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Thousands of multiscale stochastic simulations are carried out in order to

perform the first in-silico tensile tests of carbon nanotube (CNT)-based

macroscopic cables with varying length. The longest treated cable is the

space-elevator megacable but more realistic shorter cables are also con-

sidered in this bottom-up investigation. Different sizes, shapes, and con-

centrations of defects are simulated, resulting in cable macrostrengths not

larger than �10GPa, which is much smaller than the theoretical nanotube

strength (�100GPa). No best-fit parameters are present in the multiscale

simulations: the input at level 1 is directly estimated from nanotensile tests of

CNTs, whereas its output is considered as the input for the level 2, and so on

up to level 5, corresponding to the megacable. Thus, five hierarchical levels

are used to span lengths from that of a single nanotube (�100 nm) to that of

the space-elevator megacable (�100Mm).
1. Introduction

Imagine a macroscopic bundle having the density, elastic

modulus, and the mechanical strength of a single carbon nano-

tube (CNT). We could build fantastic structures such as a

space-elevator megacable, perhaps the most intriguing con-

cept in current materials science.

A space elevator[1] consists mainly of a very long cable

attached to the Earth’s surface and of the related climbers,

similarly to a traditional elevator. If the cable is longer than

�100 Mm, the centrifugal forces exceed the gravity of the

cable, which will thus work under tension.[2] A space elevator

would revolutionize the methodology for carrying payloads

into space at low cost but its design is very challenging. The

most critical component in the space-elevator design is

undoubtedly the cable,[3,4] which requires a material with
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very high strength and low density. Considering carbon, the

maximum stress reached at the geosynchronous orbit of the

Earth is equal to �63 GPa. Only recently, after the discovery

of nanotubes,[5] has such a large stress failure been experi-

mentally measured in nanotensile tests of CNTs,[6–10] which

are expected to have an ideal strength of �100 GPa. Note that

for steel the maximum stress expected in the cable would be

�383 GPa and for kevlar �70 GPa, both much higher than

their strengths.[3] However, an optimized cable design can be

achieved by considering a uniform tensile stress profile rather

than a constant cross-sectional area.[2] Thus, at least theore-

tically, the cable could be built of any material by simply using

a large enough taper ratio, that is, the ratio between the

maximum cross-sectional area, at the geosynchronous orbit,

and the minimum, at the Earth’s surface. However, for steel or

kevlar a giant and unrealistic taper ratio would be required,

�1033 or �108, respectively, whereas for defect-free CNTs the

ratio would only need to be �2.[11] Nevertheless, such a value

is expected to increase dramatically, as well as the cable mass,

up to �613[4] for a carbon cable possessing a strength of

�10 GPa. Such a lower strength, and thus the need for a larger

taper ratio, emerges from our multiscale simulations, con-

firming independent deterministic and statistical results[3] that

have recently suggested caution and, consequently, a drama-

tically modified design of the space-elevator cable[4] with

respect to the current proposal.[12]
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Nonetheless, our multiscale strength predictions are evi-

dently not only restricted to space-elevator megacables but are

in general valid for nanotube-based macroscopic bundles. The

new concept of ‘‘superbridges’’, that is, kilometer-long

suspended bridges, based on nanotube cables, could be one

example.

2. Hierarchical Multiscale Simulations

To numerically evaluate the strength of the space-elevator

cable, the SE3 code, formerly proposed by one of the authors,[3]

is adopted. In previous studies,[3] preliminary simulations were

carried out on a small piece of the space-elevator cable (basically

our level 1 results), postponing a detailed and hierarchical

investigation as the main topic of a subsequent, that is, the

present, paper. Multiscale simulations are necessary in order

to tackle the size scales involved, spanning over �15 orders of

magnitude from nanotube length (�10�7 m) to space-elevator

cable length (�108 m), and also to provide useful information

about cable scaling properties with length.

