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Quantized Mechanics of Nanotubes
and Bundles

Nicola M. Pugno

Summary. In this chapter, the mechanics of carbon nanotubes and related bundles
is reviewed, with an eye to their application as ultra-sharp tips for scanning probe
“nanoscopy”. In particular, the role of thermodynamically unavoidable, atomistic
defects with different sizes and shapes on the fracture strength, fatigue life, and
elasticity is quantified, thanks to new quantized fracture mechanics approaches. The
reader is introduced in a simple way to such innovative treatments at the beginning
of the chapter.
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14.1 Introduction

Fabrication of carbon nanotubes (CNT) as nanoprobes in Scanning Probe
Microscopy (SPM) dates back just to a decade ago [1, 2]; and today, the
tremendous importance of such ultra-sharp tips is emerging (for a review
see [3]). In the era of nanotechnology, “nanoscopy” techniques are, in fact,
becoming more important as a consequence of their capability of exploring
extremely small-scale phenomena. SPM is one of the most widely utilized
microscopy techniques because it is a versatile tool for not only measuring
the topology of surfaces but also manipulating the nanostructures. In spite
of this, conventional silicon tips can easily break during an impact on the
scanned surface and are not sufficiently slender to measure the topography of
high-aspect ratio surfaces. In contrast, a CNT protruding from a conventional
cantilever tip can be used as a strong ultra-sharp slender probe. If larger
diameters are required, a nanotube bundle could replace the single nanotube.
As the mechanical strength, elasticity, and slenderness of CNT and bundles
are very high [4,5], the CNT-probed “nanoscopy” brought a breakthrough in
the development of a microscopy technique. However, defects can dramatically
affect the mechanics of nanotubes and bundles, thus strongly limiting their
performances.
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In this chapter, the role of defects on the strength of nanotubes and
bundles, based on new theoretical, deterministic, and statistical approaches
of quantized fracture mechanics (QFM) proposed by the Author [6–9], is
reviewed. The role of thermodynamically unavoidable, atomistic defects with
different sizes and shapes is thus quantified on brittle fracture, fatigue, and
elasticity, for nanotubes and bundles.

The chapter is organized in 12 short sections, as follows: Introduction is
reported as the first section and Conclusions is reported as the last section;
in Sect. 14.2, we review the QFM approaches; in Sect. 14.3, we apply them to
calculate the fracture strength of nanotubes and bundles, containing defects
with given sizes and shapes; whereas in Sect. 14.4, the impact strength is
reported; in Sect. 14.5, elastic-plastic or hyper-elastic materials, rough cracks,
and finite domains are treated; in Sect. 14.6, the fatigue life time is estimated;
in Sect. 14.7, the Young’s modulus degradation is quantified; in Sects. 14.8
and 14.9, we compare our results on strength and elasticity with atomistic
simulations and nanotensile tests of CNT; in Sect. 14.10, we demonstrate that
defects are thermodynamically unavoidable, evaluating the minimum defect
size and the corresponding maximum achievable strength; in Sect. 14.11 , we
calculate the strength of nanotube bundles by using hierarchical simulations
and also discuss the related size effect.

14.2 Quantized Fracture Mechanics Approaches

According to the classical, continuum-based, Linear Elastic Fracture Mechan-
ics (LEFM, [10]), the strength of a structure can be computed by Griffith’s
energy balance during a crack propagation or, equivalently, by setting the
stress-intensity factor K equal to its critical value, the fracture toughness of
the material KC, i.e., K = KC. The stress-intensity factor K, for crack propa-
gations – mode I (opening), mode II (sliding), or mode III (tearing), is only a
function of the geometry and applied loads. On the other hand, if the hypoth-
esis of the continuous crack advancement is relaxed, and thus a quantized
energy balance is assumed [6], a more general (QFM, [7]) is formulated. The
crack propagation will take place when

K∗ =
√
〈K2〉l+Δl

l = KC; Modes I, II, III, (14.1)

where K∗ is the square root of the mean value of the square of the stress-
intensity factor along a fracture quantum Δl, for a crack of length l.

Analogously, for dynamic loads the “mean” value of the stress-intensity
factor must be considered during the time quantum Δt, connected to the time
Δl / c – with c crack speed – to generate a fracture quantum. Accordingly, for
Dynamic Quantized Fracture Mechanics (DQFM, [8]) the crack propagation
will take place when
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K∗
d =

√〈
〈K2〉l+Δl

l

〉t

t−Δt
= KC; Modes I, II, III. (14.2)

Equation (14.2), in analogy to Quantum Mechanics (QM) that is erected on
the Planck’s constant �, is based on the existence of the action quantum
GCΔlΔt, where GC is the fracture energy of the material (GC = K2

C / E,
where E is the Young’s modulus).

Note that the classical, continuum-based, Dynamic Fracture Mechanics
(DFM, [11]) would imply K =KdC, where KdC is the a priori, unknown
dynamic fracture initiation toughness, observed to be experimentally differ-
ent from KC, especially for severe loading rates, e.g., impacts. On the other
hand, (14.2) reproduces very well the experimental observations on times to
failure also for severe loading rates [8]. Thus, DQFM can treat severe loading
rates, e.g., impacts, in contrast to DFM. DFM corresponds to the limit case of
DQFM for Δt→ 0, and becomes not predictive for severe impacts, requiring
an ad hoc dynamic, fracture initiation toughness. In the DQFM treatment,
the dynamic, fracture initiation toughness is identical to its static value, as
must physically be. Moreover, classical LEFM, which corresponds to the limit
case of QFM with Δl → 0, can be applied only to “large” and sharp cracks,
i.e., to cracks having length larger than the fracture quantum and vanishing
tip radius. In contrast, QFM has no restriction in treating defects with any
size and shape.

Instead of a classical, continuum-based, maximum stress criterion, i.e.,
σmax = σC, where σmax is the maximum stress in the structure and σC is the
strength of the material, the stress analog of QFM must be written as [12,13]

σ∗ = 〈σtip〉Δl
0 = σC Mode I; for Modes II, III : σ → τ, (14.3)

where σtip is the opening – for mode I, stress at the tip of a defect, where is
located the origin of the reference system; for modes II or III – the normal
stress and strength must be evidently replaced by the corresponding shear
stress τ and strength τC .

