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23.1 Introduction

Recently, the interest on the mechanical properties of materials 
at the nanoscale level has been remarkably growing. Just in 
the last few decades, material scientists have been able to make 
direct measurements at such a critical size scale, three orders 
of magnitude smaller than the more known and accessible 
microscale. An example is given by the exceptional mechanical 
properties observed in nanotubes (Ross, 1991; Treacy et al., 
1996; Yakobson et al., 1996, 1997; Yakobson and Smalley, 1997) 
since their re-discovery (see Pugno 2008) by Sumio Iijima 
(1991) and other scientists (Chopra et al., 1995; Weng-Sieh et al., 
1995; Loiseau et al., 1996). Th e tremendous mechanical proper-
ties coupled with the exceptional electronic ones lead to con-
sider nanoscale materials as optimal candidates for innovative 
materials (e.g., bio-inspired), for biomechanical applications 
(e.g., nanorobots), or electronics (e.g., nanoelectromechanical 
systems) (see the review by Qian et al. 2002).

Following the increasing interest in nanomechanics, this 
chapter intends to review the new results reported in the study of 
the mechanical properties of materials at the nanoscale (Pugno 
et al. 2006). We have shown that only two parameters are needed 
to describe the nanomechanics of materials: the cohesion energy 
and the atomic size. Th e proposed simple but general model gives, 
as a result, a preliminary periodic table for the nanomechanical 
properties of elements in which a periodicity of the mechani-
cal properties emerges. As a simple example of application for 

the reader, the theory is applied to the very recent results on the 
measurement of the elastic properties and intrinsic strength of 
monolayer graphene (Lee et al., 2008).

23.2  Nonlinear Normal 
Stress–Strain Law

Let us consider—for the sake of simplicity—a material arranged 
in the simple cubic lattice with lattice spacing a. Around the equi-
librium position, linear elasticity is expected whereas for larger 
displacements, a nonlinearity takes place. As we will show, the 
nonlinearity in the constitutive equation has to be considered for 
developing a general model including the eff ect of the coeffi  cient 
of thermal expansion.

Anisotropy is not taken into account in our model, the aim 
of which is to give simple estimations of the nanomechanical 
properties of materials. However, diff erent types of lattices could 
be treated by considering as a fi rst approximation an equivalent 
simple cubic lattice (e.g., by equating the atomic volumes).

Th e interatomic potential U between atoms depends substan-
tially on their chemical bonding. Th e atoms do not come into 
contact owing to Pauli’s and nuclei repulsions and reach their 
equilibrium positions. Even if diff erent chemical bonds imply 
diff erent interatomic potentials (e.g., Lennard-Jones), we can 
consider a general form (representing the interaction between 
one atom and all the others) according to the following series 
expansion:
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where
x is the displacement around the equilibrium position
cn are unknown coeffi  cients
N is the order of the polynomial approximation

Th e force F between atoms will be
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d
U xF x

x
=  (23.2)

We can assume c0 = 0, the energy being defi ned through its diff er-
ential, and we must have c1 = 0, the net force being vanishing at the 
equilibrium point x = 0. Th e classical harmonic approximation 
sets N = 2 and gives a linear relationship between force and dis-
placement, the so-called Hooke’s law. In addition, this symmetric 
form for the potential energy, related to small displacements, pre-
dicts vanishing thermal expansion, in contrast to the experimen-
tal evidence. Th us, at least an additional term has to be assumed so 
that a value of N = 3 is here considered. According to the simpli-
fi ed hypothesis of isotropic regular lattice, a volume a × a × a per 
each atom is considered (simple cubic lattice). Th e two unknown 
constants c2 and c3 can be obtained by imposing the defi nitions of 
Young’s modulus and coeffi  cient of thermal expansion, i.e.,
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〈x〉 being the mean value of the displacement due to the thermal 
vibration at temperature T. Th e fi rst condition implies c2 = Ea/2. 
On the other hand, the second one, evaluating 〈x〉 by means of 
the Boltzmann’s distribution, i.e.,
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where
β = (kBT)−1

kB is Boltzmann’s constant, gives c3 = −E2a3α/(3kB)

