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Abstract

Spiders suggest to us that producing high strength over density ratio invisible ca-

bles could be of great importance. In this paper we show that such invisible cables

could in principle be built, thanks to carbon nanotube bundles. We demonstrate

that such cables can be easily transported in their visible state (with bunched nan-

otubes) and that an efficient anti-bunching controllable mechanism can smartly con-

trol the visible-invisible transition, and viceversa. The paper is a synthesis of the analy-

sis reported in [1].

1 Introduction

Carbon nanotubes display unique and extraordinary mechanical properties, such

as an extremely high Young’s modulus (~1TPa), strength (~100GPa) and consequent-

ly failure strain (~0.1), similar to those of graphite in-plane. Furthermore, the low

carbon density (~1300 Kg/m3) suggests that carbon nanotubes have promising high

strength and lightweight material applications. In this paper we show that their me-

chanical properties are sufficient to realize macroscopic invisible cables.

The paper is a synthesis of the analysis reported in [1] (please refer to this paper

for details; see also the related story “With no visible means of support”, New Sci-

entist, 19 July 2008, 23).

2 Smart invisible/visible synthetic spider silks based on nanotube
bundles

Consider carbon nanotubes arranged in a regular lattice with area fraction ϕ. The

strength σc of the invisible cable, defined as the failure tensile force divided by the

nominal area, is imposed by the equilibrium of the forces to be:

 





σc = ϕσNT, σ → E,ρ (1)

where σNT denotes the strength of the single carbon nanotube. The same relation

is derived for the cable Young’s modulus Ec considering in eq. (1) the substitution

σ → E and ENT as the Young’s modulus of the single carbon nanotube, as imposed

by the compatibility of the displacements. Similarly, the cable density ρc, defined as

the cable weight divided by the nominal volume, is predicted according to eq. (1)

with the substitution σ → ρ, where ρNT would denote the carbon (nanotube) den-

sity, as can be easily derived by the mass balance. Thus, the same (failure) strain

εc = σc/Ec = σNT/ENT and strength over density ratio R = σc/ρc = σNT/ρNT is expect-

ed for the cable and for the single nanotube. Eq. (1) can be considered as the sim-

plest law to connect the nanoscale properties of the single nanotube with the macro-

scopic properties of the cable.

Assuming that the nanotubes are distributed in a regular lattice pattern, one can

derive their separation p, from their external diameter d+ (internal diameter d– ≈ 0)

and area fraction ϕ, according to:

(2)

where ϕmax stands for the maximum area fraction of a given lattice: ϕmax = π/(2√3
–

),

π/4, π/(3√3
–

) respectively for triangular, square or hexagonal lattices.

On the other hand, indicating with λ the light wavelength, the condition for a nan-

otube to be invisible is:

d+ << λ (3a)

whereas to have a globally invisible cable, we require to not have interference be-

tween single nanotubes, i.e.:

p >> λ (3b)

We do not consider here the less strict limitations imposed by the sensitivity of the

human eye, that can distinguish two different objects only if their angular distance

is larger than ~1´. In other words, we want the cable to be intrinsically invisible.

Assuming d+/λ ≈ 1/10, p/λ ≈ 10, from the previously reported nanotube theoretical

strength, Young’s modulus and density, we derive the following wavelength-inde-

pendent invisible cable properties:

σc
(theo) ≈ 10 MPa, Ec ≈ 0.1 GPa, ρc ≈ 0.1 Kg/m3 (4)

Thus, with a sufficiently large spacing p, transparent and even invisible cables could

in principle be realized. But this very restrictive condition (3b), corresponding to
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non interacting nanotubes, evidently implies a low nominal strength. Nevertheless

we may note that the condition is sufficient but not necessary. In fact, if eq. (3b) is

not verified, e.g. for p < λ thus for interacting nanotubes, we can treat the cable as

an aerosol. In this case we can still have a globally transparent cable requiring that

its effective refractive index nc ≈ 1 + (nNT - 1)ϕ, nNT is that of carbon nanotubes, be

sufficiently close to the unity, i.e. p2 >> d+
2, as well as that its effective absorption in-

dex kc ≈ kNTϕ, kNT is that of carbon nanotubes, multiplied by the cable thickness T

be sufficiently close to zero, i.e. T <<
p2


d+

2 k-1
NT. Consequently, for this case of interacting

nanotubes, the nominal strength is improved but only sufficiently thin sheets can

be considered.

