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Abstract 
      In this paper the non-linear dynamics of nanotubes 
is investigated with a look into their applications in 
nanoelectromechanical systems (NEMS). The 
understanding of the dynamics of NEMS, always 
oscillating -at least as a consequence of the thermal 
vibrations- represents a still open and fundamental 
issue towards an optimal dynamic design of nanotube 
based devices. The vibrations of NEMS are usually 
studied assuming a linear behavior and without 
considering the effect of the electrical field imposed to 
control the device. In spite of this, the presence of the 
electrostatic charges implies that the nanotube cannot 
be considered as free, as usually assumed. Moreover, 
linear behavior, implicitly corresponding to assume 
small displacements, seems to be in contrast with the 
observed high flexibility of nanotubes, capable of 
undergoing large displacements remaining  in elastic 
regime.  In this paper, we try to remove these 
assumptions,  deriving   the   corresponding   equation
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governing the motion of the device under large displacements and electrostatic loading. 
The role of the van der Waals forces, significant only for very small gaps (few 
nanometers), is also investigated. Instead of solving numerically the derived equation for 
different case studies, we obtain an approximated solution studying the oscillations 
around the static configuration that minimizes the free-energy of the NEMS. Finally, the 
amplitude of the intrinsic oscillations at 0K, as imposed by the uncertainty principle, are 
estimated. A validation of the analysis is achieved by a comparison with experimental 
observations of thermal oscillations in singly or doubly clamped nanotubes. In addition, 
the intensity of the electrical field corresponding to a vanishing oscillating frequency, 
i.e., to a structural instability, is predicted and compared with numerical simulations. 
Such simple prediction of the pull-in voltage is shown to be fundamental, since it 
represents the key design parameter, describing the on/off transition of the device. 
 
1. Introduction 

Nanoelectromechanical systems (NEMS) seem to have the capability of 
revolutionizing the electronic components of the future. Their tremendous miniaturized 
size and high fundamental frequency would result in a density of the order of 1012 
elements over square centimeter and operation frequency in the EHF band (Extra High 
Frequency, 30-300GHz). Due to their extreme electromechanical properties, nanotubes 
represent the ideal candidate for such applications. A nanotube based NEMS (e.g., 
nanoswitch, nanotweezers...) can be thought as a singly or doubly clamped nanotube 
suspended at a given gap over an electrode, from which a differential in the electrostatic 
potential is imposed. Increasing the voltage, a structural instability of the nanotube, 
corresponding to the on/off states of the device will take place at the so-called pull-in 
voltage.  

Ever since their discovery [1], nanotubes have attracted a major interest in the 
scientific community. In the last decade, the mechanical and electronic properties of 
nanotubes have been investigated. Small size, low density, high stiffness, flexibility and 
strength, as well as excellent electronic properties, suggest that nanotubes have the 
potential to impact the development of novel composites, electronic devices and NEMS. 
Nanotubes (as well as nanoropes -composed by several nanotubes- and nanowires �
having different shaped compact cross-sections) are envisioned as the ultimate fiber 
reinforcements as a consequence of their extremely high stiffness (Young�s modulus of 
the order of 1TPa [2,3]) and flexibility (strain at tensile failure of the order of 30%, [4]). 
Their strength, investigated in [5], is of the order of 10-100GPa. For a detailed review on 
the mechanics of carbon nanotubes the reader should refer to [6].  

Recently, some research groups have been able to manufacture NEMS devices. For 
instance, Kim and Lieber [7] developed a nanotweezers. The mechanical capabilities of 
the nanotweezers were demonstrated by gripping and manipulating submicron clusters 
and nanowires. Likewise, Rueckes et al. [8] investigated a carbon nanotube-based 
nonvolatile random access memory, by considering an innovative bistable nanoswitch 
based on electrostatic and van der Waals forces. The viability of the concept was 
demonstrated by the experimental realization of a reversible bistable nanotube-based bit. 
Furthermore, the first really true nanotube-based NEMS, fully integrating electronic 
control and mechanical response, was developed only some months ago by Fennimore et 
al. [9] by realization of a rotational motor. The authors reported the construction and 
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successful operation of a fully synthetic nanoscale electromechanical motor 
incorporating a rotational metal plate with a multi-walled carbon nanotube serving as the 
key motion-enabling element.  