In terms of local stress σ = F/a2 and strain ε = x/a, the result is
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Even if the considered approach, based on the interatomic poten-
tial, is very simple (Kittel, 1966), the result of Equation 23.5 is 
original and describes a general form for the stress–strain rela-
tionship at nanoscale: for small displacements, it recovers the 

well-known Hooke’s law, whereas for large displacements, a 
non-Hookean soft ening regime dominates. Note that the multi-
body nature of the atomic interaction is automatically taken into 
account in Equation 23.5 via Young’s modulus. However, more 
sophisticated multibody potential could be easily considered 
(Zhang et al., 2002). Th e cutoff  at εC is analogous to those clas-
sically introduced in the interatomic potentials. Th is is imposed 
by the fact that, aft er the critical (i.e., maximum) strain εC for 
which the stress vanishes, the approximation of Equation 23.5 
loses its validity. Equation 23.5 is general in the sense that the 
atomic (or electronic or chemical bonding) structure of the solid 
is traduced in terms of global parameters.

According to Equation 23.5, the critical (i.e., maximum) stress 
and strain are predicted to be
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 (23.6a)
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Note that εC represents the maximum strain assuming a dis-
placement-controlled process. Vice-versa, for a force-controlled 
process, the critical strain is one-half of the previous one and 
will be reached at the maximum stress (see Figure 23.1).

23.3 Cohesion Energies

Th e energy dissipated per unit volume a3, that we could call frag-
mentation energy (Carpinteri and Pugno, 2002), can be calculated 
starting from the nonlinear relationship of Equation 23.5 as
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Th us, the energy dissipated per unit area a2, the so-called fracture 
energy (Carpinteri, 1997), is
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FIGURE 23.1 Nano-stress vs. nano-strain relationship (for carbon). 
Young’s modulus E, critical stress σC and strain εC and energy den-
sity (or fragmentation energy) ψC. (From Pugno, N. et al., Int. J. Solids 
Struct., 43, 5647, 2006. With permission.)
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Th e fracture energy plays a fundamental role in the prediction of 
the resistance against brittle crack propagation for a structural 
element (Pugno and Carpinteri, 2003).

On the other hand, the energy to pull-out an atom from the 
lattice, the so-called cohesion energy (Kittel, 1966), must be 
equal to
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where 6a2 is the new surface area created aft er the pull-out of one 
atom from the lattice, according to our simplifi ed model.

23.4  Young’s Modulus and Coefficient 
of Thermal Expansion Correlation

Young’s modulus is an index of the stiff ness of a material against 
mechanical loadings, whereas the coeffi  cient of thermal expan-
sion is an index of the compliance of a material under thermal 
variations. Th e aim of this section is to fi nd, by virtue of a sim-
plifi ed argument, their correlation.

Let us consider the diff erential of the free energy u, given by 
(Kittel, 1966) du = −p dV − S dT, where the pressure p and the 
entropy S are defi ned as p = −(∂u/∂V)T, S = −(∂u/∂T)V, and V 
is the volume. At the thermodynamical equilibrium, du = 0, 
so that p = −S(dT/dV) = (∂u/∂T)V(dT/dV). For one atom, the 
contribution to the free energy due to the thermal vibrations 
can be classically considered equal to ∼3/2kBT. Assuming 
constant pressure, the coeffi  cient of thermal expansion being 
defi ned as α = (3V)−1 dV/dT, the previous relationship would 
give p = kB/(2Vα). On the other hand, assuming constant 
temperature, diff erentiating and introducing the stress σ and 
strain ε under hydrostatic pressure p, for one atom of volume 
V ≈ a3, we have

 B
2 3
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Isotropic linear elastic constitutive laws (see Carpinteri, 1997) 
are expected for small strains, implying, under hydrostatic 
regime, the following relationship:

 d ,
d 1 2

Eσ =
ε − ν

 (23.11)

where ν is the Poisson’s ratio of the material. Th e combina-
tion of the two previous equations provides the following cor-
relation between Young’s modulus and coeffi  cient of thermal 
expansion as

 B
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3 (1 2 ) .
2

kE
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α
 (23.12)

As expected, they are inversely related. Th is result coincides 
with Grüneisen’s relation evaluated for one atom, in which the 

thermal capacity is assumed to be equal to 3kB (the classical value 
around room temperature) and Grüneisen’s experimental con-
stant is assumed to be equal to 3/2, close to its experimental 
value for many chemical elements (Slater, 1940). However, note 
that the thermal expansion coeffi  cient and Young’s modulus are 
functions of temperature (Jiang et al., 2004).