The cable is modeled as a Nxk by Nyk ensemble of sub-

volumes (or ‘‘springs’’), arranged in parallel sections, as shown

in Figure 1. Each of the (primary) subvolumes is in turn

constituted by Nx(k–1) by Ny(k–1) (secondary) subvolumes,

arranged in parallel as before. This scheme is applied for k

‘‘generations’’, down to a level 1 subvolume, which comprises

a Nx1 by Ny1 arrangement of ‘‘springs’’, or ‘‘fibers’’, represent-

ing the actual nanotubes (Figure 1). Here, we choose to adopt

a scale-invariant approach, whereby the simulated structure

appears the same at any given scale level (i.e., the length/width

ratio is constant), and therefore choose Nx1¼Nx2¼ . . .¼
Nxk¼Nx and Ny1¼Ny2¼ . . .¼Nyk¼Ny. Overall, the cable

comprises a total number of nanotubes given by
Figure 1. Schematic image of the adopted multiscale simulation procedu

spaceelevator cable strength.Here, k¼5,Nx1¼Nx2¼ . . .Nx5¼ 40andNy1¼
so that the total number of nanotubes in the space elevator cable is Ntot¼
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Ntot¼ (Nx Ny)
k and, in order to obtain the correct number

in the space-elevator cable, which can be estimated as

Ntot� 1023,[3] we choose k¼ 5, Nx¼ 40 and Ny¼ 1000.

In silico hierarchical experiments have been carried out

according to the following scheme:
a) S
imulations at level 1:
� t
re

N

(1

Gm
o the nanotubes (or fibers in the model) are assigned a fixed
elastic modulus and a failure strength (nanoscale) Weibull
statistical distribution, derived from observations on
nanotensile tests of carbon nanotubes;[13]
� li
nearly increasing strains are applied to the fiber bundle,
and at each code iteration the number of fractured fibers is
computed (fracture occurs when local stress exceeds the
nanotube failure strength) and the strains uniformly
redistributed among the remaining intact fibers in each
section (the uniform redistribution is plausible for inde-
pendent nanotubes and in any case a stress concentration
can be straightforwardly included in our model and would
further reduce the failure stress);
� v
arious quantities are monitored versus time during the
simulation, for example, stress–strain, Young’s modulus,
number and location of fractured fibers, kinetic energy
emitted, fracture energy absorbed, and so on. The simulation
terminates when all fibers in one of the sections become
fractured, separating the cable into two pieces.
� t
he above procedure is repeated numerous times in order to
obtain reliable statistics for the various computed quantities,
usually 103–104 times for each level.
to determine the

y2¼ . . .Ny5¼1000,

000� 40)5�1023.
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b) S
im
imulations at levels 2–5:
� t
he second-level fibers are those
characterized in level 1 simulations,
that is, their stiffness and strength
distribution are derived from level 1
results. The same is true for level 3
simulations depending on level 2
results, and so on. This means that
the elastic modulus and the statistical
distribution of the failure stress of
level i fibers are assigned according to
those emerging from level i� 1 simu-
lations;
� a
gain, repeated displacement-con-
trolled virtual experiments are carried
out at each level, with the same
procedure as that outlined for level
1, leading hierarchically, at level 5, to
results for the full-scale space elevator
cable.

3. ‘‘Defect-Free’’ Cables

The first simulation is carried out at

nanotube level, that is, the fibers in the
www.small-journal.com 1045
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first-generation subvolume are L0¼ 10�7 m in length,

w0¼ 10�9 m in width, their Young’s modulus is E0¼ 1012 Pa,

and their strength sf0 is randomly assigned, based on

the nanoscale Weibull[13] distribution Pðsf0Þ ¼ 1 � exp½�
ðsf0=s0Þm� where P is the cumulative probability and the

experimental values found for CNTs, s0¼ 34 GPa, and

m¼ 2.7.[13] This distribution accounts for statistical variations

in the nanotube strength that are to be expected for various

reasons, mainly the possible presence of defects in the

nanotubes. However, the fiber bundle is considered to be

‘‘defective-free’’ at all levels, that is, no fibers are absent in

the grid used in the simulations. The first-generation fiber

bundle (L1¼ 10�4 m in length) strength sf1 is then derived,

considering the experimental values of sf0 and m for CNT,

from a large number of repeated simulations (typically from

103 to 104), each with different randomly assigned local

strengths, so as to build reliable statistics. The strengths of the

fiber bundles at levels 2 to 5 (sf2 tosf5), as explained above, are

directly deduced from the numerically simulated distribution

of strengths obtained at the previous level in each case. The

strength sf5 coincides with the final simulated space-elevator

cable strength sf.

