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Abstract. Atomic force microscopy (AFM) nanoindentation is presently not that widespread for
the study of mechanical properties of materials at the nanoscale. “Nanoindenter” machines have
greater accuracy and are presently more standardized. However, AFM could provide interesting
features such as imaging the indentation impression right after the application of load. The AFM
has, in fact, become an increasingly popular tool for characterizing surfaces and thin films of
many different types of materials and recent developments have led to the utilization of the AFM
as a nanoindentation device, increasing the accuracy of this machine.

In this work a new method for nanoindentation via AFM is proposed. It allows hardness mea-
surement with standard sharp AFM probes and a simultaneous high-resolution imaging (which
is not achievable with standard indenters – Cube Corner and Berkovich). How the shape of the
indenter and the tip radius of curvature affect the hardness measurement at the nanoscale is
herein analyzed with three different approaches: experiments, numerical simulations, and theo-
retical models. In particular the effect of the tip radius of curvature, which is not negligible for
the real indenters, has been considered both in the nature of the indentation process, and in the
practice of imaging via AFM.

A complete theoretical model has been developed and it includes the effect of the tip radius of
curvature as well as the variable corner angle. Through this model we have been able to define a
correction factor C that permits us to evaluate the actual hardness of the material, once measured
the actual geometry of the tip.

Key words: Nanoindentation, Atomic Force Microscopy, Finite element method, Indentation
shape effect, Tip radius of curvature effect

6.1
Introduction

As defined by Fisher-Cripps indentation testing is “a simple method that consists
essentially of touching the material whose mechanical properties such as elastic mod-
ulus and hardness are unknown with another material whose properties are known”
[1]. Nanoindentation differs from conventional macro-indentation in the length scale
of the penetration, which is of the order of nanometers rather than microns or mil-
limeters. Over the last few years, interest in nanomechanics has grown exception-
ally. In particular the mechanical properties of materials at the nanoscale have been
carefully investigated from a theoretical and experimental point of view, but theoret-
ical work strongly depends upon accurate experimental results. The nanoindentation
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technique, in particular, has been extensively exploited by many researchers all over
the world in order to study hardness, Young’s modulus, and other mechanical prop-
erties of thin films and coatings such as the strain-hardening exponent, fracture
toughness (for brittle materials), and viscoelastic properties [2–5]. The technique
has also been thoroughly investigated in order to understand its main features at the
nanoscale [6].

The idea of nanoindentation, in fact, arose from the necessity to measure the
mechanical properties of very small volumes of materials. In principle, if a very
sharp tip is used, the volume of material that is tested can be made arbitrarily small
but in this case it is very difficult to determine the indentation area. In a conventional
hardness test, in fact, the characteristic contact area of the indentation is calculated
from direct measurements of the residual impression left in the specimen surface. In
a nanoindentation test, the size of the residual impression is on the sub-micrometer
range and too small to be conventionally measured (optical microscopy). The hard-
ness is in fact defined as the ratio between the maximum applied load (Pmax – easily
measurable during the indentation) and the projected area of the indentation impres-
sion (Ap – not measurable directly by conventional methods). This area can be eval-
uated measuring the depth of indentation into the surface, which provides an indirect
measurement of the contact area, knowing the actual geometry of the indenter. For
this reason nanoindentation can be considered a special case of the more general
Depth Sensing Indentation (DSI) methods [7–10]. In particular most of the recent
studies concerning material nanohardness, are based on the analysis of the load-
displacement curves resulting from the nanoindentation test using the Oliver and
Pharr (O-P) method [8, 9, 11]. The O-P method allows hardness measurement with-
out imaging the indentation impression, since it establishes a relationship between
the projected area of the indentation impression (Ap), the maximum depth of inden-
tation (hmax), and the initial unloading stiffness (S), where hmax and S are both
measurable from the load-displacement curve (Fig. 6.1 [9]).

The atomic force microscopy (AFM) approach to nanoindentation [5, 12, 13] on
the contrary permits a direct measurement of the projected area of the indentation

Fig. 6.1. Schematic illustration of
indentation load-displacement data [9]
showing important measured parameters.
[Reprinted from [9], Copyright (2004)
Materials Research Society. Reproduced
with permission.]
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Fig. 6.2. AFM image of the plastic impressions [13] remaining in the BCB material after inden-
tation (height scale is 0 to 20 nm from black to white). [Reprinted from [13], Copyright (2001)
reproduced with permission.]

impression. As a matter of fact, AFM could provide interesting features such as
imaging the indentation impression right after the application of load (Fig. 6.2, [13]).

The AFM has become an increasingly popular tool for characterizing surfaces
and thin films of many different types of materials and recent developments have led
to the utilization of the AFM as a nanoindentation device. During operation of the
AFM in indentation mode, the probe tip is first lowered into contact with the sample,
then indented into the surface, and finally lifted off the sample surface. AFM soft-
ware has been modified and diamond-tipped probes have been developed (Fig. 6.3.)
specifically for indenting and scratching materials with nanoscale spatial resolution.
The software modification allows the surface to be imaged in tapping mode immedi-
ately before and after indentation.