23.5 Nonlinear Shear Stress–Strain Law

In Equation 23.12 a new elastic constant appears, i.e., the 
Poisson’s ratio ν that, with Young’s modulus E, allows one to 
describe the elastic properties of isotropic materials. What 
is the expected value for ν at the nanoscale? To evaluate 
this coeffi  cient, that thermodynamically must be comprised 
between −1 and 1/2, we can alternatively evaluate the shear 
elastic modulus G.

For small displacements, the shear stress τ is connected with 
the displacement y (perpendicular to the previously introduced 
x coordinate) by Hooke’s law, i.e.,

 .yG aτ =  (23.13)

Due to the periodicity of the lattice with respect to shear, the relation 
shear stress vs. displacement can be assumed as (Frenkel, 1926):

 sin 2 ,
2
G y

a
⎛ ⎞τ ≈ π⎜ ⎟⎝ ⎠π

 (23.14)

showing a non-Hookean region for large displacements. 
Obviously, for small displacements it becomes Hooke’s law of 
Equation 23.13. As a consequence, the maximum value of the 
shear stress is

 C .
2
Gτ ≈
π

 (23.15)

Th e ideal shear strength is predicted to be approximately only 
one order of magnitude smaller than the shear elastic modu-
lus (Frenkel, l926). Even if the correct coeffi  cient of propor-
tionality remains unknown, depending on the adopted model, 
this result is experimentally verifi ed and represents an inter-
esting tool to discriminate if the measurements on material 
strength are close or not to the ideal material strength. Th e 
simple approach reported in Section 23.2 can be considered 
the extension of this approach for the normal stress–strain 
relationship.

Th e shear strain γ is defi ned by tan γ = y/a, so that the non-
linear shear stress vs. strain relationship at the nanoscale is pre-
dicted as

 sin(2 tan ).
2
Gτ ≈ π γ
π

 (23.16)



23-4 Handbook of Nanophysics: Principles and Methods

Th e critical value of the shear strain γ will be reached, in a 
displacement-controlled process, when the shear stress van-
ishes, for

 C a tan1/2 27 .γ = ≈ �  (23.17)

On the other hand, if the process is force-controlled, then the 
critical value of the shear strain will be reached when the stress 
equals its critical value. Th e corresponding shear strain level is 
atan1/4 ≈ 14°. Th is parameter is very large if compared with the 
measured values at human size scale (of the order of the meter). 
In addition, it is material-independent. Th is means that, at 
nanoscale, the ductility—which is not a material property but a 
size-dependent parameter—seems to “universally” prevail over 
brittleness, independently of the considered material.

Considering the derived strength of Equation 23.6a, and 
replacing α by Equation 23.12, gives σC ≈ E/(6(1 − 2ν)). Th us, the 
model confi rms that the ideal strength is expected as a signifi -
cant fraction of Young’s modulus: such result can be considered 
a proof of consistency for the simple model that we are propos-
ing. Assuming the well-known tensional Tresca’s or energetic 
von Mises’ criteria (usually considered in plasticity but still 
applicable if a brittle collapse is assumed, see Carpinteri, 1997)

 C T,vM C ,σ ≈ λ τ  (23.18)

where λT = 2 or vM 3λ =  for the two criteria respectively. By 
comparison between the normal and shear strengths, noting 
that G = E/(2(1 + ν)), we deduce an estimation of the Poisson’s 
ratio at the nanoscale as

 T,vM

T,vM

3 2 0.
6 2
λ − πν ≈ ≈
λ + π

 (23.19)

According to Tresca’s criterion, the prediction is of νT = −0.015, as 
well as for von Mises’ criterion of νvM = −0.065. Practically, both 
criteria suggest Poisson’s ratio close to zero. A prediction of ν out-
side its thermodynamical domain [−1, 1/2] would show an inconsis-
tency of our model. On the contrary and in spite of its simplicity, it 
appears to be self-consistent. Obviously, the prediction of Poisson’s 
ratio close to zero has to be taken with caution, representing only an 
estimation of our simplifi ed model. However, a surprisingly close to 
zero Poisson’s ratio of ν ≈ 0.07 has been measured for nanotubes by 
means of Brillouin light scattering (Casari et al., 2001).

