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STRENGTH OF NANOSTRUCTURES

Do materials become insensitive to flaws at nanoscale?
An answer based on Quantized Fracture Mechanics
and Nanoscale Weibull Statistics

Rodney S. Ruoff
Department of Mechanical Engineering
Northwestern University, Evanston, IL 60208-3111, USA
r-ruoff@northwestern.edu

Nicola M. Pugno
Department of Structural Engineering
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Italy
nicola.pugno@polito.it

Abstract Quantized Fracture Mechanics is applied for predicting the strength of
nanostructures. An application to defective carbon nanotubes, com-
pared with atomistic simulations and experiments, clearly shows that
atomistic flaws in nanotubes can strongly reduce their strength, e.g., by
a factor of ∼20 % if just one atom vacancy is considered. The analysis
suggests that very few defects, relatively small in size, were responsible
for breaking of the tested nanotubes. This result is confirmed by an
application of “Nanoscale Weibull Statistics”. Thus, it seems to us that
the answer to the question posed in the title is – at least in general –
“no”.

Keywords: Nanomechanics, nanostructures, nanotubes, quantized fracture mecha-
nics, nanoscale Weibull statistics, quantized strength

1. Introduction
In Linear Elastic Fracture Mechanics [1], the energy release rate is

defined as G = K2
IK /E′ + K2

IIK /E′ + K2
IIIK (1 + ν)/E, where KI,II,IIIK are

the stress-intensity factors for modes I, II, III of crack propagation, with
E′ = E (for plane stress) or E′ = E/(1 − ν2) (for plane strain), where
E is the Young’s modulus and ν is the Poisson’s ratio of the material.
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According to classical Fracture Mechanics, the crack propagation will
arise for [1]:

G ≡ −dW/dA = GC or KI,II,IIIK = KI,II,IIICK (1)

where W is the total potential energy and the subscript C denotes a cri-
tical condition for the crack propagation (GC and KI,II,IIICK are the frac-
ture energy and toughness of the material). On the other hand, accord-
ing to Quantized Fracture Mechanics [2] (QFM) the crack propagation
will arise for:

G∗ ≡ −∆W/∆A = GC or K∗
I,II,IIIK ≡

√
〈K2

I,II,IIIK 〉A+∆A
A = KI,II,IIICK

(2)
where

〈·〉A+∆A
A ≡ 1

∆A

A+∆A∫
A

· dA.

QFM assumes “dissipation energy” in quanta GC∆A where ∆A is the
fracture quantum. Values for the stress intensity factors KI,II,IIIK are
available for the most interesting cases [3]: thus QFM can be applied
by integration (Eq. (2)) in a very simple way. In contrast to classical
fracture mechanics, that can treat only “large” (with respect to the
fracture quantum) and sharp (vanishing tip radius) cracks, QFM has no
restriction in treating defects with any size and shape [2]. Thus, QFM
can be applied also at nanoscale, where classical fracture mechanics does
not work [4].

2. Do Materials Become Insensitive to Flaws at
Nanoscale?

Consider a linear elastic infinite plate in tension, of uniform thick-
ness t, with a blunt crack with tip radius ρ and length 2l, orthogonal
to the applied far field σ (crack opening mode I). The material is de-
scribed by the fracture toughness KICK and by the fracture quantum at
the considered size-scale ∆A = at. Applying QFM, the failure strength
is predicted as [2]:

σf (l, ρ) = KICK

√
1 + ρ/2a

π (l + a/2)
= σC

√
1 + ρ/2a

1 + 2l/a
(3)

where σC is the strength of the plain structure (coincident with the ideal
material strength only at a very small scale); accordingly, the fracture
quantum is estimated as a ≈ 2K2

ICK /
(
πσ2

C

)
. Equation (3) shows that
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for 2l 	 a (“short” cracks) the structure becomes insensitive to flaws,
whereas for 2l � a (and ρ = 0) QFM recovers classical fracture mecha-
nics, that is not able to predict such “short crack behaviour”. Roughly
speaking, it is clear that structures having characteristic size of the order
of the fracture quantum are predicted to be insensitive to flaws. Thus
materials with a large value of a ≈ 2K2

ICK /
(
πσ2

C

)
present a significant

zone in which they become insensitive to flaws, in agreement to what
has been recently observed in bio-nanocomposites [4]. On the other
hand, at nanoscale such a parameter can be of the order of the inter-
atomic spacing, as observed for nanotubes (see next section). Thus, the
statement reported in the title of Ref. [4] (“materials become insensitive
to flaws at nanoscale”) cannot be considered to be true in general, as
demonstrated in the next section.

