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In this article two mathematical models, force- or energy-based, are proposed for
the design of nanoscale bio-inspired hierarchical materials, considering strong or
weak interfaces, respectively. Simple formulas describing the dependence of
strength, toughness and stiffness on the considered size scale are derived, taking
into account toughening biomechanisms. A simple experimental comparison on
a new two-level hierarchical grained material is also discussed.

1. Introduction

Biological materials exhibit several levels of hierarchy, from nano- to macroscale. For
instance, seashells have two or three orders of lamellar structures, and bone, similarly
dentin, has seven orders of hierarchy [1]. These nanoscale bio-materials consist of hard and
strong mineral structures embedded in a soft and tough protein matrix. In bone and
dentin, the mineral platelets are �3 nm thick, whereas in shells of �300 nm, and are very
slender. With this hard and soft nano-hierarchical slender texture, nature seems to suggest
a key for optimizing materials with respect to both strength and toughness, without losing
stiffness [2]. Even if hierarchical materials are recognized to possess a fractal-like topology
[3], only a few engineering models explicitly considering their complex structure have
appeared in the literature (see [2,4] and related references). In this article an alternative and
concise mathematical model is presented. Additional considerations are reported in the
Appendix.

2. Strong interfaces: force equilibrium

Strength, toughness and stiffness of materials are measured by tensile tests. Imagine
a virtual tensile test on a hierarchically fibre-reinforced bar [2]. The bar’s cross section,
composed of hard inclusions assumed here to be perfectly embedded in a soft matrix
(strong interfaces), is schematized in Figure 1.

The smallest units, at the levels N (number of considered hierarchical level), are
assumed to be scale-invariant and related to the theoretical material strengths of the hard
and soft phases, respectively, �h and �s, where usually �h� �s. Each inclusion at the level
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kþ 1 contains nk smaller ones, each of them with cross-sectional area Ak. Thus, the total
number of inclusions at the level k is Nk ¼

Qk
j¼1 nj, having volumetric fraction

�k ¼
Qk

j¼1 ’j. Note that ’k ¼ ðnkAk=Ak�1Þ represents the cross-sectional fraction of the
inclusions at the level kþ 1 in the inclusions at the level k.

The equilibrium equation is F � A�C ¼ Fh þ Fs ¼ NkAk�hk þ ðA�NkAkÞ�sk ¼
NNAN�hN þ ðA�NNANÞ�sN, 8k, where F is the critical applied force, Fh and Fs are the
forces carried by the hard and the soft phases, respectively, A�A0 is the cross-sectional
area of the bar, �C is its strength, �hN� �h, �hk� �s (8k), and the subscript k refers to the
quantities at the level k.

Natural optimization suggests nearly self-similar structures [5], for which nk¼ n
and ’k¼ ’, thus k-independent numbers and fractions; accordingly Nk¼ nk. Since
the inclusions present a fractal distribution [6], we expect Fh/RD where R¼A1/2 is
a characteristic size and D is a constant, the so-called ‘‘fractal dimension’’; the constant
of proportionality can be deduced noting that Fh(A¼AN)¼AN�hN, and thus
F ¼ �hNR

2�D
N RD. Accordingly, from Fh ¼ �hNR

2�D
N RD ¼ �hNn

NR2
N, we derive

N ¼ D
lnR=RN

ln n
, ð1Þ

which defines the number of hierarchical levels that we need to design an object of
characteristic size R. Equation (1) shows that only few hierarchical levels are required
for spanning several orders of magnitude in size. For example, for a nanostructured
hierarchical ‘‘universe’’, considering for R its actual radius, i.e., R� 1026m, for
the smallest units a radius of 1 nm, i.e., RN� 10�9m, n¼ 5 and D¼ 2 would result in
only 100 hierarchical levels.

The scaling exponent D can be determined noting that NNAN¼A�, where ���N¼’
N

represents the macroscopic (at level 0) cross-sectional fraction of the hard inclusions. Thus,
we derive R/RN¼ (n/’)N/2. Introducing this result into Equation (1) provides the fractal
exponent, as a function of well-defined physical quantities:

D ¼
2 ln n

ln n� ln ’
: ð2Þ

Note that D represents the fractal dimension of the inclusions, i.e., of a lacunar
two-dimensional domain in which the soft matrix is considered as empty [7,8]; for example,
the dimension of the well-known Sierpinski carpet (Figure 2) is D¼ 1.89.