23.6  Nanomechanical Properties 
of the Elements

Eliminating the coeffi  cient of thermal expansion in the derived 
nanomechanical properties, and assuming a Poisson’s ratio 
equal to zero, gives the following estimation for the nanome-
chanical properties as a function of the cohesion energy WC and 
of the atomic size a:

 C C
C C2 , ,

6
W GG
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≈ Ψ ≈  (23.20a)

 C
270, ,
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ε ≈ γ ≈  (23.20d)

Better estimations could be deduced relaxing the simplifi ed 
hypothesis of ν ≈ 0. Note the large critical normal and shear 
strains suggest large ductility at the nanoscale, independently 
from the considered material. Such a result seems to be confi rmed 
by the large ductility shown by classically brittle materials (if con-
sidered at the human size scale) like glass or carbon, e.g., glass 
whiskers or carbon nanotubes (Yakobson et al., 1997).

23.7 Comparison with the Literature

Th e most well-known prediction for the ideal strength of crystals 
was derived by Orowan (1948) in the following form:

 (Orowan) C
C 2

EG
a

σ ≈  (23.21)

A detailed comparison between the Orowan’s prediction and a large 
number of experimental observations was reported by Macmillan 
(1983), demonstrating that, in spite of its simplicity, Equation 23.21 
can reasonably predict the ideal strength of materials. Th us, if our 
approach agrees with such a prediction, we conclude that it has to 
be considered in agreement with the experimental observations 
on ideal strength of solids. Obviously, our approach as well as the 
Orowan’s estimation have to be considered as reasonable estima-
tions rather than as exact predictions. Rearranging Equations 23.20 
we fi nd

 C (Orowan)
C C

27 0.9 .
36 2

EG
a

σ ≈ ≈ σ  (23.22)

Th us, the two estimations are in reciprocal agreement.
Finally, we note that, applying quantized fracture mechanics 

(Pugno and Ruoff , 2004) considering the fracture quantum as coin-
cident with the atomic size, the prediction of the ideal strength is

 C(QFM) (Orowan)
C C

4 1.1 ,
2

EG
a

σ ≈ ≈ σ
π

 (23.23)

again in agreement with the previous model.
Now, let us focus the attention on carbon (graphitic form), 

for which a ≈ 1.54 Å and WC ≈ 7.36 eV/atom (Kittel, 1966). 
Correspondingly, from Equations 23.20, we estimate the following:

 1. ν ≈ 0; experiments on carbon nanotubes seem to confi rm 
this prediction: a surprisingly close to zero value of ν ≈ 0.07 
has been measured (Casari et al., 2001).

 2. E ≈ 725 GPa; it is well-known that Young’s modulus for 
ideal carbon nanotubes, or graphite, is expected to be of 
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the order of E ≈ 1 TPa (Qian et al., 2002). Values close to 
800 GPa were measured by Yu et al. (2000).

 3. GC ≈ 8.3 N/m (and ΨC ≈ 54 GPa); a reference value for 
carbon nanotubes is GC ≈ 8.4 N/m (Lambin et. al., 1998).

 4. εC ≈ 67% (and γC ≈ 27°); based on molecular dynamics atom-
istic simulations (Yakobson et al., 1997), a value of εC ≈ 40% 
is locally predicted in monoatomic chains due to high strain 
fracture of carbon nanotubes.

 5. σC ≈ 121 GPa (and τC ≈ 58 GPa); strength of ideal carbon 
nanotubes, or graphite, is expected to be of the order of 
σC ≈ 100 GPa (Qian et al., 2002). Values up to 64 GPa were 
measured by Yu et al. (2000).

Eventually, the toughness at the nanoscale is predicted by defi ni-
tion as IC C 2.45 MPa mK G E= ≈ , and, from Equation 23.12, 
the coeffi  cient of thermal expansion is α ≈ 8 × 10−6 K−1.

Th e nanoscale stress–strain relationship of carbon, Equation 
23.5, is reported in Figure 23.1.

It is important to note that the predicted values substantially 
agree with the experimental results at the nanoscale and that 
they are completely diff erent from the corresponding values at 
the macroscale. In fact, strong size eff ects on material properties 
are expected (Carpinteri and Pugno, 2004).

23.8  Nanomechanics Is the 
Borderline between Classical 
and Quantum Mechanics

Th e last considerations are on brittle crack propagation at the 
nanoscale. Th e velocity of the crack propagation, as well as of 
the elastic waves, is of the order of E ρ , ρ being the density 
of the considered material. According to special relativity, it 
must be smaller than light velocity c, so that the corresponding 
maximum value of Young’s modulus results to be 2

SR
max

E c≈ ρ , and 
therefore around 1020 Pa for ρ ≈ 103 kg/m3 (thus, much larger 
than the observed values).

