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Abstract. In a recent letter, Xiao et al. [3] interpreted experimental results on the failure of nanotube 

bundles using Weibull Statistics. The prediction of the force versus strain curve was a smooth 

curve, only partially able to capture the observed discrete behavior of the bundle. In particular, 

abrupt jumps in the force, at nearly constant strains, were clearly observed experimentally, each of 

them corresponding to the failure of a sub-bundle. Accordingly, we have developed a simple 

modification of the Weibull Statistics able to treat the observed catastrophic failure of the bundle, 

considering a linear or nonlinear elastic constitutive law. 
 

Introduction 

 

In fibers of quasi brittle materials, such as carbon or glass, the strength is normally limited by the 

most severe defect present and, for a set of apparently similar fibers, the strength distribution can 

often be represented by a two-parameter Weibull function [1]. For a large number, N0, of fibers      

(e.g.  in a bundle) the number of surviving fibers [2], under an applied stress σ, is given by 
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where σ0 is the scale parameter of Weibull distribution and m is a shape or flaw distribution 

parameter and is a constant of the fiber material: a large value of m indicates fibers with a uniform 

distribution of strengths or defects, while a small value of m describes fibers with a large variation 

in strengths or defects. From Eq. 1, if a Weibull distribution is an appropriate description of 

experimental data for a given set of fibers, then the data plotted as ln(ln(Ns/N0)) against lnσ will 

give a straight line whose slope yields m. The fracture stresses are usually found by testing large 

numbers of individual fibers; this process is time-consuming. 

Accordingly, Chi et al. [2] discussed the determination of single fiber strength distribution from 

fiber bundle test. They developed a simple method for determining the parameters of Weibull 

distribution function based upon the analysis of tensile curves of fiber bundles.  

Xiao et al. [3] measured the stress–strain curves of four SWNT bundles. Worth noticing are the 

numerous stress drops, large and small, that appear on the stress–strain curves at nearly constant 

strain. These drops, presented in all the tested samples, are indicative of sub-bundle failures. The 

strength of single fiber was assumed to follow the two parameters Weibull distribution. A 

theoretical expression of load-strain (P-ε) relationship for the bundle was derived. Then, the two 

parameters of the Weibull distribution were calculated. The analysis [3] was able to catch the mean 

response of the bundle but not the observed catastrophic behavior of the bundle; accordingly, we 

propose here a modification of the classical Weibull statistics able to predict the observed snap-back 

instabilities. 
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Theory  

 

The following hypotheses are assumed in the present analytical work:  

(1) The distribution of single fiber strength under tension follows the two parameters Weibull 

distribution F (σ), i.e.  
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 where L is the fiber length. 

(2) The applied load is distributed uniformly among the surviving fibers at any instant during a 

bundle tensile test (mean field approach). 

(3) The relation between applied stress and strain for single fiber which obeys Hooke’s law up to 

fracture is: 

                                                                    εEσ f=  .                                                                      (3) 

where Ef  is the fiber modulus. We will relax this hypothesis in the second part of the paper. 

Eq. 2 may be written in alternative form: 
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where R (ε) is the probability of survival under a strain ε. F (ε) is the failure probability of a single 

fiber under strain no greater than ε, ε0 is the scale parameter of the Weibull distribution for strain, 

and can be given by: 
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At applied strain ε the number of surviving fibers in a bundle, which initially consists of N0 

fibers, is:  
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The number of surviving fiber must be integer so that: 

                                          ( ) ]])
ε

ε
L(exp[Int[NεN m

0

0s −=  .                                                             (7) 

The introduction of the integer function in Eq. 7 is mathematically trivial but has remarkable 

physical implications, as we demonstrate here as the first time.                                                      

The last expression is then related to the applied tensile load, P, by;                     
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where A is the cross section area of the single fiber. Then, if  A, L, Ef, N0, m and ε0 are known, the 

curve of load vs. strain can be drawn. 

