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Abstract 

 

In this paper the self-buckling of nanostructures, such as nanotubes, fullerenes and peapods, is 

analytically treated; this surprising phenomenon is due to the interaction among the nanostructures 

caused by the surface energy; it is peculiar of the nanoscale and has not a macroscopic counterpart. 

The influence of the surrounding nanostructures on one of them in a crystal is nearly identical to 

that of a liquid having surface tension equal to the surface energy of the solid. For the beneficial 

implications of the self-buckling on the overall mechanical strength see Pugno (2010; The design of 

self-collapsed super-strong nanotube bundles, Journal of the Mechanics and Physics of Solids, 

Available Online).  

 

 

Introduction 

 

The elastic buckling under pressure, and even without pressure, i.e. the self-buckling of nanotubes 

in a bundle, was firstly investigated by atomistic simulations in [1]. These authors have performed 

molecular dynamics simulations to confirm that carbon nanotubes undergo a discontinuous collapse 

transition under hydrostatic pressure. They predicted also a critical diameter for the self-collapse (at 

atmospheric pressure), lying between 4.2 and 6.9 nm with the considered force field. In addition, 

there was good agreement between their simulations, simply calibrated with X-ray compression 

data for graphite, and the experimentally observed transition pressures for laser-grown nanotubes. 

This level of agreement raised confidence that the simple and computationally inexpensive force 

field used in [1] may be suitable for examining the nanomechanics of nanotubes.  

Moreover, the self-buckling of nanotubes in a bundle has been experimentally observed [2]. These 

authors have introduced a method for the direct spinning of pure carbon nanotube fibres from an 

aerogel formed during chemical vapour deposition. The continuous withdrawal of product from the 

gas phase as a fibre imparts high commercial potential to the process, including the possibility of in-

line post-spin treatments for further product optimisation. Also, they have shown that the 

mechanical properties of the fibres are directly related to the type of nanotubes present (i.e., 

multiwall or single wall, diameters, etc.), which in turn, can be, at least ideally, controlled by the 

careful adjustment of process parameters. In particular, they obtained high performance fibers from 

dog-bone, i.e. self-collapsed, carbon nanotubes.  

Only very recently, the theoretical explanation of the self-buckling has been given, including its 

beneficial implication on the overall mechanical strength [3] in the case of sliding failure. Rougly, 

the self-collapse enlarges the interface surface area between the nanotubes and thus also the strength 

of the junctions between nanotubes and finally the overall fracture strength of the bundle, in case of 

sliding failure. For the prediction of the complimentary intrinsic fracture see [4-11].  

The present paper is focused on the self-buckling of nanotube/fullerene crystals. 
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2. Theory 

 

We treat the crystal as a liquid-like material with surface tension γγ =t , as imposed by the energy 

equivalence (the surface tension has the thermodynamic significance of work spent to create the 

unit surface, as the surface energy), thus deducing a pressure Rγ  acting on a single nanotube of 

radius R within a bundle, as evinced by the Laplace’s equation. In other words, considering a 

cylindrical cavity/nanotube of size R under a pressure p in a liquid/nanotube bundle having surface 

tension/energy γ , the free energy (per unit length) of the system can be written as 

( ) ( )2 2E p R R constπ γ π= − + +  and has to be minimal at the equilibrium; thus posing 0d =E , we 

find p Rγ= . Note that for a crystal composed by fullerenes of radius R, the pressure 2p Rγ=  on 

a fullerene could be deduced from ( )3 24
4

3
E p R R constπ γ π = − + + 

 
 posing 0d =E , again in 

agreement with the prediction of the Laplace’s equation. Mixed systems, such as peapods, are also 

considered. 

 

 

2.1 Nanotubes  

 

The critical pressure Cp  can be accordingly derived as: 

 

 
RR

DN
pC

γα

−=
3

3
 (1) 

 

where N is the number of walls and 31 ≤≤α : assuming perfect bonding between the walls would 

correspond to 3=α , whereas for independent walls 1=α ; D is the bending stiffness of graphene; 

however, note that in the equations appears always the group DN α , that is the total bending 

stiffness. 