A more interesting upper-bound for Young’s modulus is 
imposed by quantum mechanics, considering fracture propaga-
tion at the nanoscale coupled with the Heisenberg’s principle. 
In one of its forms, the principle states that ΔW Δt ≥ ħ, where 
ΔW and Δt are, respectively, the energy and the time spent in 
the process, and ħ = h/2π, where h is the Planck’s constant. 
With reference to fracture propagation, evaluating the time as 

/t a EΔ ≈ ρ , and the energy as ΔW ≈ GCa2, we obtain

 
2 6

C
QM 2
max

,G aE ρ≈
�

 (23.24)

which, for ρ ≈ 103 kg/m3, GC ≈ 10 N/m, and a ≈ 1 Å, is found 
to be around 10 TPa and of the same order of magnitude (TPa) 
observed for example in carbon nanotubes. Th is very simple 
argument is intended to show that nanomechanics can be consid-
ered at the borderline between classical and quantum mechanics 
(and, obviously, outside the domain of special relativity). Th is is the 

reason why both classical and quantum mechanics have been 
successfully applied in nanomechanical treatments.

23.9  Periodic Table for 
the Nanomechanical 
Properties of Elements

According to Equations 23.22, and based on the values of the 
interatomic distances in the stable lattice reported (Table of 
Periodic Properties of Th e Elements by Sargent-Scientifi c 
Laboratory Equipment Catalog Number S18806) and of the 
cohesion energies (Kittel, 1966; referred to 0 K), the nanome-
chanical properties of the elements (for which both the inter-
atomic distance and cohesion energy are known) as functions of 
their atomic number are depicted in Figures 23.2 through 23.8. 
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A preliminary periodic table for the nanomechanical properties 
of elements is reported in Table 23.1. We have focused our atten-
tion on the main mechanical properties of materials, i.e., Young’s 
modulus, the strength, and the fracture toughness. Th e period-
icity in the nanomechanical properties appears in a very clear 
way. Carbon—the chemical foundation of life—appears to be 
the strongest element.

23.10  Example of Application: 
Nonlinear Elasticity 
and Strength of Graphene

An explosion of interest in the fabrication and characteriza-
tion of graphene sheets is currently taking place (Novoselov 
et al., 2004; Berger et al., 2006; Stankovich et al., 2006; 
Dikin et al., 2007) due to their predicted fascinating mechani-
cal (and electrical) properties and thanks to recently available 
new nanotechnological tools. In the paper by Lee et al. (2008), 
the authors measured, by atomic force nanoindentation, the 
elastic properties and the ideal strength of free-standing mono-
layer graphene sheets.

Th e material constitutive law was assumed to be isotropic non-
linear elastic, in the form of σ = Eε + Dε2, where σ is the stress, 
ε is the strain, E is Young’s modulus, and D is the third-order 
elastic modulus. Th ey measured values of E = 1.0 ± 0.1 TPa and 
D = −2.0 ± 0.4 TPa. While a one terapascal Young’s modulus was 
expected and consistent with the abundant data in the literature, 
the measurement of D reveals new insights regarding the nonlin-
ear elastic behavior of graphene. In order to check the plausibility 
of their computed value, we may note that our model predicts 
D = −E2 a3α / kB, where α is the (linear) expansion coeffi  cient, kB 
is the Boltzmann’s constant, and a is here the C–C bond length (in 
graphene). Th us, we could indirectly estimate the thermal expan-
sion coeffi  cient of the tested monolayer graphene membranes, 
plausibly fi nding α ≈ 1.0 × 10−5 K−1, which suggests the consis-
tence of the reported third-order elastic modulus (or, vice versa, 
assuming α ≈ 1.0 × 10−5 K−1 one would deduce D ≈ −2.1 TPa).