For dynamic loads this stress criterion has to be rewritten as [14]:

σ∗
d =

〈
〈σtip〉Δl

0

〉t

t−Δt
= σC Mode I; for Modes II, III : σ → τ, (14.4)

representing the stress analog of DQFM.
Equations (14.1) and (14.2) are based on stress-intensity factors, whereas

(14.3) and (14.4) on stress. However, note that considering, for example QFM,
the free-parameter Δl can be fixed to reproduce for l → 0 the classical crite-
rion σmax = σC: thus, QFM implies a smooth transition between the criteria
of σmax = σC for vanishing crack length to K = KC for large cracks (where
K∗ ≈ K). Moreover, imposing that the criteria of (14.1) and (14.3) have
to predict the same failure for each value of l corresponds to a mixed crite-
rion [9,15]. The corresponding fracture quantum capable of ensuring such an
equality for each value of l can be derived consequently: in this case, the frac-
ture quantum Δl (l) becomes, more than a material constant, a well-defined
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material/structural parameter. In formulae,

K∗ = KC & σ∗ = σC Δl : same predictions,Mode I; orσ → τ for Modes II, III.
(14.5)

We finally note that (14.1) and (14.3) have been successfully applied also for
fatigue limit predictions [16]. The corresponding, fatigue limit criteria can
be formally written considering the variations of Δ in front of the symbols,
interpreting ΔK∗ and Δσ∗ as the amplitude ranges of K∗, σ∗ in a cycle,
ΔKC as the threshold value of the stress-intensity factor, and ΔσC as the
plain-specimen fatigue limit.

As suggested by (14.5), imposing the same strength and/or time to failure
predictions from (14.2) and (14.4), a new dynamic mixed criterion, in which
both fracture as well as time quanta are derived, to ensure the equality of
such predictions, is formulated [9]:

K∗
d = KC & σ∗

d = σC Δl, Δt : same predictions,Mode I;
orσ → τ for Modes II, III (14.6)

In addition, substituting the stress with the corresponding strain in (14.3) and
(14.4), normal, ε, for mode I; or tangential, γ, for mode II and III;, a strain
static

ε∗ = 〈εtip〉Δl
0 = εC Mode I; for Modes II, III : ε→ γ, (14.7)

and dynamic criteria

ε∗d =
〈
〈εtip〉Δl

0

〉t

t−Δt
= εC Mode I; for Modes II, III : ε→ γ, (14.8)

are derived [9].
The quantized criteria of (14.3–14.8) require in general the expression of

the complete – and not only asymptotic – stress field around the tip of the
defect, well-known only for the simplest cases. On the other hand, the criteria
of (14.1) and (14.2) can be applied in a very simple way, by starting from the
well-known solutions for the stress-intensity factors; for example, hundreds of
static and dynamic solutions are reported in the classical Murakami’s Hand-
book [17]. Obviously, the predictions of different criteria are not coincident,
but always similar, representing the asymptotic matching between the two
classical regimes.

We note that not only (14.1) and (14.3) but all the criteria (1–8) can be
rewritten for fatigue limit predictions, formally introducing the variations Δ
in front of the symbols. However, such criteria estimate the beginning of the
fatigue crack growth but not its evolution. On the other hand, regarding the
evolution of the fatigue crack, substituting the stress-intensity factor K with
its “quantized” version K∗ in the Paris’ law – or in its classical extensions –
a quantized Paris’ law, which has to be applied to short cracks and small
systems too, is formulated [9] as
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dl
dN

≈ A (ΔK∗)α
, (14.9)

where N is the number of cycles, A and α are the Paris’ constants, and ΔK∗

is the amplitude range of the “quantized” stress-intensity factor in a cycle.
For very short cracks K∗ ∝ σ and (14.9) resembles the classical Whöler’s

law, i.e., Nf (Δσ)β = B, with B, β constants and Nf life time. Note that,
similarly to brittle fracture, the fracture quantum itself could be fixed in
fatigue to derive from (14.9) and in the limit case of crack length tending to
zero, the same Whöler’s prediction for the life time Nf [18, 19]. On the other
hand, for very large cracks (K∗ ≈ K) (14.9) becomes the classical Paris’ law.
Equation (14.9) is a stress-intensity factor-based, quantized criterion for a
fatigue crack growth. The stress analog can be formulated substituting Δσ
with Δσ∗ in the classical Whöler’s law, i.e. [9]

Nf (Δσ∗)β = B. (14.10)

Equations (14.9) and (14.10) correspond in fatigue crack growth to (14.1)
and (14.3) or (14.2) and (14.4) in static or dynamic fracture. Accordingly,
starting from these two analogs, it is clear that all the analogs of (14.1–14.8)
can be easily formulated for fatigue crack growth also; for example, the mixed
criterion of (14.5), ensuring the same fatigue life prediction Nf , has to be
written as [9]:

dl
dN

≈ A (ΔK∗)α &Nf (Δσ∗)β = BΔl : same predictions. (14.11)

Finally, also the Weibull [20] statistical theory for the strength of solids
can be quantized [9]. According to Weibull, the probability of failure Pf

of a specimen of volume V under uniaxial stress σ is given by Pf =1 −
exp

(
− 1

V0

∫
(σ / σ0)

m dV
)
, where V0 is a reference volume and σ0 and m are

two constants. If stress intensifications are present, as in cracked structures,
the Weibull’s integral does not converge: this represents a limit of the classi-
cal Weibull’s statistics and can automatically be removed if instead of σ its
“quantized” version σ∗ (or σ∗

d ) is considered, as

Pf = 1 − exp

⎛

⎝− 1
V0

∫

V

(σ∗ / σ0)
m dV

⎞

⎠ . (14.12)

Thus, the quantized crack advancement removes a paradox and a new statis-
tics is generated.

In general, we conclude emphasizing that our definition of K∗ and σ∗ (also
in dynamics) allow one to “quantize” classical, well-known criteria, based on
stress and/or on stress-intensity factor. More powerful quantized approaches
will result and the classical ones will be automatically recovered for the limit
case of vanishing quanta, as required by the “Corresponding Principle.” These
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new criteria are ideal to study small-scale objects, where the intrinsic material
strength cannot be considered further as infinitely high, as in nanotubes. The
applications to nanotubes and bundles are presented in the following sections
of the chapter.