With this approach it is thus possible to obtain the exact morphology of the inden-
tation impression with high resolution at the nanoscale (Fig. 6.2) and to directly
measure the actual value of the projected area Ap. This approach allows us also to
consider the presence of piled-up material (Fig. 6.4 [14]), which is a major topic for
indentation at the nanoscale [14,15]. The pile-up effect is usually neglected with the
O-P approach and leads to an overestimation of the hardness value [16–18]. Beegan
et al. [14] used, in the case reported in Fig. 6.4, specific software (Matlab�) in order

Fig. 6.3. SEM image of an
AFM diamond-tipped probe
(Cube Corner indenter)
customized specifically for
indenting and scratching
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Fig. 6.4. Matlab� mesh surface plot of 40-mN indent in 750-nm Cu film. [Reprinted from [14],
Copyright (2005), with permission from Elsevier.]

to characterize and precisely quantify the amount of piled-up material, exploiting 3D
images obtained by AFM investigation.

Hardness, as previously mentioned, is the mean pressure that a material bears
under load. This parameter is only “nominally” an intrinsic constant factor and it
is experimentally affected by several geometrical uncertainties, such as penetration
depth, size and shape of the indenter [19–22]. Nix et al. in an early work about
nanoindentation [20], illustrate the size effects in crystalline materials, showing
that the hardness of a material strongly depends upon depth of indentation, tending
asymptotically to the macroscopic hardness of the material (Fig. 6.5, [20]).

Much of the early work on indentation was reviewed by Mott [23]. Afterwards
Ashby [24] proposed that geometrically necessary dislocations [25] would lead to an
increase in hardness measured by a flat punch. The problem of a conical indenter has
been thoroughly investigated by Nix et al. [20], showing a consistent agreement with
micro-indentation experiments. However, recent results that cover a greater range of
depths show only partial [21, 26] or no agreement [27] with this model [20]. Thus,
the model initially proposed by Nix et al. was extended by Swadener et al. [21] in
order to cover a greater range of depth (Fig. 6.6, [21]) and also to treat indenters with
different sizes and shapes. The results were compared with micro-indentation exper-
iments, but limitations for small depths of indentation were observed, as pointed
out by the same authors. In the last few years a new model capable of matching as
limit cases all the discussed indentation laws, simultaneously capturing the deviation
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Fig. 6.5. Depth dependence of the hardness of (111) single crystal copper plotted according to
the equation reported in the graph. [Reprinted from [20], Copyright (1998), with permission from
Elsevier.]

observed towards the nanoscale, has been proposed by Pugno [28] and will be thor-
oughly discussed in Sect. 6.4.

In this chapter the geometrical uncertainties related to the indenter tip (shape
and radius of curvature) are investigated in order to find a way to compensate for
these effects. In particular, considerations about the tip shape, in terms of tip corner
angle, have been deduced in order to understand what the effect of indenter geometry
is on the material hardness evaluation. Thanks to this approach a new method for
nanoindentation is proposed. It allows hardness measurement with standard sharp
AFM probes (thus with variable corner angle); the use of these probes enables a
simultaneous high-resolution imaging (which is not easily achievable with standard
indenters – Cube Corner and Berkovich). How the shape of the indenter [19] and the
tip radius of curvature [29] affect the hardness measurement is herein analyzed to
find a relationship between the measured hardness of a material, the corner angle of
the pyramidal indenter, and its tip radius of curvature. To experimentally understand
this effect a photoresist material (Microposit s1813 photo resists) has been indented
with Focused Ion Beam (FIB) nanofabricated probes with different corner angles
[19]. We then compared the results obtained experimentally with those obtained by
numerical simulations and by theoretical models [28].

The comparison between these three approaches reveals a good agreement in the
hardness behavior even if an overestimation of the experimental results was noticed
at small corner angles [19]. This is related to the tip radius of curvature of the real
indenters, which is not negligible and affects the experimental results, both in the
nature of the experimental procedure, and then in the process of imaging with AFM.



144 L. Calabri · N. Pugno · S. Valeri

Fig. 6.6. Indentation size effect in annealed iridium measured with a Berkovich indenter (
 and
solid line) and comparison of experiments with the Nix et al. [20] model for H0 = 2. 5 GPa and
hp = 2. 6 μm (dotted line).The dashed lines represent + and − one standard deviation of the
nanohardness data. [Reprinted from [21], Copyright (2002), with permission from Elsevier.]

The presence of a non-zero tip radius of curvature is ascribable to wear during the
indent-imaging process or to manufacturing defects. It could affect the indentation
process because the indenter, no longer ideal, will deform the specimen with a dif-
ferent geometry. However, it could also affect the process of imaging, as long as the
non-ideal tip interacts with the morphology, convoluting the asperities depending on
its actual shape. For this reason the theoretical and numerical models have been mod-
ified in order to compensate for these effects and to obtain a closer match between
experimental and numerical approaches. In this way we were also able to define a
correction factor C which permits us to evaluate the actual hardness of the material,
filtering the experimental data.

6.2
Experimental Configuration

In this section the experimental approach proposed by the authors in a previous work
[19] is reviewed and extended.
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Table 6.1. Mechanical properties of the specimen
material (photoresist). [Reprinted from [19], Copy-
right (2007), with permission from IoP.]