The Counterexample of Carbon Nanotubes
The tensile strengths of individual multiwalled carbon nanotubes (MW-

CNTs) were measured [5] with a nanostressing stage composed of two op-
posing atomic force microscope (AFM) tips, Fig. 1a,b, located in a scan-
ning electron microscope (SEM).

(a) (b) (c) (d) (e)

Figure 1. Experiments on fracture strength of nanotubes, [5].

The tensile experiment was prepared and observed entirely within the
microscope and was recorded on video until fracture, [5]. The sum of
the fragment lengths, Fig. 1c, far exceeded the original nanotube length.
This apparent discrepancy was explained by a sword-in-sheath type frac-
ture mechanism, similar to that observed in carbon fibers, i.e., the MW-
CNTs broke in the outermost layer. The tensile and fracture strength
of this layer ranged from 11 to 63GPa for the set of 19 MWCNTs that
were loaded (Table 1). Analysis of the stress-strain curves for indivi-
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dual MWCNTs indicated that the Young’s modulus E of the outermost
layer varied from 270 to 950 GPa. Transmission electron microscopic
(TEM) examination of the broken nanotube fragments revealed a va-
riety of structures, such as a nanotube ribbon, a wave pattern, and
partial radial collapse, Figs. 1d,e.

The experimental results on nanotubes [5] show distinct clusters about
a series of decreasing values of strength, with the maximum 63GPa, and
the other values “quantized” at 43, 36–37, 25–26, 19–20 and 11–12GPa,
see the complete data set collection reported in Table 1. The measured
higher strength of 63 GPa is not in agreement with the ideal tensile
strength of nanotubes (∼100 GPa). Moreover, the observed strength
quantization could be related to the quantization in the size of the de-
fects.

Table 1. Experiments on fracture strength of nanotubes [5].

Test number Diameter [nm] Length [µm] Strength [GPa]

1 28.0 4.10 11

2 28.0 6.40 12

3 19.0 3.03 18

4 31.0 1.10 18

5 28.0 5.70 19

6 19.0 6.50 20

7 18.5 4.61 20

8 33.0 10.99 21

9 28.0 3.60 24

10 36.0 1.80 24

11 29.0 5.70 26

12 13.0 2.92 28

13 40.0 3.50 34

14 22.0 6.67 35

15 24.0 1.04 37

16 24.0 2.33 37

17 22.0 6.04 39

18 20.0 8.20 43

19 20.0 6.87 63

We apply QFM assuming the fracture quantum to be identical to
the distance between two adjacent broken chemical bonds, i.e., a ≈√

3r0, with r0 ≈ 1.42 Å interatomic length. For example, considering
defects like n adjacent vacancies 2l = na in Eq. (3). This case was
also treated by molecular mechanics (MM) atomistic simulations [6].
The comparison between these MM simulations and the predictions of
Eq. (3) (we thus neglect here boundary effects) is summarized in Table 2;
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Table 2. MM [6] and QFM [2] comparison of fracture strength of nanotubes with
n adjacent vacancies (the graph reports the example of n=2, the applied load is
vertical). The observed strengths are in parentheses [5].

Strength
[GPa]

n=2 (63) n=4 (. . . ) n=6 (43) n=8 (39)

MM – (80,0) 64.1 50.3 42.1 36.9
QFM 64.1 49.6 42.0 37.0

the MM-calculated strengths clearly follow the (1 + n)−1/2 dependence
predicted by QFM with a fit of σC

√
1 + ρ/2a = 111 GPa. Starting from

the value of the ideal strength [6] σC = 93.5 GPa, it gives a reasonable
tip radius of the atomistic flaws as ρ ≈ 0.8a ≈ 2.0 Å. In Table 2 between
brackets are reported the measured strengths. The first three values
are well fitted assuming atomistic flaws having lengths of n = 2, 4, 8 (in
units of fracture quanta). Thus, it is clear that atomistic flaws affect the
strength of nanotubes. For a more detailed comparison, including also
atomistic pinhole defects, see the QFM paper [2].

3. Nanoscale Weibull Statistics
Weibull statistics [7] for strength (or time to failure) of solids and

deterministic Linear Elastic Fracture Mechanics do not apply properly
at the nanoscale. Weibull statistics assumes that the number of critical
flaws is proportional to the volume or to the surface area of the structure,
whereas single crystal nanostructures are anticipated to be either defect-
free or to have a small number of (critical) defects. As classical Fracture
Mechanics has been modified (also) for nanoscale applications (by QFM
[2]), similarly Weibull statistics has been modified by Nanoscale Weibull
Statistics [8] (NWS) for describing the distribution of the strength of
solids (also) at the nanoscale.