A=A0
A1, 1

A1, …

A1, n1

A2, n2

Figure 1. Cross section of a hierarchical bar.

398 N.M. Pugno and A. Carpinteri



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

08
:1

2 
30

 J
ul

y 
20

08
 

Since �hNn
NR2

N ¼ �hNR
2�D
N RD and R=RN ¼ ðn=’Þ

N=2, we derive:

� ¼ ’N ¼
R

RN

� �D�2

: ð3Þ

Thus, from the equilibrium equation, a scaling of the strength is predicted:

�C ¼ �h’
N þ �sð1� ’

NÞ ¼ �h
R

RN

� �D�2

þ �s 1�
R

RN

� �D�2
 !

: ð4Þ

Noting that n41 and ’51, we deduce 05D52 and thus Equation (4) predicts that

‘‘smaller is stronger’’ (�h� �s).
On the other hand, the energy balance implies W � AGC ¼Wh þWs ¼

NkAkGhk þ ðA�NkAkÞGsk ¼ NNANGhN þ ðA�NNANÞGsN, 8k, where W, Wh, Ws are,

respectively, the dissipated fracture energies in the bar, hard and soft phases, and GC,

GhN�Gh, Gsk�Gs (8k) are the fracture energies per unit area of the bar, hard and soft

phases, respectively; usually Gh�Gs. Accordingly, the fracture energy scales as:

GC ¼ Gh’
N þ Gs 1� ’N

� �
¼ Gh

R

RN

� �D�2

þ Gs 1�
R

RN

� �D�2
 !

: ð5Þ

And thus ‘‘larger is tougher’’. In the following, toughening mechanisms will be introduced

in the model.
On the other hand, the compatibility equation implies (bars in parallel): K � EA ¼

Kh þ Ks ¼ NkAkEhk þ ðA�NkAkÞEsk ¼ NNANEhN þ ðA�NNANÞEsN, 8k, where K, Kh,

Ks, are, respectively, the ‘‘elastic’’ force of the bar, hard and soft phases, and E, EhN�Eh,

Esn�Es are the Young’s moduli of the bar, hard and soft phases, respectively.

Accordingly, Young’s modulus scales as:

E ¼ Eh’
N þ Es 1� ’N

� �
¼ Eh

R

RN

� �D�2

þ Es 1�
R

RN

� �D�2
 !

: ð6Þ

Since, usually, Eh�Es, ‘‘smaller is stiffer’’.
Equations (4–6) show that at the smaller size scales the inclusions are dominating,

whereas at the larger size scales the matrix dominates. These equations present the

same self-consistent form: in fact, regarding the generic property X (�C, GC or E) at the

level N� 1, XN�1 ¼ Xh’þ Xsð1� ’Þ. Thus, at the level N� 2, XN�2 ¼ XN�1’þ
Xsð1� ’Þ ¼ Xh’

2 þ Xsð1� ’
2Þ and iterating X � X0 ¼ Xh’

N þ Xsð1� ’
NÞ, as described

Figure 2. Sierpinski carpet (D¼ 1.89) at different levels of observation. It corresponds to a
deterministic hierarchical bar in which the empty space is the soft matrix, and the complementary
zones are the hard inclusions.

Philosophical Magazine Letters 399
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by Equations (4–6). In addition, it is clear that the scaling laws predicted by

Equations (4–6) are particularly reasonable, since they predict two asymptotic behaviours

for macro- and nanosize scales. Note that for a three-dimensional architecture

(i.e., particle inclusions and not longitudinal fibres) for which also the third dimension

plays a role, in the stiffness of Equation (6) the factor 2 must be replaced by 3, ’ becomes

the volume fraction rather than the cross-sectional fraction, and D is deduced from

Equation (2) considering again the factor 3 instead of 2; this is true if we consider valid

the rule of mixture of Equation (6) also for a nonparallel architecture.
Then, the fracture toughness can be derived as KC¼ (GCE)

1/2, whereas the hardness

H/ �C formally making the substitution �C!H in Equation (4). Note that the important

equality (3) would allow us to derive scaling laws from ‘‘rules of mixture’’, also in different

systems and for different properties, e.g., the friction coefficient.
Finally, for quasi-fractal hierarchy, described by n(R) and ’(R) weakly varying with the

size R, a function D(R) should be considered in Equations (4–6), as deducible from

Equation (2).

