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Abstract

Cancer growth models may be divided into macroscopic models, which describe the tumor as a single entity, and microscopic ones, which

consider the tumor as a complex system whose behavior emerges from the local dynamics of its basic components, the neoplastic cells.

Mesoscopic models (e.g. as based on the Local Interaction Simulation Approach [Delsanto, P.P., Mignogna, R., Scalerandi, M., Schechter,

R., 1998. In: Delsanto, P.P. Saenz, A.W. (Eds.), New Perspectives on Problems in Classical and Quantum Physics, vol. 2. Gordon &

Breach, New Delhi, p. 5174]), which explicitly consider the behavior of cell clusters and their interactions, may be used instead of the

microscopic ones, in order to study the properties of cancer biology that strongly depend on the interactions of small groups of cells at

intermediate spatial and temporal scales. All these approaches have been developed independently, which limits their usefulness, since they

all include relevant features and information that should be cross-correlated for a deeper understanding of the mechanisms involved.

In this contribution we consider multicellular tumor spheroids as biological reference systems and propose an intermediate model to

bridge the gap between a macroscopic formulation of tumor growth and a mesoscopic one. Thus we are able to establish, as an important

result of our formalism, a direct correspondence between parameters characterizing processes occurring at different scales. In particular,

we analyze their dependence on an important limiting factor to tumor growth, i.e. the extra-cellular matrix pressure. Since the macro and

meso-models stem from totally different roots (energy conservation and clinical observations vs. cell groups dynamics), their consistency

may be used to validate both approaches. It may also be interesting to note that the proposed formalism fits well into a recently proposed

conjecture of growth laws universality.

r 2007 Elsevier Ltd. All rights reserved.
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Complexity
1. Introduction

Crucial to our understanding of the development of
complexity is our ability to relate phenomena occurring at
different scales. This is necessary not only to predict the
e front matter r 2007 Elsevier Ltd. All rights reserved.
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emergence of macroscopic phenomena from microscopic
processes, but also to relate microscopic variables to the
more accessible parameters of macroscopic phenomeno-
logy. In fact, the use of more realistic values for the
parameters of the microscopic (and mesoscopic) simula-
tions may greatly enhance their predictive potentiality and,
therefore, their applicability for biomedical and/or clinical
purposes. As a rule, numerical simulations are necessary to
implement microscopic or mesoscopic models, while
analytical (or semi-analytical) solutions are usually possible
for macroscopic models.
Tumors are remarkable examples of complex self-

organizing systems. Due to their inherent complexity, it is
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necessary to analyze their growth at different scales. In a
macroscopic approach, we consider them as single entities,
whose behavior can be predicted in terms of their global
interaction with the environment and a few internal
parameters. This approach has led to a host of useful
models of cellular population dynamics in different
biological systems (for example cell cultures, Murray,
2004, the immune system, Adam and Bellomo, 1996;
Perelson and Weisbuch, 1997, neoplastic masses, Adam
and Bellomo, 1996; Preziosi, 2003).

Interest in this approach has been further rekindled by
the conjecture of Guiot et al. (2003) that the ontogenetic
growth law for all living organisms of West, Brown, and
Enquist (WBE) (West et al., 1999, 2001) may be fruitfully
extended to cancer growth. In the form proposed by WBE,
this law states that two hypotheses suffice to ensure the
existence of a universal growth dynamics: the conservation
of energy and the presence of a fractal distribution network
for energy supply at each part of the biological system
considered. These basic hypotheses lead to the well-known
exponent (p ¼ 3=4) in the relationship between metabolic
rate and mass scaling, which is purportedly characteristic
of all organisms.