The simplest form of the volume-flaw based Weibull distribution [7]
is

F (σ) = 1 − exp
[
−V

(
σ

σ0

)m]
,

where F (σ) is the probability that a fiber will fail under tensile stress σ,
σ0 and m are Weibull’s scale (with anomalous physical dimension) and
shape (dimensionless) parameters respectively, and V is the fiber volume.
The surface-flaw based Weibull distribution simply replaces V with the
surface area S of the fiber (note that σ0, m are then different compared
to the σ0, m obtained from the volume-flaw based Weibull distribution).
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The cumulative probability F (σi) can be obtained experimentally as

F (σi) =
i − 1/2

N
,

where N is the total number of tests and the observed strengths σ1, . . . ,
σN are ranked in ascending order [9]. The volume- and surface-based
approaches become identical for the case of fracture of the external wall
of nanotubes under tension, such as for the 19 nanotubes experimentally
investigated [5]. This is true because V = St = πDLt, where t is the
constant spacing between nanotube walls (∼0.34 nm) and thus assigned
as the shell thickness, and D and L are the nanotube diameter and
length, respectively.

In terms of the number n of critical defects, Weibull statistics becomes:

F (σ) = 1 − exp
[
−n

(
σ

σ0

)m]
. (4)

Weibull statistics applied to fibers assumes n = kDαLβ , with α = 2 and
β = 1 if volume-flaws are considered, or α = 1 and β = 1 if surface-flaws
are considered (and k is a constant). On the other hand, we note that
for nearly defect-free structures, one may assume “point-flaws” defects,
i.e., that failure occurs at n = 1 (or equivalently at a value of n which
is independent of the specimen size) for which α = 0, β = 0, so that in
general, it may be more appropriate to expect 0 � α � 2 and 0 � β � 1.
For example, if “length-flaws” defects are considered α = 0 and β = 1.
We note that the proposed NWS, that is, Eq. (4) with n = kDαLβ and
0 � α � 2, 0 � β � 1 (or n = kHαLβW γ for rectangular cross-section
areas W × H, with 0 � α, β, γ � 1), corresponds for the limiting case
of β = 1 to the modified Weibull distribution proposed for the study of
the strength of sapphire whiskers [9].

Defining the nominal strength σn of the material for a specified value
of F , e.g., F (σ = σn) =

(
1 − e−1

)
= 0.63 (σn is thus defined as the

strength corresponding to the 63% probability of failure), the corres-
ponding size/shape-effect is predicted according to Eq. (4) as:

σn = σ0k
−1/mD−α/mL−β/m. (5)

The corresponding size-effect (that considers self-similar structures, i.e.,
D ∝ L) is a power-law, in agreement with the Carpinteri’s fractal law
[10]. Strictly speaking Eq.(4) is defined for σ < σC , where σC is the
(finite) ideal strength of solids, whereas obviously F (σ � σC) ≡ 1. Ac-
cordingly, in Eq. (5) σn is limited by σC . Note that the ratio between the
exponents of D and L in Eq. (5) is equal to α/β. In the classical Weibull
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statistics this ratio is set equal to 2 (volume-flaws) or 1 (surface-flaws).
In contrast, as recently emphasized in [9], the ratio α/β can also be sig-
nificantly different (for example for sapphire (α–Al2O3) whiskers it was
observed to be equal to 7 or 15). Thus, it is clear that such size/shape
effects cannot be explained by Weibull statistics, whereas Eq. (5) is com-
patible with the observations.

The standard Weibull statistics [7] applied to nanotubes [5] (Table 1)
is shown in Fig. 2. The Weibull modulus is found to be ∼3. This repre-
sents the first estimation of the Weibull modulus for nanotubes. How-
ever, the correlation is very poor, showing a coefficient of correlation
R2 = 0.67.

Figure 2. Weibull Statistics [7] applied to the observations on nanotubes [5].

Figure 3. Nanoscale Weibull Statistics [8] applied to the observations on nanotubes
[5].
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In contrast, applying the NWS [8] with n = 1, we find m ∼ 2.7 (and
σ0 ≈ 31 GPa) with a significantly better correlation of R2 = 0.93 (Fig. 3;
please compare also Figs. 2 and 3).

In particular, the statistical data analysis suggests that a small num-
ber of defects (perhaps simply one critical nanoscale defect in each of
the 19 different carbon nanotubes that were fractured) were responsible
for these nanotubes breaking. The QFM deterministic argument is as-
sessed by the NWS approach. Small numbers of atomistic defects can
be crucial for the strength of nanostructures.

4. Concluding Remarks
The analysis, based on Quantized Fracture Mechanics and Nanoscale

Weibull Statistics, corroborated by atomistic simulations and direct mea-
surements, suggests that the answer to the question posed in the title
must be considered – at least in general – to be “no”.
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