Results for the strength distributions p(sfi) at the various

levels are shown by histograms in Figure 2. The level 1

distribution (Figure 2a) is centered around 15 GPa (as in the

preliminary results reported by one of the authors[3]), is much

narrower than the assumed distribution for the nanotube
Figure 2. Simulation results for the subvolume strength distribution from

fitted with a Weibull distribution.

www.small-journal.com � 2008 Wiley-VCH Verlag Gm
strengths, and can be adequately fitted with a Weibull

distribution using s0¼ 13.14 GPa and m¼ 36.53 as Weibull

parameters (Figure 2a). The latter can be determined by

introducing the variables Y ¼ lnð�lnð1 � PÞÞ and X ¼ ln s

and linearly fitting Y with respect to X, with the correlation

coefficient of the fit taken as the evaluating parameter for

the reliability of the fit. The fitting parameters allow the

determination of s0 and m as X ¼ m�1Y þ ln s0. The

simulations to determine the subvolume strength at level

2 are thus based on this distribution. Results of repeated

simulations are shown in a typical histogram in Figure 2b. The

distribution, which is the result of more than 104 repeated

simulations, is again narrower than those at previous levels,

and is centered around 11.13 GPa. In this case, some variation

appears in the distribution form, with more than one peak

appearing, and a Weibull function no longer correctly

describes the dispersion of the data (continuous line in Figure

2b). To avoid this problem, the choice is made to use the actual

distribution obtained in level 2 simulations (plotted by the

histograms) as an input for level 3 simulations, that is, the

strengths of the level 2 subvolumes constituting a level 3

subvolume are randomly selected from the distribution in

Figure 2b. The same procedure is adopted in the simulations

for levels 4 and 5, and results are shown in Figure 2c–e.

In each case, a decrease in the mean subvolume strength is

noticed with respect to the previous level, with the main

decrease occurring from level 1 to level 2 and a further decay in
level 1 to 5 (a to e, respectively). Only level 1 results can be adequately

bH & Co. KGaA, Weinheim small 2008, 4, No. 8, 1044–1052



Figure 3. Results of simulations for the rescaled cable strength versus

cable length using three different simulation parameters (m) in the

assumed Weibull distribution.

Figure 4. Comparison between simulations and analytical laws (see

text) for the rescaled defect-free failure strength versus cable length.
the higher levels. Also, there is a decrease in the dispersion of

results, with increasingly ‘‘narrow’’ distributions. The final

space-elevator cable strength (level 5 simulation) can be

evaluated at approximately 10.20 GPa, that is, less than 30% of

the original mean nanotube strength and reduced to �10% of

the theoretical nanotube strength. Results are plotted in

Figure 3 for sf/s0 versus subvolume length L (indices are

omitted for brevity). The ratio sf/s0 is considered in order to

express results as fractions of the original nanotube strength

s0. L is chosen as the relevant quantity to highlight the cable

scaling properties and is plotted in logarithmic scale.

To evaluate the influence of the initial choice in the

Weibull distribution at level 1, the same procedure as that

described above has also been carried out for different

plausible m values, in order to vary the distribution dispersion.

Results are shown in Figure 3 for m¼ 2.5 and m¼ 3.0, together

with those described previously for m¼ 2.7. It is evident that a

smaller m slightly reduces the strengths, although to a

negligible extent. The only significant difference is the more

marked initial decrease in strength for m¼ 3.0, which remains

in any case within 6% of the m¼ 2.7 value. The final elevator

cable strengths differ in the three cases by 1% at most.