Mechanical property Reference value

Microhardness ∼ 200 MPa
Ultimate tensile strength 51.2 MPa
Yield tensile strength 43 MPa
Elongation at break 0.6%
Young’s modulus 8 GPa
Poisson’s ratio 0.33

The set of indenters used for the nanoindentation experimental analysis are
commercial silicon AFM tips, in particular we used MPP-11100-Tap300 Metrol-
ogy Probes from Veeco�. The commercial silicon AFM tips are easy to find, cheap
and reshapable with the FIB nanofabrication process. These kinds of tips are silicon
made and consequently they could not provide a high mechanical profile in terms of
hardness and non-deformability. For this reason we decided to use them to indent a
soft substrate in order to keep a high ratio between the hardness of the indenter and
the hardness of the sample. In this way the silicon tips, even if they provide a poor
hardness value, will be basically non-deformable when pressed on the selected soft
material. The substrate we used is a photoresist material, namely a Microposit s1813
photo resists by Shipley�. It is a positive photoresist based on a NOVOLAC polymer.
Its mechanical properties are reported in Table 6.1 [19]. This material is ideal for
this kind of study, because it is very soft, thus easy to indent with a silicon tip, and
at the same time it is very flat, allowing an accurate measurement of the indentation
projected area.

6.2.1
FIB Nanofabrication

The pristine geometry of the probe tip is a quadratic pyramid (Fig. 6.7a,b). As
reported in the Veeco� probes catalogue the characteristic geometry of the tip is
listed in the table inset in Fig. 6.7b.

In this work, in order to obtain a set of indenters with a variable corner angle, we
functionalized the pristine probes with a FIB apparatus in order to transform them
into a triangular pyramid (as nanoindenters usually are). The FIB system is a Dual
Beam machine (FEI StrataTM DB 235) combining a high-resolution FIB column
equipped with a Ga Liquid Metal Ion Source (LMIS) and a SEM column equipped
with a Schottky Field Emission Gun (SFEG) electron source. FIB offers the ability
to design, sculpt or pattern nano- and micro-structures on different materials with
spatial resolution down to 20 nm.

By means of the FIB machine we proceeded in cutting the tip with a plane posi-
tioned with a proper different orientation. In this way we utilized two pristine faces of
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Fig. 6.7. (a) Schematic of the tip geometry (from Veeco� probes catalogue); (b) image of the
pristine probe (from Veeco� probes catalogue)

the original tip and we just created the third face. In Fig. 6.8 is reported the reshaping
procedure step by step [19].

With this procedure we realized three different indenters. In Fig. 6.9 the SEM
images of the three probes obtained by FIB nanofabrication are reported [19]. The
orientation of the cutting planes is an important feature in order to fabricate a tip that
approaches the sample perpendicularly to the surface. To obtain these geometries
we always consider the 12◦ angle of the AFM probe holder (Fig. 6.8b). The second
probe is obtained cutting the tip with three different planes (there was no chance in
fact to utilize any pristine face of the original probe) and the shape was completely
recreated (Fig. 6.9b).

In Fig. 6.10 one can see the final shape of customized probe n◦1 [19], observed
with the SEM microscope (Fig. 6.10a,b) and with AFM (Fig. 6.10c) using a calibra-
tion grid composed of an array of sharp tips (test grating TGT1 – NT-MDT�).

Fig. 6.8. (a) Probe pristine geometry; (b) position of the cutting plane; (c) tip profile after the
reshaping phase; (d) axonometric projection of the customized probe. [Reprinted from [19],
Copyright (2007), with permission from IoP.]
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Fig. 6.9. SEM images of the customized probes [19]: (a) indenter n◦1 – equivalent corner angle
of 62◦; (b) indenter n◦2 – equivalent corner angle of 97◦; (c) indenter n◦3 – equivalent corner
angle of 25. [Reprinted from [19], Copyright (2007), with permission from IoP.]

The final shape of the indenters is a triangular pyramid with a customized geom-
etry. To codify the new geometry of the nanofabricated probes the characteristic
parameter which has been used is the equivalent corner angle. The equivalent cor-
ner angle of a triangular pyramid is defined as the corner angle of a conical indenter
with the same area function. Using this kind of codification we obtained for the three
functionalized indenters the angles listed in Table 6.2 [19].

Fig. 6.10. (a,b) SEM images of the customized probe n◦1; (c) AFM image on the calibration
grid of the customized probe n◦1 [19]. [Reprinted from [19], Copyright (2007), with permission
from IoP.]
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Table 6.2. Equivalent corner angles of the nanofabri-
cated probes. [Reprinted from [19], Copyright (2007),
with permission from IoP.]

Indenter Equivalent corner angle [◦]
Probe n◦1 62
Probe n◦2 97
Probe n◦3 25

6.2.2
Tip Radius of Curvature Characterization

In the AFM indentation procedure, the radius of curvature at the tip affects the hard-
ness measurement in two different ways: (1) it has an influence on the nature of the
penetration process, as long as the indenter, no more ideal, will deform the specimen
with a different geometry; (2) it affects the process of AFM imaging, as long as the
non-ideal tip will interact with the morphology, convoluting the asperities depend-
ing on its actual shape. For this reason it is necessary to determine the real shape of
the indenter (in terms of tip radius of curvature) in order to modify and develop the
theoretical and numerical models.