In spite of this fast acceleration in the development of NEMS structures, key 
analyses in the static and dynamic design of NEMS are still absent in literature. The first 
extensive static investigation of the behavior of NEMS devices has been reported by 
Dequesnes et al. [10]. In that paper, the linearized equation of the elastic line of a 
nanotube suspended over an electrode and from which a differential electrical potential 
is imposed, was numerically solved according to Continuum Mechanics, assuming small 
displacements. The corresponding pull-in voltages, at the structural instability, were 
evaluated for different cases. In addition, the first attempt to obtain an analytical formula 
for the pull-in voltage of the nanotube was also proposed, assuming for the nanotube a 
plate-like undeformed shape, connected via a lamped stiffness to the ground electrode. 
As emphasized by the same authors, the proposed formula was not able to accurately 
reproduce all their numerical results.  

In this paper we present a free-energy based theory for the prediction of the (non-
linear) dynamics of nanotube based NEMS. A validation of the model is achieved by 
setting to zero the frequency of the system, to predict the mechanical instability 
corresponding to the pull-in of the device. The results are compared with numerical 
simulations, showing a good correspondence.  

An additional validation of the analysis is achieved by a comparison with 
experimental observations of thermal oscillations in singly or doubly clamped 
nanotubes. The amplitude of the oscillations at 0K, as imposed by the uncertainty 
principle, is also estimated. 
 
2. Non-linear elastic line equation 

Let us focus the attention on a singly or doubly clamped nanotube suspended over 
an electrode at a distance H from which a difference, V, in the electrostatic potential is 
imposed, under a given temperature T (Fig. 1).  

 

 
 

Figure 1. Singly and doubly clamped nanotube devices at a given temperature T. 
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The electrostatic and van der Waals energies per unit length can be evaluated by the 
following relationships [10]:  

 

                                                                    
(1a) 

 

                                               
(1b) 

 
where s is the natural axial co-ordinate along the deflected nanotube (coincident with the 
horizontal co-ordinate z only for small displacements), Rint and R ≡ Rext are the inner and 
outer radius of a (multi-walled) nanotube, NG is the number of layers in the substrate 
(usually graphene), d is the interlayer distance (for graphited d = 0.335nm).  In addition, 
r ≡ rint is the gap between the nanotube (external wall) and the surface layer of the 
substrate, where n is the atomic density (for graphite is equal to n = 1.14 × 1029 m−3); ε0 = 
8.85 × 10−12C2N−1m−2 is the vacuum permittivity and C6 is a material constant (for 
graphite is equal to C6 = 2.43 × 10−78 Nm7). 

The corresponding forces qelec and qvdW per unit length acting on the nanotube can be 
evaluated by derivation:  

 

                
(2)

 
 
Based on continuum mechanics, the linear (s=z) quasi-static structural behavior of 

the nanotube can be obtained solving the classical elastic line equation, namely:  
 

                       
(3) 

 

where w(z) = H − r(z) is the nanotube deflection, and E is the Young�s modulus of the 
nanotube, with moment of inertia I.  

It is important to understand that eq. (3) assumes small displacements. On the other 
hand, due to the large flexibility of the nanotube, the role of the finite kinematics (large 
displacements) could become relevant. According to these considerations, we have to 
consider the complete expression for the elastic curvature. In addition, it is important to 
note that large deformations could imply, for doubly clamped nanotubes, also the 
stretching of the element by an axial force N(w). Finally, under large displacements, the 
electrostatic forces, orthogonal to the surface of the nanotube, have to be considered with 
respect to the deformed configuration (here we assume the same consideration for the 
van der Waals forces). In the dynamic regime, the damping and inertia forces must be 
also added (e.g., to consider variable electrical fields, thermal vibrations, free vibrations, 
etc.). According to these considerations, the complete expression of the elastic line 
equation has to be written as:  
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(4)