3. Weak interfaces: energy balance

In the presence of weak interfaces, the energy will mainly be dissipated on them during

delamination, and the interfaces are thus expected to play the key role. Following [9] we

assume that the dissipated energy Wtot is proportional to the total surface area Atot of the

interfaces at the fractured cross section, and not to the nominal cross-sectional area A.

The gain in the energy dissipation imposed by the presence of hierarchy is thus given

by [10]:

Wtot �W

W
¼

Atot � A

A
¼

2�

R2

XN
k¼1

NkR
2
k ¼ 2�

XN
k¼1

�k,

for ’k ¼ ’) �k ¼ ’
k )

XN
k¼1

�k ¼
’� ’Nþ1

1� ’
ð7Þ

where for spherical grains (0D), �¼ 2, whereas for 1D- or 2D-inclusions, �¼Lk/Rk

represents their slenderness. Note the dramatic role played by a large value of �, as

observed in the mineral platelets of nacre, bone or dentine materials, in enlarging the

composite toughness. A similar mechanism is discussed in the next section for strong

interfaces.
Thus, the gain in the fracture energy imposed by hierarchy (with a number of level

explicitly shown here as superscripts of the symbols) is predicted to be

G
ðNÞ
C

G
ð0Þ
C

¼ 1þ 2�
XN
k¼1

�k: ð8Þ

For Young’s modulus, from Equation (6) we derive:

E ðNÞ

E ð0Þ
¼ �N þ

Es

Eh
ð1� �NÞ: ð9Þ

400 N.M. Pugno and A. Carpinteri
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Thus, for the fracture toughness [KC ¼ ðGCEÞ
1=2] we expect:

K
ðNÞ
C

K
ð0Þ
C

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

XN
k¼1

�k

" #
�N þ

Es

Eh
ð1� �NÞ

� �vuut : ð10Þ

Assuming the characteristic crack length to be proportional to R�1=2þ�N R�� [9],
where usually 0��� 1/2 (even if �41/2 simply describes an inversion, often observed,
of the classical Hall–Petch law), the strength �ðNÞC / K

ðNÞ
C R�1=2þ�N R�� or hardness are

predicted to be:

�ðNÞC

�ð0ÞC
¼

HðNÞ

Hð0Þ
¼

R

RN

� �1=2��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

XN
k¼1

�k

" #
�N þ

Es

Eh
1� �Nð Þ

� �vuut : ð11Þ

As an example, we can treat the experimental results on double-cemented WC-Co [11],
a new two-level hierarchical grained material, for which ’1¼ 0.73, ’2¼ 0.94, with
particle diameter d1¼ 200 mm and sub-particle diameter d2¼ 1� 6 mm. The experimental
mechanical tests were performed on standard (ASTM-B406) rectangular bars having
volume V¼ 0.500� 0.625� 1.875¼ 0.586 cm3. We assume spherical grains (�¼ 2).
Accordingly n1 ¼ ’1V=ð�=6Þd

3
1 ¼ 102, 125 is the predicted number of mesoparticles in

the total volume, whereas n2 ¼ ’2d
3
1 =d

3
2 ¼ 34,815� 7,520,000 is that of the microparticles

inside a mesoparticle. Thus the specimen is composed of several billions of microparticles.
According to Equation (8) the gain in the fracture toughness energy is G

ð1Þ
C =G

ð0Þ
C ¼

1þ 4’1 ¼ 3:92, G
ð2Þ
C =G

ð0Þ
C ¼ 1þ 4ð’1 þ ’1’2Þ ¼ 6:66, thus G

ð2Þ
C =G

ð1Þ
C ¼ 1:70. Assuming

Es�Eh, Eð1Þ=Eð0Þ ¼ ’1 ¼ 0:73, Eð2Þ=Eð0Þ ¼ ’1’2 ¼ 0:69 and thus Eð2Þ=Eð1Þ ¼ 0:95.
Accordingly

K
ð2Þ
C

K
ð1Þ
C

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
ð2Þ
C

G
ð1Þ
C

Eð2Þ

Eð1Þ

vuut ¼ 1:27,

close to the experimental, even if scattered, observations [11]. Regarding the strength
or hardness we expect for �¼ 0 (crack length proportional to the grain size)
�ð2ÞC =�

ð1Þ
C ¼ Hð2Þ=Hð1Þ ¼ ðKð2ÞC =K

ð1Þ
C Þðd1=d2Þ

1=2
¼ 7� 20 quite unreasonable, for �¼ 1/2

(crack length proportional to the structural size) �ð2ÞC =�
ð1Þ
C ¼ Hð2Þ=Hð1Þ ¼ K

ð2Þ
C =K

ð1Þ
C ¼ 1:27,

whereas for �¼ 0.6 �ð2ÞC =�
ð1Þ
C ¼ Hð2Þ=Hð1Þ ¼ ðKð2ÞC =K

ð1Þ
C Þðd2=d1Þ

0:1
¼ 0:75� 0:89. Since,

experimentally, H(2)/H(1) was observed to be slightly smaller than the unity, we deduce
an inversion of the classical Hall–Petch law.