This characterizing procedure, yet introduced in a previous work [29], is herein
reviewed. The topography of the customized indentation tips has been obtained by
a SEM microscope equipped with a SFEG electron source and also by an AFM
working in tapping mode. Using the SEM we are able to directly obtain the geometry
of the tip (Fig. 6.11a, [29]), although the image obtained is a 2D projection of the
tip. The result achieved in this way does not concern the actual three-dimensional
structure of the system, but just a planar view of it.

Using the AFM, it is in addition possible to obtain a 3D topography of the tip
(Fig. 6.11b, [29]), scanning the probe on a calibration grid (test grating TGT1 – NT-
MDT�). The image obtained in this way is three-dimensional and represents the
actual shape of the indenter. Using the “Tip characterization” tool equipped with the

Fig. 6.11. (a) SEM image of the customized probe n◦1; (b) AFM image on the calibration grid
of the customized probe n◦1 [29]
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Table 6.3. Tip radius of curvature of the nanofab-
ricated probes [29]

Indenter Tip radius of curvature [nm]

Probe n◦1 21
Probe n◦2 26
Probe n◦3 25

SPIP
TM

software that we used for the AFM image analysis, we are able to precisely
detect the tip radius of curvature of the three customized probes used for the nanoin-
dentation procedure (Table 6.3, [29]).

6.2.3
Nanoindentation Experimental Setup

The whole experimental analysis has been carried out using AFM nanoindentation.
The instrument that we used was a Digital Instruments EnviroScope Atomic Force
Microscope by Veeco�. This instrument allowed us to indent the sample and image it
right after the indentation. The experiments consisted of a matrix of 25 indentations
(Fig. 6.12) performed for each probe under exactly the same conditions. The inden-
tations reported in Fig. 6.12 reveal a clear pile-up. This phenomenon is related to the
material, which is very soft, and also to the geometry of the tip (decreasing the corner
angle of the tip increases the plastic deformation of the material and thus its pile-up).

Fig. 6.12. AFM image of the indentation matrix, composed of 25 indentations, performed for
each probe under exactly the same conditions
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Table 6.4. Elastic spring constant and deflection sensitivity of the probes.
[Reprinted from [19], Copyright (2007), with permission from IoP.]

Indenter Spring constant [N/m] Deflection sensitivity [nm/V]

Probe n◦1 49.0 34.2
Probe n◦2 35.2 34.5
Probe n◦3 38.4 34.8

The load applied to the sample is 1.6 V in terms of photodetector voltage.
Thus, considering the cantilever spring constant (obtained using the Sader approach
[30, 31]) and the deflection sensitivity, we obtain a maximum load for the three inden-
ters of about 2,000 nN.

The deflection sensitivity has been calibrated using the load-displacement curves
and it corresponds to the slope of the force plot in the contact region. The deflection
sensitivity is the factor that allows us to convert the cantilever deflection from volts to
nanometers. The results in terms of elastic spring constant and deflection sensitivity
for the three probes are reported in Table 6.4 [19].

6.3
Numerical Model

The Finite Element Method (FEM) is herein used to simulate the indentation process
in order to find a numerical correlation between the hardness value and the shape of
the indenter, considering also the effect of the tip radius of curvature.

In this analysis we approach the numerical model as a non-linear contact prob-
lem. Both the indenter and the specimen are considered bodies of revolution and
the pyramid indenter is approximated by an axisymmetric cone (Fig. 6.13 [29]) with
the same equivalent corner angle. In this way it is possible to avoid a high com-
puting time connected with the three-dimensional nature of the problem, with no
introduction of considerable errors. Using a 3-D pyramid indenter, in fact, there
will be an elastic singularity at its edges, influencing the stress-strain response of
only a tiny area close to these edges. On the contrary this will not affect the con-
tinuum plastic behavior of the material, with no interference in its load-deflection
response [32].

In the present model it is assumed that the indenter is perfectly rigid and the test
material is isotropic homogeneous, elasto-plastic with isotropic hardening behavior,
obeying von Mises’ yield criterion; the material was assumed to be elastic-fully plas-
tic, thus with no strain hardening [19,29]. This is an acceptable hypothesis, since the
material is a polymer-based photoresist which presents a perfectly plastic regime
characterized by a constant yield stress [33].

The indentation process is simulated moving the indenter with a downward-
upward displacement (100 nm). This causes the indenter to push into the surface
and then release, until it is free of contact with the specimen.
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Fig. 6.13. Stress distribution in the indentation model for the probe n◦2 (corner angle = 97◦);
the vertical blue arrow represents the applied load direction during the indentation process [29]

The indenter is modeled using the equivalent corner angles designed for the cus-
tomized probes (62, 97, and 25◦ – Table 6.2) and using the tip radius of curvature
obtained from the tip characterization (21, 26, and 25 nm – Table 6.3).

6.4
Theoretical Model: A Shape/Size-Effect Law
for Nanoindentation

In this section the approach proposed by Pugno [28] is reviewed.
Consider an indenter with a given geometry h = h(r,ϑ), with r and ϑ polar coor-

dinates. The previous models [20, 21] assume that plastic deformation of the surface
is accompanied by the generation of sub-surface geometrically necessary dislocation
loops (supposed to be of length l(h) in this treatment). The deformation volume (V)
is assumed to be a hemispherical zone below the projected area (A) of the indentation
impression, with radius a = √

A/π (Fig. 6.14). Its value can be obtained by:

V = 2π/3(A/π )3/2 (6.1)

Thus, the total length L of the geometrically necessary dislocation loops can
be evaluated by summating the number of steps on the staircase-like indented sur-
face (Fig. 6.14):
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Fig. 6.14. Geometrically necessary dislocations during indentation: h is the indentation depth;
a is the radius of the projected area A; Ω is the contact area and V is the dissipation domain
(proportional to a3). Note that the indented surface at the nanoscale appears in discrete steps due
to the formation of dislocation loops, i.e., of quantized plasticity. In our model, the scaling law
is predicted to be a function only of S/V , where S = Ω − A. [Reprinted from [28], Copyright
(2006), with permission from Elsevier.]

