ‘springs’, arranged in parallel
sections. Linearly increasing strains are applied to the fibre bundle, and at each
algorithm iteration the number of fractured springs is computed (fracture occurs
when local stress exceeds the nanotube failure strength) and the strain is uniformly
redistributed among the remaining intact springs in each section.

In-silico stress-strain experiments have been carried out according to the follow-
ing hierarchical architecture. Level 1: the nanotubes (single springs, Level 0) are
considered with a given elastic modulus and failure strength distribution and com-
posing a 40×1,000 lattice or fibre. Level 2: again a 40×1,000 lattice composed by
second level ‘springs’, each of them identical to the entire fibre analysed at the first
level, is analysed with in input the elastic modulus and stochastic strength distribu-
tion derived as the output of the numerous simulations to be carried out at the first
level. And so on. Five hierarchical levels are sufficient to reach the size-scale of the
megametre from that of the nanometre, Fig. 1.

The level 1 simulation is carried out with springs L0= 10–7 m in length,
w0= 10–9 m in width, with Young’s modulus E0= 1012 Pa and strength σ f ran-
domly distributed according to the nanoscale Weibull statistics [16] P

(
σf
) =

1 − exp[−(σf/σ0)m], where P is the cumulative probability. Fitting to experiments
[7, 8], we have derived for carbon nanotubes σ 0= 34 GPa and m= 2.7 [16]. Then
the level 2 is computed, and so on. The results are summarized in Fig. 2, in which a
strong size-effect is observed, up to length of ∼1 m.

Given the decaying σ f vs. cable length L obtained from simulations, it is inter-
esting to fit the behaviour with simple analytical scaling laws. Various exist in the
literature, and one of the most used is the Multi-Fractal Scaling Law (MFSL [17],
see also [18]) proposed by Carpinteri. This law has been recently extended towards
the nanoscale [19]:

σf

σmacro
=
√

1+ lch

L+ l0
(1)

where σ f is the failure stress, σmacro is the macrostrength, L is the structural
characteristic size, lch is a characteristic internal length and l0 is defined via
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Fig. 1 Schematization of the adopted multiscale simulation procedure to determine the space
elevator cable strength. Here, N= 5, Nx1=Nx2= . . . Nx5= 40 and Ny1=Ny2= . . . Ny5= 1,000,
so that the total number of nanotubes in the space elevator cable is Ntot= (1,000× 40)5≈1023 [15]

Fig. 2 Comparison between simulations and analytical scaling law Eq. 1 for the failure strength
of the nanotube bundle as a function of its length; the asymptote is at 10.20 GPa [15]

σf (l = 0) = σmacro

√
1+ lch

l0
≡ σnano, where σ nano is the nanostrength. Note

that for l0 = 0 this law is identical to the Carpinteri’ scaling law [17]. Here, we
can choose σ nano as the nanotube stochastic strength, i.e. σ nano= 34 GPa. The
computed macrostrength is σmacro= 10.20 GPa. The fit with Eq. 1 is shown in