Th e nonlinear elasticity aff ected only the small region of the 
graphene around the point where the load was applied and not 
the cubic force–load displacement curve (as imposed by the 
large displacements involved in the stretching). Accordingly, 
under the atomic force tip, a stress/strain concentration took 
place, numerically computed by the authors (Lee et al., 2008), 
from which the material strength was derived. Even if the preci-
sion of an intrinsic strength measurement based on the stress–
concentration concept of the continuum (which ignores energy 
release rate and quantization) is questionable, leading toward 
stress-intensifi cations to obvious strength overestimations, a 
value of σint = 130 ± 10 GPa was deduced following a rigorous 
approach. Th e predicted huge strength suggests to have mea-
sured the ideal material intrinsic strength, expected to be of the 
order of one tenth of Young’s modulus. Weibull moduli, one 
order of magnitude larger than those that we observed in car-
bon nanotubes, showed a more deterministic failure and seem 
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FIGURE 23.7 Nano-fracture toughness KIC of elements vs. atomic 
number. (From Pugno, N. et al., Int. J. Solids Struct., 43, 5647, 2006. 
With permission.)
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FIGURE 23.8 Inverse of the coeffi  cient of thermal expansion α of ele-
ments vs. atomic number. (From Pugno, N. et al., Int. J. Solids Struct., 
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TABLE 23.1 Periodic Table for the Nanomechanical Properties of the Elements
1H Th e Periodic Table for the Nanomechanical Properties of the Elements 2He
3 5

31 137Li 4 34
206 751Be = =

= ⎡ ⎤= ⎣ ⎦

σC

IC

6 121 [GPa]
[GPa] 725 2450 kPa m

CZ
E K

5 79
474 1653B 6 121

725 2450C 7 87
525 1749N 8 50

301 989O 9 17
101 331F 10 0.07

0.4 1.8Ne

11 2
14 67Na 12 5

31 138Mg 13 15
91 382Al 14 25

153 619Si 15 22
130 514P 16 20

121 471S 17 11
65 249Cl 18 0.1

0.7 3.5Ar

19 1
6 30K 20 3

16 79Ca 21 10
59 274Sc 22 14

87 390Ti 23 17
99 442V 24 15

90 391Cr 25 11
67 290Mn 26 16

97 417Fe 27 17
101 435Co 28 17

105 449Ni 29 10
60 271Cu 30 5

27 119Zn 31 10
63 270Ga 32 16

96 408Ge 33 13
80 336As 34 10

61 255Se 35 6
37 152Br 36 0.1

0.8 4.1Kr

37 1
4 23Rb 38 2

11 58Sr 39 8
46 227Y 40 15

88 411Zr 41 18
108 502Nb 42 19

114 518Mo 43 20
123 550Tc 44 21

124 551Ru 45 18
108 479Rh 46 11

69 310Pd 47 6
37 177Ag 48 3

16 75Cd 49 7
39 181In 50 8

50 223Sn 51 8
46 202Sb 52 6

37 164Te 53 4
21 94I 54 0.1

0.8 4.4Xe

55 1
3 19Cs 56 2

11 58Ba 57 7
42 210La 72 12

72 351Hf 73 19
117 544Ta 74 24

145 658W 75 24
142 639Re 76 25

149 668Os 77 21
124 556Ir 78 17

100 453Pt 79 8
58 238Au 80Hg 81 4

26 122Tl 82 5
29 135Pb 83 5

31 145Bi 84 2
12 63Po 85At 86 0.2

0.9 5.2Rn

87Fr 88Ra 89Ac

58 8
48 236Ce 59 7

39 193Pr 60 6
34 168Nd 61Pm 62 3

21 103Sm 63 2
13 67Eu 64 7

45 218Gd 65 8
46 223Tb 66 6

35 168Dy 67 6
34 166Ho 68 6

38 185Er 69 5
31 148Tm 70 2

15 74Yb 71 9
53 252Lu

90 10
59 294Th 91Pa 92 14

85 340U 93Np 94Np 95Am 96Cm 97Bk 98Cf 99Es 100Fm 101Md 102No 103Lw

Based on:

C
C 26

WG
a

≈ C
C

G
a

Ψ ≈ ν ≈ 0 C
27
2

E ≈ Ψ C 6
Eσ ≈ C 4

Eτ ≈
π C

2
3

ε ≈ C
1atan
2

γ ≈

ν = Poisson’s ratio (material-independent), E = Young’s modulus, σC = critical normal stress, τC = critical shear stress, εC = critical normal strain (material-independent), γC = critical shear strain (material-
independent), GC = fracture energy (per unit area), ΨC = fragmentation energy (per unit volume), IC CK G E=  = fracture toughness, WC = cohesion energy, a = interatomic distance, Z = atomic number – 
(material properties referred to 0 K).