4. Scaling of Strength

Given the decay behavior of sf versus L obtained from

simulations it is interesting to fit the data with simple analytical

scaling laws. Various exist in the literature and one of the best

known is the multifractal scaling law proposed by Carpin-

teri;[14] see also our related commentary.[15] The first law we

wish to consider has recently been introduced:[16]

sf

snano

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
snano
smega

� �2

�1

lS=V þ 1
þ 1

vuut
(1)

where S and V are the surface and volume of the considered

structure, respectively, snano is its nanostrength, smega is its
small 2008, 4, No. 8, 1044–1052 � 2008 Wiley-VCH Verlag
megastrength, and l is a characteristic internal length. Note that for

self-similar structures and for snano�smega this law corresponds

to the well-known Carpinteri scaling law. Here, we can choose

snano as the nanotube strength and smega as the space-elevator cable

strength obtained in simulations, that is, snano¼ 34GPa and

smega¼ 10.20GPa. Also, S/V¼ 1/L, whereas l remains a free-

fitting parameter. Results are shown in Figure 4 (‘‘MFSL’’ curve)

for the various L considered at the different hierarchical levels

(m¼ 2.7). The best fit is obtained for l¼ 5� 10�5m, where the

analytical law is practically coincident with the simulated results.

This can lead to an interpretation of l as a characteristic ‘‘decay

length’’, in analogy with, for example, decay times in nuclear

physics, beyond which the structure undergoes a considerable part

of the strength reduction.

Another analytical scaling law forsf (‘‘Weibull’’ in Figure 4)

can be obtained by considering the classical Weibull

prediction:

sf

s0

¼ kV
� 1

m1 (2)

whereV is the volume of the structure, calculated here as the sum of

the volumes of the 1.024� 1023 nanotubes, and k andm1 are fitting

constants. Coincidence of sf/s0 with numerical results for L¼L1

and L¼L5 is obtained for k¼ 0.29 and m1¼ 45. However, the

overall behavior does not match the numerical results, in that the

initial decrease is not sharp enough.

An analytical law, representing the thermodynamical

prediction of the upper bound of the strength, (‘‘Thermo-

dynamics’’ in Figure 4, assuming the equality in Eq. (3)), is the

following:[17]

sf �
sf thffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ kbT lnN
EC

q (3)

where sf_th¼ 100GPa is the theoretical nanotube strength,

kb¼ 1.38� 10�23m2 kgs�2 K�1 is the Boltzmann constant, T is

the cable assembly temperature (�4000K), N is the number of
GmbH & Co. KGaA, Weinheim www.small-journal.com 1047
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carbon atoms in the cable (�106 per nanotube), and EC¼
7 eV¼ 1.12� 10�18 J is the cohesive energy for carbon. In spite of

the absence of any best-fit parameter, this analytical law captures

the global simulated behavior, even if it underestimates the

strengths for small L and overestimates them for large L.

5. Defective Cables

Next we wish to evaluate the influence of flaws or defects of

various dimensions and at various levels on the cable structure,

starting from the nanotube scale. This is done by introducing

two types of void in the modeled fiber-bundle structure (i.e.,

setting the local stiffness and strength to zero):
a) r
ww
andomly assigned, uniformly distributed, introduced
alternatively at levels 1–4. Changing the simulation level
at which voids are introduced amounts to considering the
same defect concentrations but in different agglomerations
(i.e., from evenly distributed, at level 1, to unevenly
distributed, at level 4). This case is discussed in Section 5.1;
b) c
Figure 5. Rescaled defective cable failure strength versus cable length

for various defect concentrations introduced at different levels (1-a, 2-b,

3-c, 4-d).
ircular or elliptic in shape, distributed at random in the
cable, introduced at level 1. This simulates the presence of
medium-sized flaws or actual cracks in the structure, and is
discussed in Section 5.2.

5.1. Randomly Distributed Defects

Three different defect volume percentages are considered,

namely 10%, 50%, and 80%, introduced at various levels in

the simulations. While the first of the three defect ‘‘con-

centrations’’ can be considered realistic for a structure such as

the space-elevator cable, the second and third are included

mainly for comparison purposes.

Results are shown in Figure 5, where the rescaled cable

strengths versus length for the three different void percentages

(defect 10%, defect 50%, defect 80%) are compared to those

obtained for a defect-free (‘‘intact’’) cable. The plots a–d

illustrate results for voids introduced at levels 1, 2, 3, and 4 of

simulations, respectively.

It is evident that the introduction of defects in increasing

concentration induces an increasing reduction in cable strength

that manifests itself starting from the level at which the voids are

introduced. In the case of a void content of 10% the final

elevator cable strength is reduced to 23% of the nanotube

strength, with a further 24% reduction with respect to the

nondefective cable. In the case of a void content of 50%,

the final elevator cable strength is reduced to 7% of the

nanotube strength, with a further 76% reduction with respect to

the defect-free case. Finally, in the case of an 80% void content,

the cable strength is reduced to 0 (percolation threshold).