The first term in eq. (1) is that governing the buckling of a perfectly elastic cylindrical long thin 

shell (of bending stiffness DN α ), whereas the second term is the pressure imposed by the 

surrounding nanotubes, significant only at the nanoscale.   

Treating the atomistic simulations results for single walled nanotubes [1], excluding the two 

smallest nanotubes for which the buckling pressure was not accurately determined, a relevant 

agreement with eq. (1) is observed (coefficient of correlation R
2
=0.97), fitting a plausible value of 

nmnN2.0 ⋅≈fitD . 

From eq. (1) we derive the following condition for the self-collapse, i.e. collapse under zero 

pressure, of a nanotube in a bundle: 

 

 ( ) ( )NN

C R
DN

RR 06
3

==≥
γ

α

 (2) 

 

Taking nmnN11.0 ⋅=D  and mN18.0=γ  we find ( ) nm7.22 1 ≈CR . Considering an intermediate 

coupling between the walls with 2≈α , the critical diameters for double and triple walled 

nanotubes are ( ) nm4.52 2 ≈CR  and ( ) nm1.82 3 ≈CR . Note that for self-similar structures (t/R=const) 
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the minimum thickness Nt ( 3tD ∝ ) required for the self-buckling is very small, thus the self-

collapse is peculiar of the nanoscale and does not have a macroscopic counterpart.  

In [2], 17 experimental observations on the self-collapse of nanotubes in a bundle have been 

reported, see Table 1. A number of 5 single walled nanotubes with diameters in the range 4.6-5.7nm 

were all observed as collapsed; moreover, while the 3 double walled nanotubes observed with 

internal diameters in the range 4.2-4.7nm (the effective diameters are larger by a factor of 

∼0.34/2nm) had not collapsed, the observed 8 double walled nanotubes with internal diameters in 

the range 6.2-8.4nm had collapsed. Finally, a triple walled nanotube of 14nm internal diameter (the 

effective diameter is ∼14.34m) was observed as collapsed too. All these 17 observations are in 

agreement with our theoretical predictions of eq. (2), supporting our conjecture of liquid-like 

nanotube bundles. 

 

Nanotube  

number 

Number N  

of walls 

Diameter of the 

internal wall [nm] 

Collapsed (Y/N) 

Exp. & Theo. 

1 1 4.6 Y 

2 1 4.7 Y 

3 1 4.8 Y 

4 1 5.2 Y 

5 1 5.7 Y 

6 2 4.2 N 

7 2 4.6 N 

8 2 4.7 N 

9 2 6.2 Y 

10 2 6.5 Y 

11 2 6.8 Y 

12 2 6.8 Y 

13 2 7.9 Y 

14 2 8.3 Y 

15 2 8.3 Y 

16 2 8.4 Y 

17 3 14.0 Y 

 

Table 1: Self-collapse of nanotubes in a bundle: our theory exactly fits the experimental 

observations [2]. 

 

 

2.2 Fullerenes 

 

Similarly, the critical pressure of fullerenes in a fullerite crystal is: 

 

 
( ) RR

EtN

v
pC

γα 2

13

2
2

2

2
−

−
=  (3) 

 

where 21 ≤≤α  describes the interaction between the walls, E is the Young modulus and t is the 

monolayer thickness (~0.34nm); the first term is that posed by elasticity (that considers 2=α ; see 

for instance [12]), whereas the second one models the fullerene interaction, as previously discussed.  

Note that the factor ( )2Rt  for fullerenes, appearing instead of ( )3Rt  for nanotubes, shows that the 

critical pressure for fullerenes is much higher than that for nanotubes, at least for 1<<Rt . 

