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1 Introduction

Many biological materials exhibit a hierarchical structure over more than one length

scale. Multiple examples can be given such as bones [1], teeth [2] and shells [3]:

bones, for instance, have seven levels of hierarchy, while sea shells present two or

three orders of lamellar structures. These materials, at the most elementary level of

structural hierarchy, are composed by hard and strong mineral structures embed-

ded in a soft and tough matrix. In bone the mineral platelets are ~3 nm thick, in

shells their thickness is of ~300 nm, while in tooth crystals are ~15-20 nm thick,

with a very high slenderness [4]. Understanding how these structures are related to

their mechanical properties emerges, hence, as a primary concern, since it may pro-

vide guidance on the development of novel materials with unique properties [5].

Hierarchical structures of biomaterials have been recognized to exhibit self-similarity

and to be fractal-like [6]. Size effects on apparent mechanical properties due to the frac-

tal nature of material microstructure have been extensively studied [7-9]. If infinite lev-

els of hierarchy are considered, new universal properties (i.e. scale-invariant quanti-

ties) having non-conventional or anomalous physical dimensions must be defined [7-

8]. On the other hand, if the hierarchical character is exhibited only over a finite range

of scales, as for biological materials, new physical considerations can be drawn.

In the present study, the strength and stiffness of hierarchical biomaterials are in-

vestigated by means of a fractal approach. The rules of mixture which let estimate

the nominal strength of hierarchical materials are firstly presented (Section 2). By

exploiting the self-similarity character of the structure, these rules can be condensed

in a unique and synthetic manner by means of a fractal approach [10-11] (Section 3).

Finally, a new fractal model based on a multiplicative process [12], which takes in-

to account both geometry and material features, is proposed (Section 4).

 





2 Prediction of strength in hierarchical materials

Let us consider a tensile test on a N-hi-

erarchical fibre-reinforced bar. Its cross-

section is composed by hard inclusions

embedded in a soft matrix and it is rep-

resented in Fig. 1. The nominal stress σ0

could be evaluated by means of a recur-

sive scheme of rules of mixture as [11]:

σ0 = v1σ1 + (1 - v1)σm,1

σ1 = v2σ2 + (1 - v2)σm,2

…… (1)

σi = vi+1σi+1 + (1 - vi+1)σm,i+1

……

σN-1 = vNσN + (1 - vN)σm,N ,

where σi and σm,i denote the stresses in the hard and soft phases, respectively, and

vi is the volumetric fraction of inclusions at the i-level (the nanostructure of bones,

for instance, shows a mineral to matrix volume ratio in the order of 1 to 2.). The

values of the material properties at each level hence depend on those of the preced-

ing levels.

In the case of round (or square)-shaped inclusions at each level, νi could be expressed

in the following form:

(2)

being nhi
the number of inclusions and Ri ~ √ 

Ai their mean average radius. Hence-

forth, the area of the cross-section of the bar A0 and its characteristic dimension R0

will be denoted simply by A and R, respectively.

Note that the rules of mixture (Eq. 1) involve, at each step, only the hard phase (i.e.,

the inclusions, Fig. 1). Although experimental data [13] show that the properties of

the matrix may vary at each level, it is often assumed, for the sake of simplicity, that

they do not change, i.e., σm,i = σm. In such a case Eq. 1 can be rewritten via a bot-

tom-up approach as:
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Figure 1: The cross-section of a hierarchical bar.





, (3)

where vr is the total volumetric fraction of inclusions.

3 Fractal model: constant matrix properties

Natural optimization suggests self-similar structures [14], for which Ri/Ri-1 = 1/δ
and nhi

= nh; thus, vi = v and vr = vN. Thanks to self-similarity, further considera-

tions based on fractal geometry naturally rise up. Particularly, if the hierarchical lev-

els were infinite (N→∞), the domain of inclusions would result into a fractal set of

dimension D:

, (4)

where 0 < D < 2. See, for instance, the

Sierpinski carpet displayed in Fig. 2.