14.3 Fracture Strength

By considering QFM [6–9], the failure stress σN for a nanotube having an
atomic size q (the “fracture quantum”) and containing an elliptical hole of
half-axes a, perpendicular to the applied load, or nanotube axis; and b can
be determined including in the asymptotic solution [7] the contribution of the
far-field stress. We accordingly derive [21]

σN (a, b)

σ
(theo)
N

=

√
1 + 2a / q (1 + 2a / b)−2

1 + 2a / q
, σ

(theo)
N =

KIC√
qπ / 2

, (14.13)

where σ(theo)
N is the theoretical (defect-free) nanotube strength (∼100 GPa)

and KIC is the material fracture toughness. The self-interaction between
the tips has been neglected here (i.e., a << πR, with R nanotube radius)
and would further reduce the failure stress (finite domains are treated in
Sect. 14.5).

Regarding the defect shape, for a sharp crack perpendicular to the applied
load a / q = const and b / q → 0, thus σN ≈ σ

(theo)
N /

√
1 + 2a / q, and for

a / q >> 1, i.e., large cracks, σN ≈ KIC /
√
πa in agreement with LEFM;

note that LEFM can (1) only treat sharp cracks and (2) unreasonably pre-
dicts an infinite defect-free strength. On the other hand, for a crack parallel
to the applied load b / q = const and a / q → 0 and thus, σN = σ

(theo)
N , as

it must be. In addition, regarding the defect size, for self-similar and small
holes a / b = const and a / q → 0 and coherently σN = σ

(theo)
N ; furthermore,

for self-similar and large holes a / b = const and a / q → ∞, and we deduce
σN ≈ σ

(theo)
N / (1 + 2a / b) in agreement with the stress concentration posed by

elasticity; but elasticity (coupled with a maximum stress criterion) unreason-
ably predicts (3) a strength independent from the hole size and (4) tending to
zero for cracks. Note the extreme consistency of (14.13), that removing all the
discussed limitations (1–4) represents the first law capable of describing in a
unified manner all the size- and shape effects for the elliptical holes, including
cracks as limit case [21]. In other words, (14.13) shows that the two classical
strength predictions based on stress intensifications (LEFM) or concentra-
tions (elasticity) are only reasonable for “large” defects; (14.13) unifies their
results and extends its validity to “small” defects (“large” and “small” are
here with respect to the fracture quantum). It shows that even a small defect
can dramatically reduce the mechanical strength of a nanotube, e.g., limiting
the applications of ultra-sharp, nanotube-based tips, even if, in this context,
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more significant are the impact strength and fatigue life of the nanotube tip,
treated in Sects. 14.4 and 14.6, respectively.

For a nanotube bundle, an upperbound of the strength can be derived
assuming the simultaneous failure of all the defective nanotubes present in
the bundle. Accordingly, imposing the critical force equilibrium (mean-field
approach) for a cable composed by nanotubes in numerical fractions fab, con-
taining holes of half-axes a and b, we find the cable strength σC (ideal if
σ

(theo)
C ) in the following form [21]:

σC

σ
(theo)
C

=
∑

a,b

fab
σN (a, b)

σ
(theo)
N

. (14.14)

The summation is extended to all the different holes; the numerical fraction
f00 of nanotubes is defect-free and

∑

a,b

fab = 1. If all the defective nanotubes

in the bundle contain identical holes fab = f =1 − f00 and 1 − σC / σ(theo)
C =

f (1 − σN / σN(theo)).

14.4 Impact Strength

Let us consider the simplest case of a semi-infinite crack in an otherwise
unbounded body. The body is initially stress-free and at rest. At time t = 0 a
pressure σ begins to act on the crack faces. In this case, as it is well-known,

KI(t) = 2σ
√

cDt(1−2ν)/π

(1−ν) [11], where cD is the dilatational wave speed of the
material and ν is its Poisson’s ratio. Applying (14.2) we find the failure for a
given time tf > Δt, satisfying [9]

KI (t) =
KIC√

1 − Δt / (2tf )
≡ KdIC. (14.15)

Thus, if classical DFM [11] is applied, i.e.,KI (t) = KdIC, the “measured” frac-
ture initiation toughness KdIC will be observed, according to DQFM, time to
failure dependent. In addition, note that, according to our time quantization,
a minimum time to failure exists and it must be of the order of tf min ≈ Δt.
Considering very severe impacts (tf → tf min ≈ Δt), the dynamic strength
(∝ KdIC) is expected for this scheme

√
2 times larger than its static value

(∝ KIC). For an applied pressure linearly increasing with time, the factor
√

2
is replaced by the factor 2 [8]. For different schemes a slightly different factor
is expected. Roughly speaking, we could call this effect as the “doubling” of
the impact strength (with respect to its static value). This is a well-known,
experimental phenomenon [8] and is thus expected for nanotubes also.
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14.5 Hyper-Elasticity, Elastic-Plasticity, Fractal Cracks,
and Finite Domains

Equation (14.13) is based on linear elasticity, i.e., on a linear relationship
σ ∝ ε between stress σ and strain ε. In contrast, let us assume σ ∝ εκ, where
κ > 1 denotes hyper-elasticity, as well as κ < 1 denotes elastic-plasticity.
The power of the stress-singularity will accordingly be modified [22] from the
classical value 1/2 to α = κ/ (κ+ 1). Thus, the problem is mathematically
equivalent to that of a re-entrant corner [23], and consequently we predict

σN (a, b, α)

σ
(theo)
N

=

(
σN (a, b)

σ
(theo)
N

)2α

, α =
κ

κ+ 1
. (14.16)

A crack with a self-similar roughness, mathematically described by a fractal
with non-integer dimension 1 < D < 2, would similarly modify the stress-
singularity, according to [24] α = (2 −D) / 2; thus, with (14.16), we can
also estimate the role of the crack roughness. Both plasticity and rough-
ness reduce the severity of the defect, whereas hyper-elasticity enlarges its
effect. For example, for a crack composed by n adjacent vacancies, we deduce
σN / σ(theo)

N ≈ (1 + n)−α. However, note that among these three effects only
elastic-plasticity may have a significant role in CNT; in spite of this, fractal
cracks could play an important role in nanotube bundles as a consequence of
their larger size-scale, which would allow the development of a crack surface
roughness. Hyper-elasticity is not expected to be relevant in this context.