From eq. (3) we derive the following condition for the self-buckling: 
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 ( )

( ) γ

α 2

213

1 EtN

v
R N

C

−
=  (4) 

 

Note that for 0=v , 1=N , TPa1=E , nm34.0=t , mN2.0=γ , we find ( ) nm3341 ≈CR , showing 

that fullerenes are highly stable and thus that peapods with high fullerene concentrations are ideal 

solution against nanotube buckling. Note that for self-similar structures (t/R=const) the minimum 

thickness Nt required for the self-buckling is very small, thus the self-collapse is peculiar of the 

nanoscale and does not have a macroscopic counterpart.  

 

 

2.3 Peapods 

 

In the case of peapods, the collapse pressure is increased as a consequence of the presence inside 

the nanotube of the fullerenes; since the critical pressure of fullerenes is much higher than that of a 

nanotube, we treat the peapod as a nanotube of finite length L, equal to the (centre-centre) distance 

between two adjacent fullerenes. Note that the classical buckling formula of cylindrical shells 

assumes infinite length.   

According to elasticity [13] for a long cylinder the buckling pressure is: 

 

 
3

3

R

DN
pc

α

= ,   cLL >>  (5a) 

 

whereas for short cylinders [13]: 

 

 
2

24

RL

DN
pc

απ
= ,  cLL <<  (5b)  

 

The critical length governing the transition can be calculated equating eqs. (5a) and (5b): 

 

 RLc
3

2π
=  (6) 

 

For intermediate lengths, elasticity poses [13]: 

 

  
RtRL

DNv
pc

απ 22 1−
= ,   L∼ cL  (5c)  

 

Revisiting the previous elastic results, we thus expect for the buckling of peapods the following 

regimes: 

 

 
RR

DN
p t

C

γγα +
−=

3

3
,   cLL >>  (6a) 

 
RRtRL

DNv
p t

C

γγπ α +
−

−
=

22 1
,   L∼ cL  (6b) 

 
RRL

DN
p t

C

γγπ α +
−=

2

24
,  cLL <<  (6c) 
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Let us introduce the fullerene content as:  

 

 
L

R
f

2
=  (7) 

 

the previous equation become: 

 

 
RR

DN
p t

C

γγα +
−=

3

3
,   

π
3

=<< cff  (7a) 

 
R

f
RtR

DNv
p t

C

γγπ α +
−

−
=

2

22

2

1
,   cff ∼  (7b) 

 
R

f
R

DN
p t

C

γγπ α +
−= 2

3

2

,  cff >>  (7c) 

 

These stiffening three regimes are summarized in Figure 1. 

We can estimate the ratio q between the buckling pressures for f=0 and f=1, as: 

 

 
( )
( )

( )

( )
DN

R

DN

R

fp

fp
q

t

t

C

C

α

α

γγ

γγ
π

2

2
2

3
0

1

+
−

+
−

=
=

=
=  (8) 

 

Noting that in the treated case 1
2

<<
DN

R
α

γ
, we expect 32π≈q  (as confirmed by atomistic 

simulations, J. Elliot, private communication). 

 

pC ( f ) / pC ( f=0 ) 

 

fc 

f 

1 

1 

q 

 

 
 Figure 1: Theoretical dependence of the buckling pressure versus fullerene content. 
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From eqs. (6) we derive the following conditions for the self-buckling: 

 

 ( )

t

N

C

D
NR

γγ
α

+
= 3 ,   cLL >>  (9a) 

 ( ) ( )

( ) t

vD
LR

t

N

C

N

C 2

224
2 1

γγ
π

+

−
= ,   L∼ cL  (9b) 

 ( )

t

N

C

D
NL

γγ
π α

+
= 2 ,   cLL <<  (9c) 

 

 

Note that for small fullerene content the self-collapse is dictated by a critical radius, as for empty 

nanotubes, whereas for large fullerene content the self-collapse is dictated by a critical distance 

between two adjacent fullerenes (in the intermediate case, length and radius are comparable).  

 

 

3. Conclusions 

 

New formulas to control the self-buckling or nanotube/fullerene crystals are provided, and could 

have interesting applications for producing smart actuators and super-strong materials [3]. 
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