The nanotubes in the bundle will tend to bunch due to van der Waals surface at-

traction. The equilibrium contact width w of two identical nanotubes with diame-

ter d+ (do not subject to forces or constraints and with d– ≈ 0) can be determined

using contact mechanics as:

(5)

where νNT is the nanotube Poisson ratio and γs is the surface energy. Due to defor-

mation near the contact region of size wx, there is an accompanying stored elastic

energy Φs in the portions of nanotubes in contact (of length x) that must satisfy the 

energy balance dΦs = 2γsxdw ; thus, by integration, . Let us

consider the mechanism shown in Figure 1a, in which a moveable platform is

introduced along the cable. The total potential energy of the system is

Π(x) = Φs(x) + σ2

ENT
AL - (F - Ff)(L - x) + const,

where σ is the resulting tension in the nanotube, having cross-sectional area A and

length L; F denotes the anti-bunching force applied at the moveable platform and

Ff is the friction force (gravity is here neglected but could be easily included in the

energy balance). The energy balance implies ∆Π(x)∆x = 2γsw, where ∆x is a minimum

delamination advancement, from which we deduce the simple relation F = 3–2 γsw + Ff,

or the following nominal (referred to the platform surface area) stress, correspon-

ding to the visible-invisible state transition:
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(6a)

where σf is the friction stress. The invisible-visible state transition will take place

when the platform is moved in the opposite direction, applying a nominal stress:

(6b)

Considering plausible values of ENT ≈ 1 TPa, nNT ≈ 0, d+ ≈ 50 nm, γs = γwdW ≈ 0.01 N/m

(van der Waals), from eq. (5) we estimate a contact transversal width of w ≈ 0.8 nm;

and thus taking σf ≈ 0 and noting that ϕ = σc
(theo)/σNT

(theo) ≈ 10-4 in an invisible cable,

we deduce from eqs. (6) σν→i = σi→ν ≈ 0.3 Pa. In this case, a negative value of σi→ν
suggests that this transition would be spontaneous (friction and gravity neglected)

and the existence of a “sol-

id capillary effect”, that

could be used for building

nanoelevators. Thus the

mechanism is very effi-

cient requiring a small con-

trol pressure. Evidently the

moving platform could be

fixed at one of the two ter-

minal ends (the bottom

one in Fig. 1), to have a vis-

ible cable wound on a

ratchet and becoming in-

visible when unwound by

applying a cable stress

σν→i. On the other hand,

when the cable is invisible

could spontaneously re-

turn to the visible state, by

an instability towards the

nanotube configuration reported in Figure 1b. From the equilibrium of this config-

uration we can estimate the minimum value of p/L required to avoid the sponta-

neous invisible-visible transition (from 2σAtanϑ = σs ∆xw, see Fig. 1b):
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Figure 1: Visible-invisible cable transition, and vice versa (a);
anti-bunching condition (b).





, (7)

where σs is the theoretical strength of the surface interaction and σ is the applied

stress in the aligned nanotubes. For example, considering d+ ≈ 50 nm, σs = σνdW ≈ 1 MPa,

σ = 1 GPa, ∆x ≈ w ≈ 1 nm, we deduce p/Lmin ≈ 2.5 × 10-7 (k ≈ 3927); since for an in-

visible cable p ≈ 5 µm, Lmax ≈ 20 m. Note that L here has the physical meaning of

distance between two adjacent platforms and is not necessarily the total cable length:

more spacer platforms along the cable can thus avoid spontaneous invisible-visible

transition, even for smaller applied tension and longer cables.

3. Conclusions

Summarizing, in this paper we have shown that high strength over density ratio in-

visible cables could be produced in the near future, thanks to carbon nanotube tech-

nology. The cable transport will not be problematic in the visible state, whereas the

visible-invisible transition can be easily controlled by the reversible and efficient pro-

posed mechanism. Moreover, the spontaneous invisible-visible transition can be avoid-

ed by a sufficiently large cable tension and/or number of spacer platforms. Defects

(in addition to the complete invisibility demand) could pose limitations to their (nom-

inal) strength, but strongly increasable substituting the invisibility with a less re-

strictive transparency demand; however their strength to density ratio remains huge.

References
[1] N. Pugno, Macroscopic invisible cables, Microsystem Technologies, 2009, 15,

175-180

Contact:
Nicola M. Pugno

Department of Structural Engineering, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

e-mail: nicola.pugno@polito.it

k
d

xw
= +π 2

2∆
p

L k S
min

=
+ ( )

1

1
2σ σ