L =
∑
steps

li = �− A

b
= S

b
≈ 1

b

h∫
0

l(h)dh (6.2)

where � is the contact area of the indented zone and b is (modulus of the) Burger’s
vector. Considering that the indented surface at the nanoscale appears in discrete
steps due to the formation of dislocation loops, � can be defined as the sum of the
“vertical” surfaces (S) and of the “horizontal” ones (A – Fig. 6.14). Thus, the surface
S can be interpreted as the total surface through which the energy flux arises, positive
if outgoing (�) and negative if incoming (A) in the indenter. Note the generality of
the result in Eq. (6.2), which does not need any specification of the form of h, as
usually required.

According to Eq. (6.2), the average geometrically necessary dislocation den-
sity is:

ρG = L

V
= S

bV
(6.3)

while the total dislocation density is usually assumed to be:

ρT = rρG + ρS (6.4)

Where rρG can be considered as the actual number of dislocations that must be
generated to accommodate plastic deformation, that we could call geometrically
“sufficient” dislocations, and it is greater than the number of geometrically nec-
essary dislocations ρG [34] by the so-called Nye factor r (∼ 2, [21]). ρS is the
statistically stored dislocation density [20]. However, we note here that, accord-
ing to Eq. (6.4), ρT (V/(bS) → 0) → ∞, i.e., the total dislocation density at the
nanoscale diverges, whereas it must physically present a finite upper-bound, which
we call ρ(nano)

T . The existence of such an upper-bound has recently been confirmed
[28, 35].
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Note that ρT is related to the shear strength τp by the Taylor’s hardening model
[36], i.e.:

τp = αμb
√
ρT (6.5)

where μ is the shear modulus and α is a geometrical constant usually in the range
0.3–0.6 for FCC metals [37]. Thus, the upper-bound ρ(nano)

T is related to the exis-

tence of a finite nanoscale material strength τ (nano)
p , that only at the true atomic scale

is expected to be of the order of magnitude of the theoretical material strength.
Accordingly, the upper-bound ρ(nano)

T is straightforwardly introduced in our
model through the following asymptotic matching:

1

ρT
= 1

rρG + ρS
+ 1

ρ
(nano)
T

(6.6)

Note that at the atomic scale, as a consequence of the quantized nature of matter,
ρ

(nano)
T must be (at least theoretically) of the order of b−2 as for a pure single dis-

location. This is also reflected in the fact that β = 1/(b2ρ
(nano)
T ) = (αμ/τ (nano)

p )2

is of the order of the unity, since αμ is of the same order of magnitude as the
theoretical material strength. Note the analogy with Quantized Fracture Mechanics
(QFM) [38] that, quantizing the crack advancement as must (particularly) be at the
nanoscale, predicts a finite theoretical material strength, in contrast to the results of
the continuum-based linear elastic fracture mechanics [39].

The flow stress is related to the shear strength by von Mises’ rule, i.e. σp = √
3τp,

and the hardness is related to the flow stress by Tabor’s factor [40], i.e., H = 3σp

[20, 21]; thus H = 3
√

3τp. Introducing in this equation the shear strength given
by Eq. (6.5), after having substituted the total and geometrically necessary dislo-
cation densities according to Eq. (6.6) and Eq. (6.3) respectively, we derive H =
3
√

3αμb

{
(rS/(bV) + ρS)−1 +

(
ρ

(nano)
T

)−1
}−1/2

. Finally, rearranging this relation

and introducing dimensionless parameters, we deduce the following hardness scaling
law [28]:

H(S/V)

Hnano
=
(
δ2 − 1

�S/V + 1
+ 1

)−1/2

,
H(S/V)

Hmacro
=
(

δ2 − 1

δ2V/(�S) + 1
+ 1

)1/2

,

δ = Hnano

Hmacro
(6.7)

where

Hnano ≡ H(�S/V → ∞) = 3
√

3/βαμ

Hmacro ≡ H(�S/V → 0) = 3
√

3αμb√
ρ−1

S + βb2

� = r

ρSb
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Hmacro represents the macro-hardness, Hnano the nano-hardness, and � a char-
acteristic length, governing the transition from nano- to macro-scale. From a phys-
ical point of view note that �S/V = rρG/ρS, i.e., it is equal to the ratio of the
geometrically “sufficient” and statistically stored dislocation densities, whereas

δ =
√

1 + ρ(nano)
T /ρS. The two equivalent expressions in Eq. (6.7) correspond

respectively to a bottom-up view or to a top-down view. Equation (6.7) is a general
shape/size-effect law for nanoindentation that provides the hardness as a function of
the ratio between the net surface through which the energy flux propagates and the
volume where the energy is dissipated; or, simply stated, as a function of the surface
over volume ratio of the domain where the energy dissipation occurs.