 

 
where µ and γ represent the mass and the damping per unit length of the nanotube and t 
is the time.  The  Pauli�s  force  per unit length, qP, has to be added for gap smaller than 
~ 1nm and could be obtained from the repulsive part of the Lennard-Jones potential [11] 
as done for the van der Waals forces. From the Q-factor of the nanotube (of the order of 
200-500 [12]), γ = µω/Q where ω is its fundamental (rotating) frequency. The term 

represents the correction for the curvature, that must be considered under 

large displacements. The term 
 
has to be introduced to consider the 

change in the positions of the loads that remain perpendicular to the nanotube axis, as a 
consequence of the large displacements, involving a finite rotation  of the cross-

section. For a nanotube, of cross-section area A and length L, z
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Some interesting results were obtained [10], solving numerically the static linear eq. 
(3). The more general dynamic non-linear eq. (4) could also be solved numerically. 
Instead of solving eq. (4) in an approximated way, we will study the dynamics of the 
nanotube by a free-energy approach. As a consequence of the high value of the Q-factor 
we neglect the damping of the NEMS.   

 
3. Vibrations around large deformed configurations 

The aim of this section is the estimation of the NEMS oscillations around a 
deformed configuration due to the electrostatic and van der Waals forces.  

Let us consider a deformed static configuration wS assumed as a given arbitrary 
function satisfying the boundary conditions, with one (or more) unknown free parameter 
cS (e.g., wS ≈ cS s2/L2 for cantilever), indicating the maximum displacement of the 
nanotube (of the tip for cantilever or of the middle point for a clamped-clamped 
nanotube). The oscillations around this configuration can be described by:  

 
                                                                                                                 (5) 

 
For the fundamental frequency:  
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(6) 

 
where cD represents the maximum amplitude of the harmonic oscillations around the 
equilibrium position described by cS. Accordingly, the kinetic energy of the system will 
be:  
 

                (7)
 

 
where M is the mass of the nanotube, and µ = ρmA, with A cross-section area and ρm 
density (for carbon ρm = 2260Kg/m3). Eq. (7) can be rewritten as:  
 

               
(8)

 
 
where α is dependent on the chosen form for wS (e.g., rough forms of wS give estimations 
for cantilever of α ≈ 1/5 and for clamped-clamped of α ≈ 13/35, [13]) and can be derived 
by comparing eqs. (7) and (8).  

In comparison, indicating the free-energy of the NEMS by W(c), where c = cS + cD 
sin(ωt), and fixing its reference by imposing W(cS) = 0, equating the maximum value of 
the free-energy and the maximum kinetic energy of the nanotube, gives the estimation of 
the fundamental frequency ω as:  

 

                 
(9)

 
 
If the kinetic energy (e.g., its mean value) is a given quantity, from eq. (8) and (9), 

the frequency and the amplitude of the oscillations can be derived. Note that in general 
(if the oscillations are large) the frequency ω will be a function also of the amplitude cD, 
as described by eq. (9), showing a non-linear behaviour. For small oscillations, the 
frequency becomes amplitude-independent as emphasized in the next section.  

 
3.1 Small oscillations 

If the oscillations are small (also around a large deflected configuration) we can 
develop the free energy in series. Since at the static equilibrium the free-energy must 
present a minimum, i.e.,  as well as W(cS) = 0 (according to the chosen 

reference system), we have:  
 

           
(10) 

 
so that, applying eq. (9), it follows:  
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(11)

 
 
Note that, under these assumptions, ω does not depend on the amplitude cD but only on 
the external fields (e.g., the electrical one), included in the free-energy term.  
 