In a microscopic description, one should identify
individual cell properties and predict tumor development
from cell–cell interactions. Such an approach has two
drawbacks: first, cancer growth is a collective phenomenon
whose complexity may not emerge from the ensemble of its
individual cell properties alone. Second, the huge number
of cells involved (typically 108 cells for a 1 cm3 tumor)
restricts considerably the feasibility of simulations taking
into account the behavior and dynamics of each individual
cell, unless populations with a small number of individuals
can be considered. As a consequence, mesoscopic models
(Scalerandi et al., 1999, 2001; Sansone et al., 2001; Ferreira
et al., 2002; Scalerandi et al., 2002; Scalerandi and Sansone,
2002; Chen et al., 2003) have been proposed, in which the
coarse graining of the system, and the behavior of cell
clusters and their interactions is considered. Mesoscopic
models are also better adapted to describe the influence of
the macroscale world on microscale phenomena and vice
versa. A nice exposition of the insights that mathematical
modeling can yield about the mechanisms underpinning the
great complexity of the various phases of cancer growth is
presented in a recent review by Byrne et al. (2006). Among
other recent papers about modeling tumor growth, we can
quote another review paper by Alarcón et al. (2005) or,
more generally, refer to the repository of mathematical
models and corresponding computational codes assembled
within the framework of the CViT (Center for the
development of a Virtual Tumor) Project (http://www.cvit.
org), belonging to the US NIH-NCI ICBP (Integrative
Cancer Biology Program).

Multicellular Tumor Spheroids (MTSs) represent con-
venient experimental systems for analyzing and comparing
tumor growth models at different levels. They are spherical
aggregations of tumor cells that may be grown in vitro
under strictly controlled conditions, mimicking some of the
important features of solid tumors developing in vivo

(Hamilton, 1998; Thomson and Byrne, 1999; Mueller-
Klieser, 2000; Chignola et al., 2000; Kelm et al., 2003). Due
to their simple geometry, the possibility of culturing them
in large quantities and of controlling relevant parameters,
such as the porosity and stiffness of the surrounding
environment, they are excellent systems upon which to test
the applicability of various models (Marusic et al., 1994;
Delsanto et al., 2004, 2005a). Experimental spheroid setups
are designed to provide a suitable amount of oxygen and
other nutrients, which diffuse to the outer edges of the
MTS, and then to the interior. Due to consumption by
the outer region, nutrient concentration decreases towards
the center. Consequently, as it has been observed,
proliferating cells are usually present in the outermost
shell, quiescent (nonreproductive) cells dominate in the
interior, and, eventually at a later stage of growth, a
necrotic core is formed by dead cells. An MTS is thus a
heterogeneous cellular system of considerable complexity,
but whose properties and growth can be carefully
monitored and modeled.
Using MTS’s as working models (but with the expecta-

tion that our conclusions may be applied also to the study
of some aspects of in vivo tumor growth), we review in
Sections 2 and 3, two recently proposed growth models at
the mesoscopic (Delsanto et al., 2005b) and macroscopic
(Guiot et al., 2003; Delsanto et al., 2004) levels, respec-
tively. The latter is extended in order to take into account
the pressure exerted by the growing tumor against its
environment. This term plays a crucial role in the
mechanisms involved in tumoral invasion (Guiot et al.,
2006b), which ultimately represents the procedure which
allows further growth of tumors in vivo. Then, in Section 4,
we show that it is possible to formulate a coherent picture
embodying both descriptions by means of an Intermediate
Model (IM) (Delsanto et al., 2005a). A detailed description
of the IM and of the relationship (mediated by the IM)
between the mesoscopic and macroscopic parameters
represents the main goal of the present contribution.