The law of Eq. (6.7) can be applied in a very simple way to treat any interest-
ing indenter geometry. However, to make a comparison, it is useful to focus on the
axisymmetric profiles (i.e., h = h(r)), yet to be investigated by other researchers [21].

Conical indenter. Considering a conical indenter with corner angle ϕ, its geom-
etry will be defined by: h(r) = tan ((π − ϕ)/2)r; thus by integration with Eq. (6.2)

we found S/V = 3 tan2 ((π−ϕ)/2)
2h , which can be introduced into Eq. (6.7), giving the

following expression:

Hcone(h,ϕ) = Hmacro

√
1 + δ2 − 1

δ2h/h∗(ϕ) + 1
(6.8)

where

h∗(ϕ) = 3/2� tan2 ((π − ϕ)/2)

From physical considerations about Eq. (6.8), we can observe that, for h/h∗ → 0
or ϕ → 0, Hcone → Hnano, whereas for h/h∗ → ∞ or ϕ → π , Hcone → Hmacro;
only for the case of δ → ∞ (which means that Hcone → Hnano = ∞ for h → 0),
Hcone = Hmacro

√
1 + h∗/h as derived by Nix et al. [20] (with the identical expres-

sion for h∗ (ϕ)). Note that such a scaling law was previously proposed by Carpinteri
[41] for material strength (with h structural size).

We have here derived S by integration of l(h), according to Eq. (6.2) and for
consistency with Swadener et al. [21]. A more direct calculation considers the
difference between the lateral (Ω) and base (A) surface areas of Eq. (6.2), lead-
ing to a slightly different value of h∗ [h∗(ϕ) = 3/2� tan2 ((π − ϕ)/2)(1/ sin ((π −
ϕ)/2)) − 1/ tan ((π − ϕ)/2)]; with respect to the calculated previous one [h∗(ϕ) =
3/2� tan2 ((π − ϕ)/2)]. The ratios h∗(ϕ)/� evaluated with the two different proce-
dures were compared in [28] for a conical indenter: the related difference was mod-
erate and unessential in our context. Thus, we conclude that both the methodologies
can be applied to fit experiments.

Parabolic (spherical) indenter. Consider the case of a parabolic indenter with
radius at tip R, i.e., h = r2/(2R), that for not too large an indentation depth
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corresponds also to the case of a spherical indenter. By integration we found S/V =
1/R, that introduced into Eq. (6.7) gives:

Hparabola(R) = Hmacro

√
1 + δ2 − 1

δ2R/R∗ + 1
(6.9)

where

R∗ = �

Thus, the hardness is here not a function of the indentation depth
h. We can observe that for R/R∗ → 0, Hparabola = Hnano, whereas for
R/R∗ → ∞, Hparabola = Hmacro; only for the case of δ → ∞, Hparabola =
Hmacro

√
1 + R∗/R, as derived in [21] (with the identical expression for R∗). This

law describes a true size-effect and agrees with the Carpinteri’s law [41].
Conical indenter with a rounded tip. Assuming the presence of a non-vanishing

tip radius of curvature (R) in a conical indenter, the tip geometry that we con-
sider in order to find a theory which models this kind of problem is the one
reported in Fig. 6.15 [29]. Note that geometrically hS = R(1 − sinϕ), hC = R(1 −
sinϕ)/ sinϕ and r depends on the depth of indentation (h) and it is: r = √

2Rh − h2

for h ≤ hS or r = (h + hC) tanϕ for h > hS.
Thus, the term S

V (h,ϕ, R) can be deduced as a function of h, ϕ, and also R, by
geometrical consideration as [29]:

S

V
(h,ϕ, R) =

⎧⎪⎪⎨
⎪⎪⎩

3h2

2(2 Rh − h2)3/2
h ≤ hS

[(h + hC)2 − (hS + hC)2](1/ sinϕ − 1) tan2 ϕ + h2
S

2/3 · (h + hC)3 tan3 ϕ
h > hS,

(6.10)

Fig. 6.15. Conical indenter with worn
spherical tip [29]
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Introducing Eq. (6.10) into Eq. (6.7) it is possible to have an expression for the
material hardness as a function of: (1) depth of indentation, (2) tip corner angle, (3)
tip radius of curvature (H(h,ϕ, R)).

Note the continuity of the function S/V(h,ϕ, R) around hS and note that
S/V(h >> R,ϕ, R) ≡ S/V(h,ϕ, R = 0). This means that the role of the tip radius
of curvature becomes negligible for large indentation depths (in agreement with the
macro-scale results). Obviously S/V (h ≤ hS,ϕ, R) is not a function of ϕ, just repre-
senting a pure spherical indentation.

Imagine performing experiments with an ideal tip (thus with R → 0), in order
to measure the ideal material hardness Hideal ≡ H(h,ϕ, R = 0). Unfortunately, we
would experimentally measure Hmeasured ≡ H(h,ϕ, Rexp) and thus the ideal mate-
rial hardness will be Hideal = CHmeasured, thus the correction factor C will be
defined as [29]:

C = H(h,ϕ, R = 0)

H(h,ϕ, Rexp)
(6.11)

Since S/V(h,ϕ, R) Eq. (6.10) increases by decreasing R, correction factors C
larger than one have to be expected (C ≥ 1). For this reason, wear would imply hard-
ness underestimations, in agreement with the finite element results (see Fig. 6.20a).