The experimental procedure to determine the probability of single fiber strength from the 

experimental test of fiber bundle was explained in detail in [2,3]. Empirical determination of the 

initial slope of load-strain curve, S0, in uniaxial tension, can be derived by the following equation 

[4,5]: 

                                                     0f0 ANES = .                                                                            (9) 
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Experiments on CNT bundles 

We apply the model to carbon nanotube (CNT) bundles. The structure of CNT yarn or bundle, at 

micro scale, has two levels of hierarchy: (I) individual CNTs at the fundamental level and (ІІ) sub-

bundles, of aggregated CNTs. These sub-bundles form a continuous net, with a preferred orientation 

along the longitudinal axis of the yarn [6]. Fig. 1 shows a model of CNTs pulling process from an 

array. According to recent studies [7,8], CNTs usually form sub-bundles containing up to 100 

parallel CNTs; these have been described as nano-ropes. When pulling the CNTs from an array, it is 

the van der Waals attraction between CNTs which makes them joined end to end, thus, forming a 

continuous yarn. 

The computational model [9] and the experiments of CNTs [10] suggest that the breaking of 

bundles arises from sliding rather than breakage of individual CNTs. It was furthermore noted that 

the sliding of CNTs along the axial direction caused a corrugation effect. The mechanical properties 

of the yarn depend on the interaction of CNTs in bundles, itself depending on the degree of 

condensation (or packing) of CNT bundles in the yarn structure. 

 

 

Fig. 1.  Pulling yarn model of CNTs spinning process [11]. 

From the experimental data in Fig. 2 we can see the failure behavior of the bundle where, as the 

authors noted in their document, the numerous kinks or load drops, large and small, are indicative 

of sub-bundle failures.  
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Fig. 2.  Force-strain curves for a SWNT bundle. The dots are the experimental results, while the solid line is 

our nonlinear prediction whereas the dashed line is the prediction of the linear model. 
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Non linear elastic constitutive law 

If the number of sub-bundle is nb and the number of individual CNTs inside each one is nn, then 

the total number of CNTs in the bundle can be given by: 

                                                        
n

nnN b0 = .                                                                              (10) 

From Eq. 10 we can rewrite Eq. 8, assuming only sub-bundle failure (the integer function applies 

only to nb), as: 
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In Fig. 3 different responses, by varying nb are plotted. Assuming non-linearity [3], Eq. 11 

becomes: 
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where α is the coefficient of non-linearity, expected to be [12]: 
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where Ef is the modulus of elasticity, kB is Boltzmann’s constant; a
3
 is the volume of a lattice unit 

cell and γ  is the thermal expansion coefficient. Non-linearity must be considered in the case of 

large strains. Fitting the experimental data [3] with the theoretical prediction of Equation (12), we 

found that nb=8 gives the best fit. Furthermore, in agreement with Zahu et al. [13], we found that 

α=3 gives the best fit (in [3] α=6 was used).  
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Fig. 3. Force-strain curves for bundle with nb=10 or nb=10000. 

                   Theory with nb = 10000 

------------  Theory with nb = 10 
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In particular Fig. 2 shows the localization of failure for a bundle after the rupture of a filament. We tried 

to capture this phenomenon by the present model, which gives nearly the correct experimental behavior.  

When we calculated the slope of each load drop, we found that it is negative and becomes higher in 

modulus by increasing the strain. These load drops, corresponding to a catastrophic failure of the 

bundle, suggest larger brittleness by increasing the strain. This tendency is also predicted 

theoretically by our statistical treatment, see Fig. 4. 
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Fig. 4 Variation of load drop slop with strain. 

Conclusion  
The catastrophic failure of the nanotube bundle can be predicted by the proposed simple 

modification (the introduction of the integer function) of the Weibull distribution, including a 

nonlinear elastic constitutive law. We expect the validity of this approach for different types of 

bundles and not only for the relevant case of CNT bundle. 
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