3.1.1 Free-oscillations 

Focusing the attention on the free-oscillations, the free-energy becomes coincident 
with the elastic energy stored in the nanotube, i.e., W(c) = Eelast(c), where:  
 

                            
(12)

 
 
where  defines the slope of the elastic line of the nanotube, i.e., zw dd=ϑ , and β is 
dependent on the chosen form for wS (e.g., rough estimations are for cantilever β ≈ 1 and 
for clamped-clamped β ≈ 48, [13]). Thus, from eq. (11):  
 

               
(13)

 
 
3.1.2 Thermal vibrations 

For thermal vibrations at absolute temperature T, the Equipartition Theorem implies 
a known mean value kBT/2 (kB is the Boltzmann�s constant) of the kinetic energy 
associated to each degree of freedom, hence:  

 

              
(14)

 
 

where P = 2π/ω is the period of the oscillation. By comparing eq. (14) with the mean 
value of eq. (8), in the light of eq. (11), gives:  
 

               
(15)

 
 
from which we can obtain the amplitude cD of the thermal vibration around the position 
described by cS. The frequency is given by eq. (11).  

The Equipartition Theorem applied to the higher modes m fixes their relative 
amplitudes, that falls off as ~1/m2. Thus, the first mode (m =1, that we are investigating) 
is clearly the predominant one. Note that at room temperature, the higher modes with 
frequencies ωm become unimportant well before that their quantum accessibility comes 
into question, i.e., when  with h Planck�s constant), 
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corresponding to m of the order of 85 [3]. At zero temperature, the quantum effect 
becomes predominant, as we will emphasize in Section 3.2.  
 
3.1.3 Free-thermal vibrations 

Considering the thermal vibrations around the relaxed configuration W(c)= Eelast(c), 
and introducing eq. (12) into eq. (15) yields:  

 

                              
(16)

 
 

with ω given by eq. (13).  
 
3.1.4 Instability 

The instability of the system, arising at the so called pull-in voltage, is achieved 
when the global stiffness of the NEMS becomes negligible, i.e., when the frequency of 
the oscillations formally goes to zero:  

 

              
(17)

 
 

According to eqs. (11) and (15) the thermal vibrations are predicted to be infinitely 
large at zero frequency. Practically, when they become large enough, the approximation 
of small vibrations is not more valid and the amplitude will be limited. From the 
condition of eq. (17), the pull-in voltage can be estimated.  

The kinetic energy released after the pull-in can be evaluated as:  
 

               
(18)

 
 

where WPI  is the free-energy at the pull-in and Wcontact is the free-energy in the collapsed 
configuration.  
 
3.2 The oscillations at 0K  

The Hamiltonian of the NEMS can be written as (W(cS)=0 ):   
 

              
(19) 

 
The Schrödinger�s equation of the continuum system can be correspondingly written 

in a simple manner, as a consequence of the reduction to one degree of freedom, as:  
 

             
(20) 
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where En are the energy eingenvalues and ψn are the eingenfunctions describing the 
fundamental vibrational states. Eq. (20) can be solved numerically. For small dynamic 
displacements around a (large) deflected configuration we can substitute the conditions 
of eqs. (10) and (11), finding the well-known discrete quantized energy levels of the 
harmonic oscillator:  
 

               
(21)

 
 
note that here ω is not the fundamental frequency of the cantilever nanotube, but, 
according to eq. (11), takes into account the external fields included in the free-energy. 
Obviously, the lowest energy level is predicted to be different from zero also at zero 
temperature:  
 

               
(22)

 
 
as imposed by the Heisenberg�s Principle (the total energy is the sum of the potential and 
kinetic energy, both positively defined; considering E0 ≈ 0 would imply that both 
position and velocity of the system are known (and equal to zero), in contrast with the 
uncertainty principle). Between two adjacent levels the energy gap is obviously 

  
The condition for which eq. (22) equals eq. (14) corresponds to the temperature for 

which the �vibrations� (corresponding to the borderline with the quantum accessibility) 
at the zero point become larger than the thermal vibrations:  

 

               
(23)

 
 

Substituting eq. (23) into eq. (15) implies considering the energy of eq. (22) as the mean 
value of the kinetic energy at zero Kelvin, thus the amplitude of the �vibrations� at 0K 
must be of the order of:  

 

              
(24)

 
 

with frequency given by eq. (13).  
 