In particular introducing Eq. (6.7) and Eq. (6.10) into Eq. (6.11) gives:

C(h,ϕ, R) =

√√√√√√√√
1 + δ2 − 1

δ2�−1V/S(h,ϕ, 0) + 1

1 + δ2 − 1

δ2�−1V/S(h,ϕ, Rexp) + 1

(6.12)

which allows us to deduce the correction factors C for the nanofabricated probes
used for the experimental part of this work (Sects. 6.2.1 and 6.2.2). The values of the
correction factors are reported in Table 6.5 [29].

Flat indenter. Consider the case of a flat indenter of radius a, geometrically we
found S/V = 2πah

2/3πa3 , that introduced into Eq. (6.7) gives:

Hflat(a, h) = Hmacro

√
1 + δ2 − 1

δ2 a2/(3h�) + 1
(6.13)

For a/� → 0, Hflat → Hnano, whereas for a/� → ∞, Hflat → Hmacro; inter-
estingly, for h/� → 0, Hflat → Hmacro, whereas for h/� → ∞, Hflat → Hnano,
showing an inverse h-size-effect, in agreement with the discussion by Swadener

Table 6.5. Tip radius of curvature correction factors for the
nanofabricated probes [29]

Indenter Correction factor (C)

Probe n◦1 (R = 21, nm, ϕ = 62◦) 1.156
Probe n◦2 (R = 24, nm, ϕ = 97◦) 1.840
Probe n◦3 (R = 26, nm, ϕ = 25◦) 1.036
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et al. [21] and with intuition (the contact area does not change when the penetra-
tion load or depth increase) [24]. This suggests a new intriguing methodology to
derive the nanoscale hardness of materials by a macroscopic experiment, using large
flat punches, even if the finite curvature at the corners is expected to affect the results.
This case was only discussed in [21], because of the complexity in their formalism
to treat such a cuspidal geometry. Note that for h ∝ a and δ → ∞ the size-effect law
again coincides with that introduced by Carpinteri [41].

6.5
Deconvolution of the Indentation Impressions

The presence of a radius of curvature at the tip in an AFM indenter, affects not only
the process of indentation, but also the process of AFM imaging, as long as the non-
ideal tip interacts with the morphology, convoluting the asperities depending on its
actual shape. For this reason, in order to deal with this problem, which could dramat-
ically influence the AFM hardness results, the AFM images have been geometrically
deconvoluted [29], considering the tip radius of curvature that we measured during
the topography characterization (Sect. 6.2.2).

The software that we used to measure the indentation impression area (SPIP
TM

software), considers a “tangent height” of the indentation (which is the depth
of indentation) reduced by 10%, in order to avoid any roughness influence (see
Fig. 6.16a where h is 10% of the whole depth of indentation H). In Fig. 6.16a
the red dashed line is the artifact image obtained by AFM, assuming the presence
of a tip radius of curvature R, while the black continuous line is the ideal pro-
file. Thus, considering the “tangent height,” the difference between the measured
indentation impression and the ideal one is only related to the length x (Fig. 6.16a,b,
[29]), which could be obtained by geometrical considerations as x = R · cosα, with

α = arcsen
(

1 − h
R

)
.

The actual projected area (AI – hatched area in Fig. 6.16b) could be thus obtained
from the measured one (Ap – pink area in Fig. 6.16b) with the following relation:

AI =
√

3

4
·
(√

4 · Ap√
3

+ 2 · √
3 · x

)
(6.14)

6.6
Results

The nanohardness was first calculated following the Oliver–Pharr approach
[8, 9, 11, 19], analyzing the load-unload curves performed during the experimental
campaign. In this case the material is highly deformable in the plastic regime and
a huge pile-up occurs. For this reason the hardness value will be extremely over-
estimated using the O-P method. In some cases the material that piles up aside the
indentation, almost doubles the indentation depth. This means that the projected area
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Fig. 6.16. Schematic of the deconvolution process; a interaction during the AFM imaging phase
between the tip and the indentation impression; b projected area of the indentation impres-
sion [29]

(which is proportional to h2) should be approximately four times larger and the hard-
ness value four times smaller than the O-P values [19].

For this reason we adopted a direct method to measure the projected area of
the indentation impression (Sect. 6.2.3). The hardness results obtained in this way
are reported in Fig. 6.17 (blue dots) where a higher statistic has been obtained in
comparison with the results shown in [19], increasing the number of indentations on
the same material [29]. With a direct measurement of the projected area it is possible
to take into account the pile-up effect. In the legend the best-fit parameters obtained
with the theoretical model described in Sect. 6.4 for a conical indenter, are reported.
The macro-hardness (Hmacro) appears quite similar to the actual value of the polymer
material and also the other best-fit parameters are plausible and this confirms that the
theoretical model is self-consistent.