To evaluate the effect of the level of defect ‘‘agglomera-

tion’’ on the overall cable strength, one must plot the defective

elevator cable strength versus the simulation level at which the

void content is introduced. This is shown in Figure 6, for

various cable lengths. From simulation results it would seem

that the most significant effect on strength reduction, at a given

void percentage, is obtained with an intermediate level of

agglomeration, that is, when voids are introduced in the
w.small-journal.com � 2008 Wiley-VCH Verlag Gm
structure at an intermediate scale between the full length of

the structure and the scale of its microstructure. Thus, for

example, the strength reduction for the space elevator cable
bH & Co. KGaA, Weinheim small 2008, 4, No. 8, 1044–1052



Figure 6. Rescaled defective failure strength versus level at which random defects are introduced for various cable lengths.
(Figure 6a, L¼ 108 m) is more consistent if defects are present

at level 3, that is, on the 102 m scale. One possible explanation

for this behavior is that it is the combination of two effects: on

the one hand, the cable strength decreases with increasing void

agglomeration; on the other hand, from a certain point

onwards voids become increasingly sparse because of the fixed

concentration, thus leading to a decrease in the strength

reduction with size defect.

5.2. Circular or Elliptical Defects

The role of defects on the strength of the space-elevator

cable is becoming a major concern, as detailed in Reference [3]

(see an example of a damaged ribbon in Figure 7, from the

space-elevator website[18]). To evaluate through simulations

the effect of this type of defect, that is, holes of circular or

elliptical shape, simulations are carried out in a manner similar

to those described in the previous section, by setting the

stiffness to zero in appropriate locations in the model

structure. For simplicity, the defects are introduced at level

1 in all cases, and the following geometries are considered:
Figure 7. Elevator cable ribbon-type structure with a defect of non-
a) c
sma
ircular defect having a width of 1/10th of the bundle width;

negligible size, subjected to tension. [18]
b) c
ircular defect having a width of 1/4th of the bundle width;
ll 2008, 4, No. 8, 1044–1052 � 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.small-journal.com 1049
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Figure 8. Defective cable configurations considered in simulations,

illustrated on portions of the model specimen: a) circular defect having

a width of 1/10th of the specimen width; b) circular defect having a

width of 1/4th of the specimen width; c) vertical elliptical defect (crack

parallel to the loading direction); d) horizontal elliptical defect (crack

perpendicular to the loading direction); e) distributed circular defects

giving a total void concentration of 10%; f) distributed point defects

giving a total void concentration of 10%.

1050
c) v
Figu

vari

ww
ertical elliptical defect (i.e., a crack parallel to the loading
direction) and the same number of voids in the structure as
case (a);
d) h
orizontal elliptical defect (i.e., a crack perpendicular to
the loading direction) and the same number of voids in the
structure as case (a);
e) r
andomly distributed circular defects of type (a), giving a
total void concentration of 10%;
f) r
andomly distributed point defects giving a total void
concentration of 10%, such as those considered in Section
5.1.

The considered structures are shown schematically in

Figure 8.

Results for all the considered cases are shown in Figure 9

using a log scale for sf/s0 values in order to highlight the

differences. It is apparent that the strength is only slightly

reduced with respect to a nondefective cable when introducing

a single circular defect with negligible size with respect to

specimen width (simulation a). This is due to the aforemen-

tioned fact that the effect of small reticular imperfections is

already accounted for when introducing a Weibull-distributed

nanotube strength; therefore the actual circular defects do not
re 9. Rescaled defective cable failure strength versus length for

ous cases (see text and Figure 8).

w.small-journal.com � 2008 Wiley-VCH Verlag Gm
influence results in a significant manner. The effect is more

noticeable when introducing a single circular defect of greater

size (simulation b). The shape of the defect plays a role, as

simulations (c) and (d) show, in that defects simulating a crack

placed transversally to the loading direction tend to reduce

specimen strength in a more significant manner than those

situated in a parallel direction, as expected. Finally, compar-

ison of results from simulations (e) and (f) confirms the

conclusion that a greater clustering of voids contributes to

a further reduction in the strength of the cable, as seen in

Section 5.1.