Equation (14.13) does not consider the defect–boundary interaction. A
graphene sheet having a finite width 2W can be treated by applying QFM
starting from the related expression of the stress-intensity factor. However, to
have an idea of the defect–boundary interaction, we can couple (14.13) with
an approximated method [21], deriving the following correction σN (a, b,W ) ≈
C (W ) σN (a, b), C (W ) ≈ (1 − a / W ) /

(
σN (a, b) | q→W−a / σN(theo)

)
(note

that such a correction is valid also for W ≈ a, whereas for W >> a it
becomes C (W >> a) ≈ 1 − a / W ). Similarly, the role of the defect orien-
tation β could be treated by QFM considering the related, stress-intensity
factor; roughly, one could use in (14.13) the self-consistent approximation
σN (a, b, β) ≈ σN (a, b) cos2 β + σN (b, a) sin2 β.

14.6 Fatigue Life

The SPM nanotube tip is cyclically loaded during surface scanning, thus
fatigue plays a major role. By integrating the quantized Paris’ law of (14.9),
we derive the following number of cycles to failure, or life time [21]:

NN (a)

N
(theo)
N

=
(1 + q / W )1−m/2 − (a / W + q / W )1−m/2

(1 + q / W )1−m/2 − (q / W )1−m/2
, m �= 2 (14.17a)
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and

NN (a)

N
(theo)
N

=
ln {(1 + q / W ) / (a / W + q / W )}

ln {(1 + q / W ) / (q / W )} ,m = 2 (14.17b)

where m > 0 is the material Paris’ exponent. Note that according to Wöhler
N

(theo)
N = KΔσ−k, where K and k are material constants and Δσ is the

amplitude of the stress range during the oscillations.
Only defects remaining self-similar during fatigue growth have to be con-

sidered, thus only a crack (of half-length a) is of interest in this context. By
means of (14.17) the time to failure can be estimated, similarly to the brittle
fracture treated by (14.13).

For a bundle, considering a mean-field approach (similarly to (14.14))
yields:

NC

N
(theo)
C

=
∑

a

fa
NN (a)

N
(theo)
N

. (14.18)

Better predictions could be derived integrating the quantized Paris’ law for a
finite width strip. However, we note that the role of the finite width is already
included in (14.17), even if these are rigorously valid in the limit of W tending
to infinity.

14.7 Elasticity

Consider a nanotube of lateral surface A under tension and containing a
transversal crack of half-length a. Interpreting the incremental compliance,
due to the presence of the crack, as a Young’s modulus (here denoted by E)
degradation we find E(a)

E(theo) = 1 − 2π a2

A [25]. Thus, recursively, considering Q
cracks having sizes ai or, equivalently, M different cracks with multiplicity Qi

(Q =
M∑

i=1

Qi), noting that ni = 2ai

q represents the number of adjacent vacan-

cies in a crack of half-length ai, with q atomic size, and vi = Qini

A/ q2 its related
numerical (or volumetric) vacancy fraction, we find [25]:

E

E(theo)
=

Q∏

i=1

E (ai)
E(theo)

≈ 1 − ξ

M∑

i=1

vini, (14.19)

with ξ ≥ π / 2, where the equality holds for isolated cracks. Equation (14.19)
can be applied to nanotubes or nanotube bundles containing defects in
volumetric percentages vi.

Forcing the interpretation of our formalism, we note that ni = 1 would
describe a single vacancy, i.e., a small hole. Thus, as a first approximation,
different defect geometries, from cracks to circular holes, e.g., elliptical holes,
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could in principle be treated by (14.19); we have to interpret ni as the ratio
between the transversal and longitudinal (parallel to the load) defect sizes
(ni = ai / bi). Introducing the i-th defect eccentricity ei as the ratio between
the lengths of the longer and shorter axes, as a first approximation ni (βi) ≈
ei cos2 βi + 1 / ei sin2 βi, where βi is the defect orientation. For a single defect
typology E

E(theo) ≈ 1 − ξvn, in contrast to the common assumption E
E(theo) ≈

1− v, rigorously valid only for the material density, for which ρC

ρ
(theo)
C

≡ 1− v.

Note that the failure strain for a defective nanotube or nanotube bundle can
also be predicted, by εN,C / ε(theo)

N,C =
(
σN,C / σ(theo)

N,C

)
/
(
E / E(theo)

)
.

In contrast to what happens for fracture and fatigue, defects affect the
elasticity in a significant but not dramatic way.

14.8 Atomistic Simulations

Let us study the influence on the strength of nano-cracks and circular
nano-holes. n atomic adjacent vacancies perpendicular to the load, correspond
to a blunt nano-crack of length 2a ≈ nq and thickness 2b ≈ q (or 2a ≈ nq with
a radius at tips of b2 / a ≈ q / 2). Similarly, nano-holes of sizem can be consid-
ered: the index m = 1 corresponds to the removal of an entire hexagonal ring,
m = 2 to the additional removal of the six hexagons around the former one (i.e.
the adjacent perimeter of 18 atoms), m = 3 to the additional removal of the
neighbouring 12 hexagonal rings (next adjacent perimeter), and so on (thus
a = b ≈ q(2m− 1) /

√
3) [7]. QM, semi-empirical (PM3 method), Molecular

Mechanics (MM; with a modified Tersoff-Brenner potential of second gener-
ation (MTB-G2) or a modified Morse potential (M)) and coupled QM/MM
calculations [26–30] are reported and extensively compared in Table 14.1 with
the QFM predictions of (14.13) [7, 21]. The comparison shows a relevant
agreement, confirming and demonstrating that just a few vacancies can dra-
matically reduce the strength of a single nanotube or of a nanotube bundle as
described by (14.14) that predicts for f ≈ 1, σC / σ(theo)

C ≈ σN / σ(theo)
N . For

example, assuming large holes (m → ∞) and applying QFM to a defective
bundle (f ≈ 1), we predict 1 − σC / σ(theo)

C ≈ 1 − σN / σ(theo)
N ≈ 67%.

