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Nanotubes in a bundle tend to bunch as a consequence of van der Waals attraction
and their extremely high surface to volume ratio. In this article we demonstrate
that they cannot be separated by applying an arbitrary large longitudinal tension.
Thus, cooperation between nanotubes in a bundle is guaranteed, even under large
tension. Such a finding could have an important role in designing self-assembled
macroscopic nanotube-based cables.
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INTRODUCTION

Since their discovery [1,2] carbon nanotubes have stimulated
intense study. In particular, unique and extraordinary mechanical
properties were predicted [3–8], such as an extremely high Young’s
modulus (�1 TPa), ultimate strength (�100 GPa), and consequently
failure strain (�0.1), similar to those of graphite in-plane [9]. Such
properties have experimentally been confirmed by direct measure-
ments [10,11], developing a nanotensile testing apparatus and
using two opposite atomic force microscope tips. Furthermore,
the low carbon density (�1300 Kg=m3) suggests that carbon nano-
tubes have promising high-strength and light-weight structural
applications, e.g., for innovative nano-electromechanical systems
[12–14] or macro- [15] and even mega- [16] cables. Nanotubes in
bundles tend to bunch as a consequence of the van der Waals
attraction. This beneficial cooperation could be of interest if it is
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not lost by increasing the applied tension. The aim of this paper is
the demonstration of the cooperation existence, under arbitrary
large applied tension (the nanotubes would break prior to their
separation).

MATHEMATICAL MODEL

The equilibrium contact width, w, of two identical compact circular
cylinders having diameter D (not subject to forces or constraints and
in parallel) can be determined using the well-known JKR theory of

adhesion, as demonstrated in [17], finding w ¼ 4 D2cð1�v2Þ
pE

� �1=3
; E, v

are the cylinder Young’s modulus and Poisson’s ratio, respectively,
and c is the surface energy. Due to deformation near the contact region
of size w� x, there is an accompanying stored elastic energy Ub in the
cylinders (of length x) that must satisfy the energy balance

dUb ¼ 2cxdw; thus, by integration, Ub ¼ pED2
þx

128ð1�v2Þ
w
D

� �4
[18].

Let us consider the system shown in Figure 1, composed of two par-
allel stretched multiwalled (with vanishing internal diameter) nano-
tubes of length L and placed at a distance p (separation distance).
We are going to apply classical concepts of structural mechanics, see
[19]. The nanotubes, if sufficiently close, will tend to bunch due to
van der Waals surface attraction. Indicating with A ¼ pD2=4 the nano-
tube cross-sectional area, with 2l the non-contact length, along the
direction h, and with x the contact length (along the vertical direction
h ¼ 0), the elastic energy stored in the system due to the applied longi-
tudinal (along the nanotube=bundle axis) stress r can be written as
Us ¼ r2A 2l=cos2 hþ x

� �
=E. On the other hand, the external work is

W ¼ 2rAð2uþ u0Þ, where u denotes the vertical displacement due to
the stretching of the non-contact portion (i.e., due to
Dl ¼ lr=ðE cos h)), whereas u0 ¼ Dx ¼ xr=E is the vertical displacement
due to the stretching of the contact length. Since p=2 ¼ l sin h ¼
ðlþ DlÞ sinðhþ DhÞ and u ¼ ðlþ DlÞ cosðhþ DhÞ � l cos h, we deduce

u ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Dl=lÞ2 � sin2ðhÞ

q
� l cos h. Both l and h (and Dl=l) are func-

tions of x : l ¼ ðL� xÞ=2, where L is the nanotube length, and
sin h ¼ p=ðL� xÞ. Thus, the total potential energy of the system is
PðxÞ ¼ UbðxÞ þ UsðxÞ �WðxÞ. The classical approximation of small dis-
placements (u=l! 0; which implies small deformations) cannot be
applied in this context; however, we note that small deformations
(Dl=l! 0) imply in our system small displacements. In the limit of
small deformations=displacements we have verified the validity of
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Clapeyron’s theorem [WðxÞ ¼ 2UbðxÞ]. The anti-bunching stress (i.e.,
the stress required to separate the nanotubes) can be derived by the
following energy balance: dPðxÞ=dx ¼ 2cw. Since we find dUbðxÞ=dx ¼
cw=2, the condition for separating the nanotubes becomes
dP�ðxÞ=dx ¼ dUsðxÞ=dx� dWðxÞ=dx ¼ 3=2ðcwÞ, where P� is the reduced
potential energy. Introducing the dimensionless variables g ¼ p=ðL� xÞ
and e ¼ r=E, we calculate:

1

EA

dUs

dx
¼ 1� 3

1� g2
þ 2

ð1� g2Þ2

" #
e2 ð1Þ

1

EA

dW

dx
¼ 2e 2

du

dx
þ e

� �
ð2aÞ

FIGURE 1 Bunching between two nanotubes in a bundle: energy balance.
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2
du

dx
¼ 1þ effiffiffiffiffiffiffiffiffiffiffiffiffi
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 !2

�g2

2
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�1

2
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1� g2
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 !
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1� g2

p � g2

" #
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1� g2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ effiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

 !2

�g2

vuut : ð2bÞ

In the limit of e! 0 [in which we consistently have
dWðxÞ=dx ¼ 2ðdUbðxÞ=dxÞ] we deduce 1=EAðdP�=dxÞ

��
e!0
¼ ð�g2 þ g4Þ=

ð1� g2Þ2e2. A negative value of the reduced potential energy variation
clearly shows that in this limit the anti-bunching cannot be reached
by applying an arbitrary large finite tension, but a large tension
is out of the validity of the previous formula. Noting that
0 � p=L � g � 1 we make an expansion for both g! 0 or g! 1, preser-
ving the hypothesis of large displacements=deformations. The results
are: 1=EAðdP�=dxÞ

��
g!0
¼ �e2g2=ð1þ eÞ or 1=EAðdP�=dxÞ

��
g!1
¼

2e2=ð1� g2Þ2. An always negative value for g! 0 suggests that long
bunched nanotubes cannot be fully separated by applying a longitudi-
nal tension, even if a short delamination at the ends of the bundle
(x ¼ L� p, g ¼ 1) is expected as soon as a small tension is applied; this
can be evinced from the positive singularity of 1� g2 in the reduced
potential energy for g! 1. In particular, under a strain e, we predict
at the ends of the bundle a separation of extension:

l ¼ p

2g
¼ p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2EA=ð3cwÞ

pq : ð3Þ

The calculation is valid for realistic values of p << L.
Note that, for vanishing surface energy, the required anti-bunching

strain (or force) is always zero, i.e., the nanotubes are obviously not
bunched if the surface energy is zero. This can be easily evinced by
the fact that the reduced potential energy is proportional to the square
of the strain, and that the anti-bunching condition implies a propor-
tionality between this reduced potential energy and the surface energy.

Regarding the limitations of our approach we have to note that it is
based on fracture mechanics and, thus, (i) on the energy balance dur-
ing crack growth and (ii) on small strains or better on a linear consti-
tutive law. (i) For short adhesion(=crack) length a force(=stress)
equilibrium would be more appropriate. Following [20], the maximum
applied stress is predicted to be limited (Fig. 2) and equal to
rmax � FCL=ð2ApÞ ðp << LÞ, where FC is the critical force existing
between the two nanotubes just before separation. Thus, the force is
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expected to be larger than the nanotube intrinsic strength only
for realistic slender bundles. (ii) If the nonlinear material behaviour
is relevant our analysis cannot be applied; this is not the case of
carbon nanotubes, showing a nearly linear regime up to fracture.

CONCLUSIONS

We conclude that cooperation due to bunching between nanotubes in a
bundle is guaranteed even under large longitudinal tensions. Such a
finding could have interesting applications for designing macroscopic
self-assembled nanotube-based cables (see, for instance, suspended
and cable stayed bridges [21]).
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FIGURE 2 Bunching between two nanotubes in a bundle: force equilibrium.
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