4. Non linear effects: the horizontal vibration of the tip and 
the stretching 

Clamped-clamped NEMS presents a symmetric vibration, whereas for cantilever 
NEMS the oscillation is not symmetric, aas as a consequence of the large displacements 
of the tip, having also a horizontal component. Since: 

 

              (25) 
 

and assuming for cantilever NEMS:  
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(26)

 
 
(note that this simple form can be used to compute the electrostatic and van der Waals 
energies but not the elastic energy, since it involves a second order derivative of w) it 
follows:  
 

              
(27)

 
 
Integrating the square root of eq. (27) as:  
 

            
(28)

 
 
yields the estimation of the horizontal displacement ∆ of the tip:  
 

                
(29)

 
 
Thus, the vibrating position vector of the tip is described by (∆, c). Only for small 
displacements ∆ ≅ 0. On the other hand, for clamped-clamped nanotube the energy due 

to stretching 
EA

LN
2

2
 has to be added to the (linear and due to bending) contribute in eq. 
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
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
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AcEE elastelast

2

1 χ  where χ is a parameter that can be derived 

assuming a mode shape for w(s); a rough estimation is 3003128≈χ  [13]. 
 
5. Free-energy of the NEMS 

To quantify the approach proposed in the previous sections, it is sufficient to derive 
the expression of the free-energy of the NEMS. This step represents the aim of the 
present section. The elastic energy is given by eq. (12). Let us focus the attention on the 
cantilever geometry.  

The free-energy of the NEMS has to be written as:  
 

             
(30) 

 
If the gaps are smaller than ~1 nm the Pauli�s energy EP(c) (with a minus sign) has to be 
added in the right hand side of eq. (30).  

For computing the electrostatic energy, we assume a uniform charge distribution. 
Charge concentration at the free-end of the cantilever nanotube, as well as tunneling 
current, field emission and quantum effects are neglected (some information can be 
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found in [14-19]). In addition, we reasonably assume that the nanotube�s (external) 
radius R is much smaller than the distance r between nanotube and ground plane, i.e., R/r 
<<1. By this assumption eq. (1a) becomes: 

 

               
(31)

 
 

Noting that r = H − w (and R/H << 1) the electrostatic energy per unit length becomes:  
 

            
(32)

 
 
The total electrostatic energy stored in the nanotube, according to eqs. (26) and (32), can 
be expanded in series as:  
 

           
(33)

 
 
In contrast, according to our previous hypothesis, R/r <<1, eq. (1b) can be rewritten as:  
 

            
(34)

 
 
where Nw is the number of walls of the nanotube and 〈R〉 is the mean value of their radii.  

Analogously, for the van der Waals forces:  
 

           
(35)

 
 
By employing eqs. (26) and (35), the total van der Waals energy accumulated in the 

tube is:  
 

                       
(36)
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where the linear term in c represents the first corrective factor for accounting the van der 
Waals forces. Thus, the free-energy of eq. (30) is now quantified, and the amplitude and 
frequency of the oscillations, according to Section 3, can be evaluated. Note that, the 
free-energy of eq. (30) must be rewritten, according to our hypothesis of W(cS) = 0, 

where  before applying the relationships derived in Section 3. The 

same estimations for the electrostatic and the van der Waals energies are found for a half 
clamped-clamped nanotube of length 2L if we assume still valid for the symmetric 
deflection the form of eq. (26). Since such estimations are linear in L, in this assumption, 
they are still valid for a clamped-clamped nanotube of length L. Obviously, as for 
cantilever,  more  realistic  forms  (e.g., satisfying  the  congruence  of the rotations) 
have  to  be  considered, at  least,  in  computing  the  elastic  energy, as  done  in  
Section 4. 
 
5.1 Pull-in voltage prediction 

Thus the free-energy is now well-defined and we can apply eq. (17); accordingly, 
we find the pull-in voltage for:  
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(37)
 

 
where k ≈ 0.85 and kNL describes the non linear effects treated in Section 4 (for the linear 

case kNL ≈ 0); as a first approximation kNL ≈ H2/L2 for the cantilever whereas 
I

AHkNL

2

100
1≈  

for the clamped-clamped devices, showing the tremendous influence of the stretching 
( HLAI ,<<  is of the order of R). Here we have neglected the van der Waals forces, that 
have to be considered only for gaps (technologically still unrealistic) lower than ~10nm. 
However, considering the first corrective term for accounting the van der Waals forces, we 
find the instability at  presenting a shift with respect to VPI given by:  
 