Note that an elastic (κ ≈ 1) nearly perfectly plastic (κ ≈ 0) behaviour,
with a flow stress at ∼30–35GPa for strains larger than ∼3–5%, has been
recently observed in tensile tests of CNT [31], globally suggesting κ ≈ 0.6−0.7;
similarly, numerically computed stress-strain curves [32] reveal for an armchair
(5,5) carbon nanotube κ ≈ 0.8, whereas for a zig-zag (9,0) nanotube κ ≈ 0.7,
suggesting that the plastic correction reported in Sect. 14.5 could have a role.

Regarding elasticity, we note that (14.19) [25] can be viewed as a gener-
alization of the approach proposed in [33] considering three different types of
defects.
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Table 14.1. Atomistic simulations [26–29] vs. QFM predictions, for nano-cracks of
size n or nano-holes of size m

Nanotube
Type

Nanocrack (n) and
nanohole (m) sizes

Strength [GPa] by QM (MTB-G2) and MM
(PM3; M) QM/MM atomistic or QFM
calculations

[5,5] Defect-free 105 (MTB-G2); 135 (PM3)
[5,5] n = 1(sym. + H) 85 (MTB-G2), 79 (QFM); 106 (PM3), 101

(QFM)
[5,5] n = 1(Asym. + H) 71 (MTB-G2), 79 (QFM); 99 (PM3), 101

(QFM)
[5,5] n = 1(Asym.) 70 (MTB-G2), 79 (QFM); 100 (PM3), 101

(QFM)
[5,5] n = 2(Sym.) 71 (MTB-G2), 63 (QFM); 105 (PM3), 81

(QFM)
[5,5] n = 2(Asym.) 73 (MTB-G2), 63 (QFM); 111 (PM3), 81

(QFM)
[5,5] m = 1(+H) 70 (MTB-G2), 68 for long tube, 79 (QFM);

101 (PM3), 101 (QFM)
[5,5] m = 2(+H) 53 (MTB-G2), 50 for long tube, 67 (QFM);

78 (PM3), 86 (QFM)
[10,10] Defect-free 88 (MTB-G2); 124 (PM3)
[10,10] n = 1(sym. + H) 65 (MTB-G2), 66 (QFM)
[10,10] n = 1(Asym. + H) 68 (MTB-G2), 66 (QFM)
[10,10] n = 1(Sym.) 65 (MTB-G2), 66 (QFM); 101 (PM3), 93

(QFM)
[10,10] n = 2(Sym.) 64 (MTB-G2), 53 (QFM); 107 (PM3), 74

(QFM)
[10,10] n = 2(Asym.) 65 (MTB-G2), 53 (QFM); 92 (PM3), 74

(QFM)
[10,10] m = 1(+H) 56 (MTB-G2), 52 for long tube, 66 (QFM);

89 (PM3), 93 (QFM)
[10,10] m = 2(+H) 42 (MTB-G2), 36 for long tube, 56 (QFM);

67 (PM3), 79 (QFM)
[50,0] Defect-free 89 (MTB-G2)
[50,0] m = 1(+H) 58 (MTB-G2); 67 (QFM)
[50,0] m = 2(+H) 46 (MTB-G2); 57 (QFM)
[50,0] m = 3(+H) 40 (MTB-G2); 44 (QFM)
[50,0] m = 4(+H) 36 (MTB-G2); 41 (QFM)
[50,0] m = 5(+H) 33 (MTB-G2); 39 (QFM)
[50,0] m = 6(+H) 31 (MTB-G2); 37 (QFM)
[100,0] Defect-free 89 (MTB-G2)
[100,0] m = 1(+H) 58 (MTB-G2); 67 (QFM)
[100,0] m = 2(+H) 47 (MTB-G2); 57 (QFM)
[100,0] m = 3(+H) 42 (MTB-G2); 44 (QFM)
[100,0] m = 4(+H) 39 (MTB-G2); 41 (QFM)
[100,0] m = 5(+H) 37 (MTB-G2); 39 (QFM)
[100,0] m = 6(+H) 35 (MTB-G2); 37 (QFM)
[29,29] Defect-free 101 (MTB-G2)
[29,29] m = 1(+H) 77 (MTB-G2); 76 (QFM)
[29,29] m = 2(+H) 62 (MTB-G2); 65 (QFM)
[29,29] m = 3(+H) 54 (MTB-G2); 50 (QFM)
[29,29] m = 4(+H) 48 (MTB-G2); 46 (QFM)
[29,29] m = 5(+H) 45 (MTB-G2); 44 (QFM)
[29,29] m = 6(+H) 42 (MTB-G2); 42 (QFM)

(Continued)
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Table 14.1. (Continued)

Nanotube
Type

Nanocrack (n) and
nanohole (m) sizes

Strength [GPa] by QM (MTB-G2) and MM
(PM3; M) QM/MM atomistic or QFM
calculations

[47,5] Defect-free 89 (MTB-G2)
[47,5] m = 1(+H) 57 (MTB-G2); 67 (QFM)
[44,10] Defect-free 89 (MTB-G2)
[44,10] m = 1(+H) 58 (MTB-G2); 67 (QFM)
[40,16] Defect-free 92 (MTB-G2)
[40,16] m = 1(+H) 59 (MTB-G2); 69 (QFM)
[36,21] Defect-free 96 (MTB-G2)
[36,21] m = 1(+H) 63 (MTB-G2); 72 (QFM)
[33,24] Defect-free 99 (MTB-G2)
[33,24] m = 1(+H) 67 (MTB-G2); 74 (QFM)
[80, 0] Defect-free 93 (M)
[80, 0] n = 2 64 (M); 56 (QFM)
[80, 0] n = 4 50 (M); 43 (QFM)
[80, 0] n = 6 42 (M); 35 (QFM)
[80, 0] n = 8 37 (M); 32 (QFM)
[40, 0]
(nested by a
[32, 0])

Defect-free 99 (M)

[40, 0]
(nested by a
[32, 0])

n = 2 73 (M); 69 (QFM + vdW interaction
∼10GPa)

[40, 0]
(nested by a
[32, 0])

n = 4 57 (M); 56 (QFM + vdW interaction
∼10GPa)

[40, 0]
(nested by a
[32, 0])

n = 6 50 (M); 48 (QFM + vdW interaction
∼10GPa)

[40, 0]
(nested by a
[32, 0])

n = 8 44 (M); 44 (QFM + vdW interaction
∼10GPa)

[100,0] Defect-free 89 (MTB-G2)
[100,0] n = 4 50 (M); 41 (QFM)
[10,0] Defect free 124 (QM); 88 (MM);
[10,0] N = 1 101 (QM) 95 (QM/MM) 93 (QFM); 65 (MM)

66 (QFM)

The QFM predictions are here obtained simply considering in (14.13) 2a / q = n,
2b / q = 1 for cracks of size n or a / q = b / q = (2m − 1) /

√
3 for holes of size m.