Source: Pugno, N. et al., Int. J. Solids Struct., 43, 5647–5657, 2006. With permission.
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to confi rm the observation of the ideal strength. Our model 
agrees with such a prediction for carbon.

Th e membranes were analyzed by scanning tunneling micros-
copy (STM), confi rming the absence of defects over an area of 
hundreds of square nanometers, a size comparable to that of the 
highly stressed zone developed under the nanoindenter tip. Since 
the stress–concentration rapidly decays by increasing the distance 
from the point where the load is applied, moderate defects placed 
far from the contact zone could not prevail, as observed. However, 
defects are thermodynamically unavoidable. At the thermal equi-
librium, the vacancy fraction, f = n/N, where n is the number of 
vacancies and N is the total number of atoms, is estimated to be 
f ≈ e−WC /(kBT), where WC ≈ 7 eV is the energy to remove one car-
bon atom and T is the absolute temperature at which the carbon 
is assembled. Considering a maximum value of T ≈ 4000 K leads 
to f ≈ 1.5 × 10−9, thus to a maximum number N ≈ 6.5 × 108 of 
atoms in which less than one vacancy is expected (Pugno, 2007). 
Th is corresponds to a defect-free maximum surface area of the 
order of one square micrometer, thus again compatible with the 
observation. Even if atomistic defects are tediously and not easily 
observable by STM investigation and the defect density is usually 
imposed by the fabrication process rather than by the thermody-
namic limit, our model agrees with the observations.

23.11 Model Limitations

Th e values that we have reported in the “preliminary periodic 
table for the nanomechanical properties of elements” (Table 
23.1) are aff ected by diff erent uncertainties.

In particular, we have simply assumed the Poisson’s ratio 
equal to zero, as suggested by the considerations reported in 
Section 23.5; however, zero represents an intermediate value 
between its thermodynamic limits of −1 and 1/2. Furthermore, 
we have to note that the Poisson’s ratio is an anisotropic param-
eter, depending on the crystallographic direction along which 
it is measured: thus, diff erent values should be considered for 
each diff erent crystallographic direction. For the sake of sim-
plicity, to present a preliminary periodic table, we have chosen 
to ignore anisotropy. Note that the classical periodic table of 
the elements itself ignores anisotropy, reporting mean values, 
as for example for the electrical or thermal conductivity, as well 
as for the atomic radius. Th e “atomic radius” itself has a degree 
of uncertainty, which aff ects our predictions. In fact, diff erent 
types of atomic radii can be defi ned through diff erent models, 
e.g., Hartree–Fock approach, rigid spheres, and so on. A few of 
them are reported in the periodic table of elements in terms of 
atomic (or also covalent or ionic) radius or volume. We note that 
the atomic radius and volume are independent parameters, thus 
representing a fi rst reason of uncertainty. In addition, as pre-
viously emphasized, we have neglected anisotropy. However, in 
our approach, diff erent values for each crystallographic direction 
of the parameter a could allow us to roughly take into account 
anisotropy, as well as a “mean value” (e.g., the cubic root of the 
volume per atom) would allow us to consider not only simple 
cubic lattice. Finally, our model ignores plastic deformations.

To clarify the previous points, we can treat as a simple exam-
ple the case of sodium, considering its lattice parameter (BCC, 
0.42906 nm) and applying the rigid sphere model (two atoms per 
cell in BCC). Young’s modulus of sodium usually reported in 
the literature is close to 10 GPa, against our preliminary predic-
tion of 14 GPa. According to the periodic table of the elements, 
the atomic radius of the sodium (that we have used) is 0.190 nm, 
whereas the atomic radius that we calculate, remembering that 
the closed packed direction is [111] (diagonal), is 0.186 nm. Th e 
same value is deduced starting from the volume of the unit cell 
(cube of the lattice parameter for BCC) and taking into account 
the packing factor for BCC (0.68). Th us, considering 0.186 nm 
instead of 0.190 nm would yield E ≈ 14 · 0.1903/0.1863 ≈ 15 GPa. 
On the other hand, removing the approximation of a vanishing 
Poisson’s ratio, E/(1 − 2ν) ≈ 15 GPa, so that to capture the correct 
value of E ≈ 10 GPa, a value of v ≈ 0.17 is deduced.

23.12 Conclusions

We conclude that our model must be considered a basic treat-
ment; however, in spite of its limits, the approach reported in this 
chapter could be of interest due to its simplicity and generality 
for estimating the nanomechanical properties of the elements.
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