                                                       
(38)

 
 
6. Comparison with experimental and numerical results 

Usually, free and thermal vibrations of nanotube based NEMS are studied around 
the relaxed configuration, due to the higher complexity in treating the effect of the 
electrical field and van der Waals forces in the dynamics of the system. Neglecting such 
effects, the classical approach to study the free (or thermal, by virtue of the Equipartition 
Theorem) vibrations of the beams holds. The proposed approach allows us to estimate 
the effect of the external fields as well as the �vibrations� at 0K of NEMS. Another 
important result is the prediction of the pull-in, corresponding to the on/off transition of 
the system, eq. (37), a key design parameter for the NEMS.  
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Some interesting experimental observations of free thermal vibrations for singly and 
doubly clamped nanotubes were reported respectively by Chopra and Zettl [3] and Babic 
et al. [20]. For the cantilever nanotube E ≈ 1.2TPa, L ≈ 154nm, R = Rext ≈ 1.75nm, Rint ≈ 
1.1nm and, according to eq. (16), the amplitude of the thermal vibrations at 300K of the 
free-end is estimated to be of the order of ~1.4nm; the root mean square amplitude 
(obtained by dividing for ) is consequently of the order of 1nm, close to the observed 
value of ~0.8nm. The frequency (P−1 = ω/(2π)), according to eq. (13), is estimated to be 
of the order of ~0.4GHz. Finally, the vibrations at 0K, according to eq. (24), are 
estimated to have amplitude of the order of ~0.05Å.  

For the clamped-clamped nanotube E ≈ 1TPa, L ≈ 6.25µm, R = Rext ≈ 1nm, Rint ≈ 
0.665nm and, according to eq. (16), the amplitude of the thermal vibrations at 300K of 
the free-end is estimated to be of the order of ~0.13µm (rms), close to the observed value 
of ~0.08 µm. The frequency, according to eq. (13), is estimated to be of the order of 
~0.7MHz. Finally, the vibrations at 0K, according to eq. (24), should have amplitude of 
the order of ~0.2Å (note that these comparisons simply assume the reported rough 
estimations for the parameters α, β and ρm = 2260Kg/m3; better estimations could be 
easily obtained considering more realistic forms for wS (s)). 

Since no extensive investigations on dynamics of nanotubes under external fields 
are present in literature, an additional possibility to check the analysis can be achieved 
by comparing the prediction of the instability given by eq. (37) with a linear numerical 
analysis [10], for which E = 1.2TPa, Rint = 0nm, L = 50nm, R = 1nm, H = 4nm. The 
comparison is reported in Figures 2 and 3 by varying the length and the gap of the 
NEMS. We conclude that theory and numerical results agree satisfactorily.  
 

 

 
 
Figure 2. Comparison between theory and numerical simulations for the pull-in voltage as a 
function of the horizontal size (L) of the device. 
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Figure 3. Comparison between theory and numerical simulations for the pull-in voltage as a 
function of the vertical size (H) of the device. 

 
7. Conclusions 

In this paper the non-linear dynamics of nanotube based NEMS has been 
investigated. The vibrations of NEMS have been studied considering large 
displacements, the effect of the electrical field and of the van der Waals forces. The 
NEMS free-, thermal- and at 0K oscillations have been consequently analyzed. A 
comparison with experimental observations on thermal vibrations for both singly and 
doubly clamped nanotubes has been shown. The estimations of the amplitude for the 
corresponding vibrations at 0K have been also deduced. The free-energy based approach 
has been verified by setting to zero the frequency of the oscillations, corresponding to 
the collapse of the device at the so-called pull-in voltage, and by comparing the results 
with numerical simulations. The pull-in voltages calculated show a relevant agreement 
with the numerical computed values.  
 The influence of the non linear effects on the pull-in voltage has been also predicted. 
A comparison with the numerical solution of the non linear equation (4) will be 
presented in the future. We conclude that the proposed approach could be useful in the 
design of NEMS. 
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