Quantum mechanics (QM) semi-empirical calculations (PM3 method), Molecular
Mechanics (MM) calculations (modified Tersoff-Brenner potential of second genera-
tion (MTB-G2), modified Morse potential (M)) and coupled QM/MM calculations.
The symbol (+H) means that the defect was saturated with hydrogen. Symmetric
and asymmetric bond reconstructions were also considered; the tubes are “short”, if
not otherwise specified. We have roughly ignored in the QFM predictions the differ-
ence between symmetric and asymmetric bond reconstruction, hydrogen saturation
and length effect (for shorter tubes an increment in the strength is always observed,
as an intrinsic size effect), noting that the main differences in the atomistic simula-
tions are imputable to the used potential. For nested nanotubes a strength increment
of ∼10GPa is here assumed to roughly take into account the van der Walls (vdW)
interaction between the walls
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14.9 Nanotensile Tests

The discussed tremendous defect sensitivity, described by (14.13), is confirmed
by a statistical analysis based on Nanoscale Weibull Statistics (NWS, [34])
applied to the nanotensile tests. According to this treatment, the probability
of failure P for a nearly defect-free nanotube under a tensile stress σN is
independent from its volume (or surface), in contrast to classical Weibull
Statistics [20], namely:

P = 1 − exp−NN

(
σN

σ0

)w

, (14.20)

where w is the nanoscale Weibull modulus, σ0 is the nominal failure stress
(i.e. corresponding to a probability of failure of 63%) and NN ≡ 1. In classical
Weibull statistics NN ≡ V /V0 for volume dominating defects (or NN =A/A0

for surface dominating defects), i.e., NN is the ratio between the volume (or
surface) of the structure and a reference volume (or surface). The experimental
data on CNT [4, 5] were treated [34] according to nanoscale and classical
Weibull statistics, Fig. 14.1: the coefficients of correlation were found to be
much higher for the nanoscale statistics than for the classical one (0.93 against
0.67, w ≈ 2.7 and σ0 ≈ 31 − 34 GPa). Other data set on multi walled CNT
tensile experiments [31, 35] are also treated in Fig. 14.1 [21].

Note that volume- or surface-based Weibull statistics are identical in
treating the external wall of the tested nanotubes, just an atomic layer thick.

All these experimental data [4,5,31,35] are treated in Table 14.2, by apply-
ing QFM in the form of (14.13): non-linear multiple solutions for identifying

Fig. 14.1. Nanoscale Weibull Statistics, straight lines, applied to the new nanoten-
sile experiments on carbon nanotubes
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Table 14.2. Experiments vs. QFM predictions; strength reduction σN (a, b) / σ
(theo)
N

derived according to (14.13)

σN / σ
(theo)
N

2a/q 2 b/q 0 1 2 3 4 5 6 7 8 9 10 ∞
0 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00
1 0.71∗ 0.75 0.79 0.82 0.85 0.87∗ 0.88∗ 0.90 0.91 0.91 0.92 1.00
2 0.58 0.60∗ 0.64∗ 0.68 0.71∗ 0.73 0.76 0.78∗ 0.79 0.81 0.82 1.00
3 0.50 0.52 0.54∗ 0.58 0.61 0.64∗ 0.66∗ 0.68 0.70∗ 0.72 0.74 1.00

4 0.45 0.46 0.48 0.51∗ 0.54∗ 0.56 0.59 0.61 0.63 0.65 0.67 1.00
5 0.41 0.42 0.44∗ 0.46 0.48 0.51∗ 0.53∗ 0.55∗ 0.58 0.59 0.61 1.00
6 0.38 0.38 0.40 0.42 0.44∗ 0.47 0.49∗ 0.51∗ 0.53∗ 0.55∗ 0.57 1.00
7 0.35 0.36 0.37 0.39 0.41 0.43 0.45 0.47 0.49∗ 0.51∗ 0.53∗ 1.00
8 0.33 0.34 0.35 0.37 0.38 0.40 0.42 0.44∗ 0.46 0.48 0.49∗ 1.00

9 0.32 0.32 0.33 0.34 0.36 0.38 0.40 0.41 0.43 0.45 0.46 1.00

10 0.30∗ 0.30∗ 0.31 0.33 0.34 0.36 0.37 0.39 0.41 0.42 0.44∗ 1.00

11 0.29 0.29 0.30∗ 0.31 0.32 0.34 0.35 0.37 0.39 0.40 0.42 1.00

12 0.28 0.28 0.29 0.30∗ 0.31 0.32 0.34 0.35 0.37 0.38 0.40 1.00

13 0.27 0.27 0.28 0.29 0.30∗ 0.31 0.32 0.34 0.35 0.36 0.38 1.00

14 0.26 0.26 0.27 0.27 0.29 0.30∗ 0.31 0.32 0.34 0.35 0.36 1.00

15 0.25 0.25 0.26 0.27 0.27 0.29 0.30∗ 0.31 0.32 0.34 0.35 1.00

16 0.24∗ 0.24∗ 0.25 0.26 0.27 0.28 0.29 0.30∗ 0.31 0.32 0.33 1.00
17 0.24∗ 0.24∗ 0.24∗ 0.25 0.26 0.27 0.28 0.29 0.30∗ 0.31 0.32 1.00
18 0.23 0.23 0.24∗ 0.24∗ 0.25 0.26 0.27 0.28 0.29 0.30∗ 0.31 1.00
19 0.22∗ 0.22∗ 0.23 0.23 0.24∗ 0.25 0.26 0.27 0.28 0.29 0.30∗ 1.00
20 0.22∗ 0.22∗ 0.22∗ 0.23 0.24∗ 0.24∗ 0.25 0.26 0.27 0.28 0.29 1.00