This effect is well known in the literature[19–21] and can be

explained by the fact that voids of non-negligible size can

introduce significant stress concentrations in the structure.

This effect can be visualized in the simulations by fracture

‘‘maps’’ taken at progressive time intervals, highlighting how

cracks evolve spatially in time. One such example is reported

in Figure 10, which is a typical example of how damage

propagates when a single circular defect is initially present in

the cable.

6. Stiffness Reduction for Defective Cables

When addressing the effects of the presence of defects at

various levels in the space-elevator cable, it is also of primary

importance to evaluate the effects on cable stiffness.[22] The

latter would have to be considered when evaluating, for

example, the cable deformation, critical for the space-elevator

stability.[23] Using the hierarchical approach outlined above,

the cable stress–strain behavior is therefore calculated in

simulations, as well as its stiffness reduction due to the
Figure 10. Fracture maps for an initially defective fiber bundle sub-

jected to uniaxial traction at three successive time intervals; tf is the

time at which global failure occurs.

bH & Co. KGaA, Weinheim small 2008, 4, No. 8, 1044–1052



Figure 11. Cable stress–strain curves for various cases (see text and

Figure 8).
presence of various types of defects. The stress–strain curves

are shown in Figure 11. It is clear that the presence of defects

affects these curves principally in their ultimate strain values,

although some variation in the stiffness is visible (detailed

calculations will be reported in a future paper). Ultimate

strains vary from 0.84% to 1.2% depending on the type of

defect considered, showing that this parameter is indeed of

considerable relevance. All curves display brittle failure, as is

to be expected from the type of strength distribution obtained

numerically at this level (Figure 2e).

Results for the cable stiffness reduction due to the various

types of defect are shown in Figure 12. As mentioned above,

the decrease in cable stiffness is not as consistent as that of the

cable strength but is nonetheless non-negligible, with a 15%

overall reduction in the case of a defect-free cable (in the sense

outlined in Section 1), which increases to a 22% reduction in

the case of a randomly distributed 10% void content. Results

for a cable with a single circular defect having a width of 1/10 of

specimen differ only slightly from those for a nondefective

cable, as do those for similarly sized single elliptical defects.

Also, in this case the effect of defect clustering is less

pronounced, for example, the stiffness reduction in the case of
Figure 12. Rescaled defective cable stiffness versus length for various

cases (see text and Figure 8).

small 2008, 4, No. 8, 1044–1052 � 2008 Wiley-VCH Verlag
clustered defects (with a 10% concentration) is virtually the

same as that of randomly distributed defects.

7. Conclusions and Outlook

We have presented results deduced from thousands of

multiscale stochastic simulations by using the SE3 code[3] in

order to perform the first in silico tensile tests of CNT-based

macroscopic (up to mega) cables. Stress–strain curves,

Young’s modulus, number and location of fractured fibers,

kinetic energy emitted, fracture energy absorbed, and so on,

can be computed, in addition to the cable failure stress.

Different sizes, shapes, and concentrations of defects are

simulated, resulting in cable strengths of the order of �10 GPa.

Regarding the concept of the space-elevator cable, this implies

that the megacable strength is predicted to be much smaller

than the theoretical nanotube strength (�100 GPa), erro-

neously assumed previously in the space-elevator design.[12]

Accordingly, the multiscale simulations suggest a taper ratio

larger than �613, in spite of the current naı̈ve proposal of 1.9.

These results strongly confirm the previous and independent

deterministic or statistical theoretical predictions[3,4,17] on the

dramatic role expected to be played by even small defects in

the megacable. Our predictions are conservative, since we

have assumed perfect junctions between the nanotubes; the

junctions are expected to be the weakest links,[24] even if

advanced nanotechnology could lead to nearly perfect

interconnects (i.e., junctions with a strength that is larger

than that of the nanotubes themselves).

Our multiscale strength predictions are evidently not

restricted only to space-elevator megacables but are in general

valid for nanotube-based macroscopic bundles. For example,

the new concept of ‘‘superbridges’’, that is, kilometer-long

suspended bridges based on nanotube cables, could become

technologically feasible in the near future.
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