Since a finite range of scales is taken in-

to account, the total volumetric content

of inclusions vr can be modelled as [11]:

. (5)

Thus, by substituting Eq. 5 into Eq. 3:

, (6)

which predicts that the nominal strength σ0 decreases as the size increases (R→∞)

i.e. “smaller is stronger”. The approximation in Eq. 6 keeps true as long as σN >> σm,

a condition which is usually satisfied.

Note that, according to Eq. 6, the stress levels always remain two, whatever is the hi-

erarchical level of the material. The same scaling law is valid for stiffness.
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Figure 2: The Sierpinski carpet (D = 1.89) at different lev-
els of observation.





4 Fractal model: variable matrix properties

In the previous section a scaling law for strength in hierarchical materials has been

derived, involving the fractal dimension related to the distribution of inclusions

(Eq. 4). This model is based on the simplifying hypothesis of identical matrix prop-

erties at each scale level (Eq. 3). On the other hand, as pointed out in Section 2, dif-

ferent properties of the matrix are often noticed at different levels. In order to con-

sider also this feature, a new model is proposed, based on a multiplicative process

[12], which will be shown to provide a simple and natural extension of Eq. 6.

Let us suppose that the ligament, which is apparently homogeneous at the macro-

scale, is divided into n equal parts: the stiffness is allocated such that nh cells are en-

riched by a factor Φ, and nm cells are depleted by a factor ϕ. Naturally, nh + nm =

n = R2/R2
1. If the condition of perfect bonding between inclusions and matrix is sat-

isfied, the same repartition occurs for stresses:

, (7)

where Ai now denotes the total area of inclusions at the level i.

The relationship between Φ and ϕ can be obtained by imposing the condition that

the critical applied force must be the same; from Eq. 7, in formulae:

, (8a)

and thus

. (8b)

Since negative values of parameters Φ and ϕ lack a physical meaning, it can be de-

duced from Eq. 8b that Φ ∈ (1, n/nh) and ϕ ∈ (0, 1).

At the following level, the problem is renormalized so that the “enriched” cells are

structured exactly in the same way:

. (9)

Note that this approach is consistent with Eq. 1. At the generic level N, iterating such

a procedure yields:
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, (10)

where

, (11a)

. (11b)

The material properties are hence distributed in a non-homogeneous way to form a

hierarchical structure with different characteristics at different length scales. The dis-

tribution process here proposed (Eq. 10) is equivalent to assuming that the ratio be-

tween the Young’s moduli of matrix and inclusions remains constant at each level.

By expressing Eqs. 10a,b as a function of N and equalling the two expressions, the

relationship between the nominal strength σ0 and the strength of inclusions at level

N can be obtained:

. (12)

Finally, since:

, (13)

substituting Eq. 13 into Eq. 12, yields:

, (14)

where

. (15)

Eqs. 14-15 describe the nominal strength dependency not only on the volume frac-

tion of inclusions (geometric effect, by D), but also on the nature of such inclusions

(material effect, by Φ). Note that, in the homogeneous case (Φ = 1), Eq. 15 pro-

vides D∗ = 0 and consequently σ0 = σN (Fig. 3). On the other hand, if the specimen is

made only of inclusions (Φ = n/nh), it is not difficult to demonstrate that D∗ = 2 - D

and the same scaling predicted by Eq. 6 is recovered (Fig. 3).
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The present model, by modelling differ-

ent matrix properties at each level, can

hence be considered as an extension of the

model presented in Section 3 [11], which

is based on purely geometrical consider-

ations.

Under the hypothesis mentioned above,

the same scaling occurs clearly for stiff-

ness:

, (16)

where E0 and EN are the Young’s moduli of the bar and of the inclusions at level N,

respectively, and D∗ is provided by Eq. 15.

5 Conclusions

In this work, the strength and hardness of hierarchical materials are investigated.

The study has focused on the behaviour of biomaterials subjected to uniaxial load-

ing. Despite these hierarchical structures show a self-similarity character only over

a finite range of scales, it is possible to model their scaling properties at each level

by means of a fractal approach. Recursive relationships are presented, based on a

renormalization group transformation.
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