21 0.21 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 0.25 0.25 0.26 0.27 0.28 1.00
22 0.21 0.21 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 0.25 0.26 0.27 0.28 1.00
23 0.20 0.21 0.21 0.21 0.22∗ 0.23 0.23 0.24∗ 0.25 0.26 0.27 1.00
24 0.20 0.20 0.20 0.21 0.21 0.22∗ 0.23 0.24∗ 0.24∗ 0.25 0.26 1.00
25 0.20 0.20 0.20 0.20 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 0.25 0.26 1.00
26 0.19 0.19 0.20 0.20 0.20 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 0.25 1.00
27 0.19 0.19 0.19 0.20 0.20 0.21 0.21 0.22∗ 0.23 0.24∗ 0.24∗ 1.00
28 0.19 0.19 0.19 0.19 0.20 0.20 0.21 0.22∗ 0.22∗ 0.23 0.24∗ 1.00
29 0.18 0.18 0.19 0.19 0.19 0.20 0.20 0.21 0.22∗ 0.23 0.23 1.00
30 0.18 0.18 0.18 0.19 0.19 0.19 0.20 0.21 0.21 0.22∗ 0.23 1.00
31 0.18 0.18 0.18 0.18 0.19 0.19 0.20 0.20 0.21 0.22∗ 0.22∗ 1.00
32 0.17∗ 0.17∗ 0.18 0.18 0.18 0.19 0.19 0.20 0.21 0.21 0.22∗ 1.00
33 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 0.20 0.21 0.21 1.00
34 0.17∗ 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 0.20 0.21 1.00
35 0.17∗ 0.17∗ 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 0.21 1.00
36 0.16 0.16 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 0.20 1.00
37 0.16 0.16 0.16 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 1.00
38 0.16 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 0.20 1.00
39 0.16 0.16 0.16 0.16 0.17∗ 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 1.00
40 0.16 0.16 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 0.19 0.19 1.00
41 0.15 0.15 0.16 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 0.19 1.00
42 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 0.19 1.00
43 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 1.00
44 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 0.18 1.00
45 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 0.18 1.00

(Continued)
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Table 14.2. (Continued)

46 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.17∗ 0.17∗ 0.18 1.00
47 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 0.17∗ 1.00
48 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.17∗ 0.17∗ 1.00
49 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.16 0.16 0.16 0.17∗ 1.00
50 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.17∗ 1.00
∞ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (1 + 2a/b)−1

In bold type are represented the 15 different nanostrengths measured on single
walled CNT in bundle [4]; whereas in italic we report the 19 nanostrengths measured
on multi walled CNT[5], and in underlined type the most recent 18 observations [31].
All the data are reported with the exception of the five smallest values of 0.08, 0.10
[31], 0.11 [5], 0.12 [5,31] and 0.13 [4], for which we would need for example adjacent
vacancies (2b/q∼1) in number n = 2a/q = 138–176, 90–109, 75–89, 64–74 and
55–63 respectively. The 26 strengths measured in [35] are also treated (asterisks),

simply assuming two interacting walls for 100 < σ
(exp)
N ≤ 200 gigapascals (thus

σN = σ
(exp)
N / 2) or 3 interacting walls for 200 < σ

(exp)
N ≤ 300 gigapascals (σN =

σ
(exp)
N / 3). All the experiments are referred to σ

(theo)
N = 100GPa (q∼0.25 nm). If all

the nanotubes in the cable contain identical holes, σC / σ
(theo)
C = σN / σ

(theo)
N

the defects corresponding to the measured strength clearly emerge; however
these are quantifiable, showing that a small defect is sufficient to rationalize
the majority of the observed strong strength reductions.

Finally, the anomalous (due to plasticity) experimental results [31] are
differently treated in Table 14.3, with respect to both strength and elastic-
ity, assuming the presence of transversal nanocracks. The ideal strength is
assumed to be of 100GPa and the theoretical Young’s modulus of 1.3 TPa;
by (14.13) the crack length n is calculated and introduced in (14.19) to derive
the related vacancy fraction v (ξ = π / 2).

Fracture in two cases was observed at the clamp; in one case the clamp
itself failed, thus the deduced strength represents a lower bound of the nan-
otube strength. Three nanotubes were multiple loaded (in two a,b and A,B
or in three I,II,III steps), i.e., after the breaking in two pieces of a nanotube,
one of the two pieces was again tested and fractured at a higher stress. Two
nanotubes displayed a plastic flow.

A vacancy fraction of the order of few 0/00 is estimated, suggesting that such
nanotubes are much more defective than as imposed by the thermodynamic
equilibrium, even if the defects are small and isolated. However, note that
other interpretations are still possible, e.g., assuming the nanotube is coated
by an oxide layer and rationalizing the ratio between the observed Young’s
modulus and its theoretical value as the volumetric fraction (for softer coating
layers) of carbon in the composite structure.
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Table 14.3. The experiments [31] are here treated with respect to both strength and
elasticity, assuming the presence of transversal nanocracks composed by n adjacent
vacancies

MWCNT number Strength Young’s κ n v%
and fracture typology [GPa] modulus [GPa]

1 (multiple load A) 8.2 1,100 1.01 148 0.07
2 (clamp failed) 10 840 0.98 100 0.23
3 12 680 1.00 69 0.44
4 (failure at the clamp) 12 730 0.98 69 0.40
5 (multiple load B) 14 1,150 1.02 51 0.14
6 (multiple load a) 14 650 0.97 51 0.62
7 15 1,200 1.05 44 0.11
8 16 1,200 1.02 39 0.13
9 17 960 1.00 34 0.49
10 19 890 0.97 27 0.74
11 (multiple load b) 21 620 0.99 22 1.51
12 (multiple load I) 21 1,200 0.99 22 0.22
13 (multiple load II) 23 1,250 0.99 18 0.17
14 30 870 1.00 11 1.92
15 (plasticity observed) 31 1,200 0.59 (0.99) 10 0.49
16 (plasticity observed) 34 680 0.69 (1.02) 8 3.80
17 (multiple load III) 41 1,230 1.03 5 0.69
18 (failure at the clamp) 66 1,100 0.98 2 4.90