4. Toughening mechanisms for strong interfaces: viscoelasticity, plasticity and crack

deflection or bridging

Introducing a Young’s modulus we have implicitly assumed linear elasticity. For a more
realistic behaviour of the matrix, we should consider viscoelasticity, often observed in
bio-tissues. If �v � ðE

0 � E1Þ=E1, with E0, E1 as short- and long-time elastic moduli,
respectively (E0

	E1, where the equality is valid for linear elasticity), the effective fracture
energy becomes Gþs ¼ ð1þ �vÞGs. The parameter �v represents an enhancement factor
for fracture energy dissipation due to the viscoelastic properties of the medium, e.g., for

Philosophical Magazine Letters 401
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bone �v� 4 or for shell �v� 1.5 [12]. Including plasticity, if �p represents the enhancement

factor due to the plastic work during fracture, Gþs ¼ ð1þ �ÞGs, where �¼�vþ�p.

The factor �p can be estimated for blunt cracks as �p¼ �/2a [13], � being the tip radius

and a being the ‘‘fracture quantum’’, a material/structural parameter.
According to the previous analysis and Figure 1, the fracture surface is assumed to be

planar. On the other hand, the inclusions could serve as hard structures to deflect the crack

path or as crack-bridging elements, assuming strong interfaces. For weak interfaces,

the inclusions will be pulled out after fracture, incrementing the dissipated energy

(see previous section) in a fashion similar to the other mechanisms (if the fracture of the

matrix is assumed to be similar to that of the interface; it is evident that this hypothesis

can be easily removed). To model crack deflection we simply assume the

two-dimensional scheme reported in Figure 3, which is a lateral view of the crack surface

of Figure 1. According to this scheme, Gþþs l ¼ Gþs ðlþ nhÞ, where l is the nominal crack

length, n is the number of inclusions along l and h is their height. Noting that ’¼ nt/l, with

t the thickness of the inclusions, and that �¼ h/t is their slenderness, the effective fracture

energy becomes Gþþs ¼ ð1þ �’ÞG
þ
s . Thus, this toughening mechanism can also enhance

the effective fracture energy Gþþs (� � ’ � 1; �� 1) by several orders of magnitude with

respect to the intrinsic fracture energy of the matrix Gs. This explains why the shape of

mineral crystals is found to be very anisometric (platelets, [12]), no matter if the interfaces

are strong or weak: the anisometry is larger for bone and dentin (platelets 3 nm thick

and up to 100 nm long) as well as for enamel (15–20 nm thick, 1000 nm long) than for

nacre (i.e., see shells, 200–500 nm thick and 5–8 mm long). For details on the hierarchical

bone structure, see [14]. Thus, Equation (5) in general has to be considered with the

substitutions:

Gs ! ð1þ �Þð1þ �’ÞGs ð12aÞ

Gh! 0 ð12bÞ

since, in this case, no dissipation occurs in the hard phase.
Furthermore, a soft matrix activates shear mechanisms rather than longitudinal ones,

according to the tension-shear chain model recently proposed [12]. Since, in this case,

matrix does not carry tensile load, the substitution

�s ! 0 ð13Þ

n 

1

l 

h 

t 

Figure 3. Lateral view of the crack surface: toughening mechanism.
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should be considered in Equation (4). Considering a linear variation of the shear stress

(but stress concentration factors could be included [15]) with a maximum value � implies

a maximum normal stress � in the platelet equal to �� [12]. Thus, load transfer requires

��s4�C where �s is the shear strength of the matrix (or, strictly speaking, of the

matrix/inclusion interface); this shows that low values of �s are compensated in nature

by high values of slenderness �. Note that, according to [12], an in-series tension/shear

rather than an in-parallel tension architecture, as considered in Equation (6), emerges.