As introduced in Sect. 6.3, a FEM simulation has been performed. This numerical
approach allowed us to verify the experimental results and to understand better how
the indenter shape affects the hardness measurement. As a matter of fact, the study of
the distribution of pressure in the contact area between the specimen and the indenter,
could provide several useful pieces of information [19].
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Fig. 6.17. Experimental results (blue dots) for the three customized indentation probes obtained
with a direct measurement of the projected area and theoretical interpolation (red line)

In Fig. 6.18 the numerical hardness results are reported for the range of angles
under study. The corner angle 2ϕ assumes the following values for the three probes
investigated (Table 6.2): 25◦ (0.436 rad), 62◦ (1.082 rad), 97◦ (1.693 rad).

In Fig. 6.19 [29] a direct comparison between the experimental and numeri-
cal results is reported. This comparison reveals a good agreement in the hardness

Fig. 6.18. Numerical results (black squares) for the indentation model over the whole range of
the indenter corner angles and theoretical interpolation (green line)



160 L. Calabri · N. Pugno · S. Valeri

Fig. 6.19. Comparison between the experimental and numerical results, both interpolated using
the “general size/shape-effect law for nanoindentation” [29]

behavior although an overestimation of the experimental results is evident at small
corner angles as a consequence of the tip radius of curvature effect. We should thus
expect that the presence of a rounded tip on the indenter gives an overestimation
of the measured hardness, justifying the gap between experimental and numerical
results, observable in the graph. On the contrary, as highlighted from numerical sim-
ulations (Fig. 6.20a) and confirmed from theoretical models (Sect. 6.4 – Conical
indenter with a rounded tip), the effect of the tip radius of curvature on the hard-
ness measurement in terms of penetration process is opposite. The hardness value,
numerically evaluated modeling the indenter as ideal (Fig. 6.20a – red dots), is in
fact higher than that evaluated using a worn tip (Fig. 6.20a – blue squares). These
numerical data have also been fitted with the theoretical Eqs. (6.7, 6.10), consider-
ing in the first case (red curve) a vanishing tip radius (R = 0) while in the second
case (blue curve) the actual tip radii of the three customized probes is considered
(Table 6.3). The best fit parameters reported in the inset of Fig. 6.20a have exactly
the same values for the two interpolations, confirming that the theoretical approach
perfectly agrees with the numerical one.

The mismatch observed in Fig. 6.19 is therefore not ascribable to the tip
radius of curvature effect on the indentation process, but it is ascribable to this
effect on the AFM imaging process. As reported in Sect. 6.5, in fact, the mea-
sured projected area of an indentation impression is slightly smaller than the
real one, because of the convolution effect of the AFM tip. Thus, considering
this effect and correcting the measured areas with the procedure described in
Sect. 6.5, we are able to estimate the actual value of the material hardness. In
Fig. 6.20b [29] raw experimental data (green triangles) vs. deconvoluted exper-
imental data (magenta triangles) are reported. It is possible to observe the dif-
ference, especially for small corner angles, in the hardness values. In the same
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Fig. 6.20. (a) Numerical hardness results considering in the FEM model an indenter with an
ideal shape (red dots) and with a worn shape (blue squares). The numerical data are theoretically
interpolated (red and blue line, respectively); (b) comparison between the experimental results
deconvoluted (magenta triangles) and numerical data (blue dots). In the same graph are also
reported the raw experimental results (green triangles) and the experimental results considering
the correction factor C (cyan triangles) [29]

graph the numerical data of the modeled worn indenter are also reported, show-
ing now an excellent agreement along the whole range of the corner angles
chosen. Lastly, we also filtered the deconvoluted experimental results (magenta
triangles) by the correction factor C, theoretically evaluated for the three cus-
tomized probes (Table 6.5). These corrected data are also reported in Fig. 6.20b
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(cyan triangles). The results filtered by the deconvolution process (magenta tri-
angles) and those corrected by the correction factor C (cyan triangles) have both
been theoretically interpolated (magenta and cyan curve, respectively). The result
of this process reveals a complete agreement in terms of best-fit parameters (inset
of Fig. 6.20b), which are exactly the same, confirming that the theoretical model is
self-consistent [29].

6.7
Conclusion

An AFM-based nanoindentation study on the effect of geometrical uncertainties
of the indenter tip on the hardness measurement is proposed herein. In particular
three different-shaped indentation probes have been designed and realized with a
FIB machine. A whole experimental analysis has been performed with these inden-
ters in order to quantify how the hardness measurement is affected by two impor-
tant parameters: (1) the tip corner angle [19] and (2) the tip radius of curvature
of the nanoindenters [29]. A FEM model has also been designed in order to bet-
ter understand the process of indentation and it has been further developed in order
to take into account the tip radius of curvature effect. In parallel, a theoretical
approach, based on a recent theory on nanoindentation [28], has been optimized
for a worn indenter. These two approaches allow us to interpret the experimental
results, showing that the differences between the experimental, the numerical, and
the theoretical data are related mainly to the tip radius of curvature effect, which
affects not only the penetration process during indentation, but also, and in a sig-
nificant way, the AFM imaging process. The hardness has been in fact obtained
in a direct way, measuring the projected area of the indentation impression by the
AFM high-resolution images. A geometrical deconvolution process has been uti-
lized in order to correct the systematic error related to the tip radius of curvature
effect.

In this way it is possible to deduce a theoretical relation that links the measured
hardness value with the shape of the indenter and with its tip radius of curvature.
In particular a correction factor C has been defined and it allows us to correct the
experimental data, obtained by AFM nanoindentation, from the geometrical effects
of the indenter tip.
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