The constitutive parameter κ has been estimated as κ ≈ ln (εN )/ ln (σN/E) for
all the tests: note the low values for the two nanotubes that revealed plasticity (in
brackets the values calculated up to the incipient plastic flow are also reported). The
ideal strength is assumed to be of 100GPa and the theoretical Young’s modulus of
1,300 GPa; by (14.13) the crack length n is calculated and introduced in (14.19) to
derive the related vacancy fraction v (ξ = π/2)

14.10 Thermodynamic Limit

Defects are thermodynamically unavoidable, especially at the macroscale. At
the thermal equilibrium the vacancy fraction f = n / N << 1, n is the number
of vacancies and N is here the total number of atoms, is estimated as [36]:

f ≈ e−E1/ (kBTa), (14.21)

where E1 ≈ 7 eV is the energy required to remove one carbon atom and Ta is
the absolute temperature at which the carbon is assembled, typically in the
range between 2,000 and 4,000K. Thus, f ≈ 2.4 × 10−18 − 1.6 × 10−9.

The strength of a bundle will be dictated by the largest transversal crack
on it, according to the weakest link concept. The probability of finding a
nanocrack of sizem in a bundle with vacancy fraction f is P (m) = (1 − f) fm,
and thus the number M of such nanocracks in a bundle composed by N atoms
is M (m) = P (m)N . The size of the largest nanocrack, which typically occurs
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once, is found from the solution to the equation M (m) ≈ 1, which implies
[37]:

m ≈ −ln [(1 − f)N ] / ln f ≈ −lnN / ln f (14.22)

Inserting (14.21) and (14.22) into (14.13) evaluated for a transversal crack
(b ≈ 0 and 2a / q ≈ m), we deduce the statistical counterpart of (14.13) and
thus the following thermodynamical maximum achievable strength [38]:

σN (N)

σ
(theo)
N

≤ σ
(max)
N (N)

σ
(theo)
N

=
1

√
1 + kBTa

E1
lnN

(14.23)

14.11 Hierarchical Simulations and Size Effects:
from a Nanotube to a Megacable

To evaluate the strength of carbon nanotube cables, the SE3 algorithm,
formerly proposed [39], has been adopted [40]. Multiscale simulations are nec-
essary in order to tackle the size scales from a nanotube to a bundle. Let us
consider the limit case of a nanotube based megacable, such as that of the
space elevator [21, 38–40], Fig. 14.2.

Fig. 14.2. Schematization of the adopted multiscale simulation procedure to deter-
mine the nanotube cable strength, from a nanotube to a megacable, here considered
to be the limiting case of the space elevator cable. Here, N = 5, Nx1 = Nx2 =
. . .Nx5 = 40 and Ny1 = Ny2 = . . .Ny5 = 1, 000, so that the total number of
nanotubes in the largest considered cable is Ntot = (1, 000 × 40)5 ≈ 1023
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The bundle is modelled as an ensemble of stochastic “springs”, arranged
in parallel sections. Linearly increasing strains are applied to the fibre bundle,
and at each algorithm iteration the number of fractured springs is computed
(fracture occurs when local stress exceeds the nanotube failure strength) and
the strain is uniformly redistributed among the remaining intact springs in
each section.

In-silico stress-strain experiments have been carried out according to the
following hierarchical architecture. Level 1: the nanotubes (single springs,
Level 0) are considered with a given elastic modulus and failure strength
distribution and composing a 40 × 1, 000 lattice or fibre. Level 2: again a
40× 1, 000 lattice composed by second level “springs”, each of them identical
to the entire fibre analysed at the first level, is analysed with in input the
elastic modulus and stochastic strength distribution derived as the output of
the numerous simulations to be carried out at the first level. And so on. Five
hierarchical levels are sufficient to reach the size-scale of the megametre from
that of the nanometre, Fig. 14.2.

The level 1 simulation is carried out with springs L0 = 10−7m in length,
w0 = 10−9m in width, with Young’s modulus E0 = 1012Pa and strength σf

randomly distributed according to NWS [34] fitting to experiments [4,5], thus
assuming σ0 = 34 GPa and m = 2.7. Then the level 2 is computed, and so
on. The results are summarized in Fig. 14.3, in which a strong size effect is
observed, up to length of ∼1 m.

Fig. 14.3. Comparison between simulations and analytical scaling law, (14.24), for
the failure strength of the nanotube bundle as a function of its length; the asymptote
is at 10.20 GPa
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Given the decaying σf vs. cable length L obtained from simulations,
it is interesting to fit the behaviour with analytical scaling laws. Various
exist in the literature, and one of the most used is the Multi Fractal Scal-
ing Law (MFSL [41, 42]). This law has been recently extended towards the
nanoscale [43], deriving (according to the theory of the geometrically necessary
dislocations):

σf

σmacro
=
√

1 +
lch

L+ l0
, (14.24)

where σf is the failure stress, σmacro is the macrostrength, L is the structural
characteristic size, lch is a characteristic internal length and l0 is defined via
σf (l = 0) = σmacro

√
1 + lch

l0
≡ σnano, where σnano is the nanostrength. Note

that for l0 = 0 this law is identical to the MFSL [41,42]. Here, we can choose
σnano as the nanotube stochastic strength, i.e. σnano = 34 GPa. The computed
macrostrength is σmacro = 10.20 GPa. The fit with (14.1) is shown in Fig. 14.3
(“MFSL cut at the nanoscale”), for the various L considered at the different
hierarchical levels (and compared with the classical “MFSL”). The best fit is
obtained for lch = 5×10−5 m, where the analytical law is practically coincident
with the simulated results. Thus, for a carbon nanotube bundle not shorter
than a millimetre, the expected strength is σC = σmacro ≈ 10−30 GPa, where
the upper limit would correspond to assume a theoretical value of σnano =
100 GPa.

14.12 Conclusions

The strength and fatigue life of a real, thus defective, carbon nanotube and
bundle are expected to be strongly reduced with respect to their theoretical
values. Less dramatic, but still significant, could be the reduction imposed
by defects on their elasticity. Accordingly, we conclude that a proper and
novel design of ultra-sharp tips based on CNT has to take into account the
role of defects. QFM approaches are ideal to design flaw-tolerant nanomate-
rials and nanostructures, such as the discussed CNT tips for scanning probe
“nanoscopy”.
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