However, their asymptotic behaviours (for realistic sufficiently large size-scales R) are

identical if in Equation (6) Young’s modulus of the matrix is assumed to be negligible, i.e.:

Es ! 0 ð14Þ

5. Size and shape of ‘‘flaw-tolerant’’ 1D- and 2D-inclusions

Let us consider for the sake of simplicity the Griffith’s problem. According to quantized

fracture mechanics [13] the failure stress is predicted to be �f ¼ ðGCE=ð�lþ a=2ÞÞ1=2

(see [13] for details), where 2l is the crack length and a is the fracture quantum (linear

elastic fracture mechanics, LEFM, assumes a¼ 0). Thus, a ‘‘flaw tolerance’’ is expected to

take place for crack lengths 2l smaller than a and surely in platelets with thickness t� a.

The fracture quantum a can be estimated noting that �f (l¼ 0)¼ �C, and thus the platelet

thickness or grain size for flaw tolerance is

tN �
G
ðNÞ
C EðNÞ

�ðNÞ2C

ð15Þ

similar to what has previously been deduced [16,12]. This characteristic length also

represents the optimal diameters for hierarchical grains (or grain size; see the Appendix).

Inserting Equations (4), (5) and (6) or (8), (9) and (11) into Equation (15) defines the

thicknesses of the inclusions at all the hierarchical levels for flaw tolerance.
In addition, to reach the failure simultaneously in the soft and hard phases, the

following equation for the slenderness at a given hierarchical level must hold (see previous

section):

�N �
�ðNÞC

�s
ð16Þ

Finally, nature seems to optimize structures by imposing the ratio between fractal D

and Euclidean nominal dimensions D according to D/D¼D/(Dþ 1) [17], e.g., for D¼ 3,

D/3¼ 3/4 [5]. Thus D/2� 2/3, from Equation (2), and the optimum would imply

Dopt � 4=3, or ð’n1=2Þopt � 1 ð17Þ

The fractal dimension of the inclusions, according to Equation (17), is intermediate

between those of a Euclidean line and surface.
Equation (15) defines the optimal platelet thicknesses for flaw tolerant, Equation (16)

the optimal platelet slenderness to have a uniform strength in both the phases and

Equation (17) the relation between their number and cross-sectional area fraction for

having an optimal fractal dimension.

Philosophical Magazine Letters 403
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6. Conclusions

The developed mathematical model, summarized in the numbered equations, allows us to

preliminary design nanoscale bio-inspired hierarchical materials, by following a bottom-up

or top-down procedure. The complexity of the problem has imposed a simplified treatment

with associated limitations; nevertheless, the model could be useful for preliminary

designing micro- or nanostructured hierarchical materials.
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Appendix – Optimal grain size

Let us consider a matrix embedding (not hierarchical) grains with a mean diameter d. The
characteristic crack length is statistically expected to be of the order of 2l� d [18]; thus
�f � ½2GCE=ð�dþ aÞ
1=2. Accordingly, for large grain sizes �f / d�1=2, as described by the
well-known Hall–Petch law, whereas for small grain sizes a deviation from this law is expected,
i.e. �f/ d 0. This deviation is observed in experiments and is erroneously assumed to take place
around a grain size of 10 nm (see the discussion [19]). The same transition has been recently
derived [9], extending the fractal approach for size effects [6] to grains. The grain size corresponding
to the transition, or even to the inversion of the Hall–Petch law (in the case of a positive exponent,
for example, due to a fracture energy GC(d ) increasing with the grain size d ), represents an optimal
value for flaw tolerance. According to our simple considerations, and in contrast to the common
assumption of a ‘‘universal’’ value of 10 nm, we expect the optimal grain size depending on the
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material properties of the mixture but assumed to be very fine grained, i.e. of the amorphous
counterpart (i.e. d! 0, since �C¼ �f (d¼ 0)) and containing the given grain content � (e.g., in
the form suggested by Equations (4–6) with ’N¼�), i.e. dopt � GCð�ÞEð�Þ=�

2
Cð�Þ � K 2

ICð�Þ=�
2
Cð�Þ.

Let us observe that, for KIC� 10MPa, if �C� 100GPa we obtain dopt� 10 nm, whereas if
�C� 1GPa we obtain dopt� 100 mm. We have found some experimental results in the literature
that show a deviation from the Hall–Petch law for a ‘‘large’’ grain size, i.e. of several microns
[18,20], supporting our argument. This optimal grain size could be perhaps applied also in different
contexts, e.g., to optimize coating layers.
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