2. A link to cell dynamics: mesoscopic model

In this Section we review the mesoscopic MTS model of
Delsanto et al. (2005b). In this model space is divided into
concentric isovolumetric shells n ¼ 0; . . . ;N (n ¼ 0 labels
the central sphere of radius r0). Each shell has a volume
V0 ¼ ð

4
3
Þpr30, and a correspondence is established between

the shell system and a one-dimensional grid. The center of
the shell system coincides with the location of the
implanted spheroid seed. The MTS growth is controlled
by local nutrient availability and proceeds according to the
following rules (see Fig. 1):
(a)
 Feeding: nutrient is absorbed by each shell at a rate gcn,
where cn is the number of live cancer cells in the nth
shell.

http://www.cvit.org
http://www.cvit.org
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Fig. 1. Schematic representation of the basic cellular processes in the nth

MTS shell as a function of the number of available nutrient units nn. The

three lines below the nn axis imply that cellular death occurs only for

nnoQD, migration for nnoQM and cell reproduction for nn4QR,

respectively. Correspondingly, the three parameters dn, mn and rn are

different from zero (and equal to d; m and r) only for nnoQM , nnoQM and

nn4QR, respectively.
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(b)
 Reproduction: cancer cells reproduce, at rates rncn,
only in the shells where the number nn of locally
available nutrient units exceeds a given threshold QR.
(c)
 Migration: cells migrate to adjacent shells with a flux
mncn per unit of grid cell surface if the number of
nutrient units falls below a threshold QM . Since
nutrients diffuse inwards, migration will usually
proceed towards outer shells. We may plausibly assume
that outwards migration is also favored by mechanical
stress gradients (Gordon et al., 2003). Due to the bias
introduced by the radial gradients, we distinguish
between outwards ðmþÞ and inwards ðm�Þ migration
fluxes.
(d)
 Death: cell death occurs (at rates dncn) where the
number of nutrient units falls below the threshold QD.
The thresholds satisfy the conditions QDoQMoQR.
Fig. 1 summarizes in a simple scheme the set of thresholds
associated to the different biological/biophysical phenom-
ena and the corresponding value ranges for the rates. As
reported in Griffa et al. (2004) the actual implementation
of the model makes use of sigmoidal functions for
representing the rates dependence on nutrient concentra-
tion instead of Heaviside functions (i.e. thresholds).

Nutrients diffuse from the nth shell to the adjacent ones
at a rate ann per unit area. Since cellular displacement and
molecular diffusion between shells are proportional to the
areas of the separating surfaces, the diffusion terms across
the interface between the ðn� 1Þth and nth shells will be
proportional to n2=3. The model equations are then written
directly in their time-discretized forms:

c�n ¼ cnð1� tdn þ trnÞ þ tr20½n
2=3ðmþn�1cn�1 � m�n cnÞ

þ ðnþ 1Þ2=3ðm�nþ1cnþ1 � mþn cnÞ�, ð1Þ

d�n ¼ dn þ tdncn � tlndn, (2)
n�n ¼ nn � tgcn þ tar20½n
2=3ðnn�1 � nnÞ

þ ðnþ 1Þ2=3ðnnþ1 � nnÞ�, ð3Þ

where t is the time step and the asterisk means that the
corresponding quantity must be evaluated at the time tþ t,
instead of at the time t. In Eq. (2) dn is the number of dead
cells in the nth shell; the last term, with a coefficient ln, has
been added to account for possible disintegration of dead
cells releasing intracellular fluid (Cristini et al., 2005;
Frieboes et al., 2006).
Numerical simulations based on the above model show

that, in agreement with experimental observations, in a first
stage the spheroid is fully populated by proliferating cells.
Then, in the inside, cells become quiescent, i.e. alive but not
proliferating, with a ‘‘wavefront’’ of proliferating cells
which have greater probability of undergoing an outward
migration due to the second type of movement mechanism
implemented in the model, the one based on a smoothed
cell density-per each shell threshold, as explained in Griffa
et al. (2004). This in silico mechanism corresponds to the
biomechanical stress-mediated transport of cells towards
regions with lower levels of cell density, packing and
deformation, due to both passive (purely elastic) and cell-
mediated responses (Vernon et al., 1992; Dembo and
Wang, 1999; Gordon et al., 2003; Deisboeck et al., 2005) to
mechanical deformations. Finally, at later times, a pre-
dominantly necrotic core develops. According to the model
implementation, when the total number of living-plus-dead
cells in the nth shell is larger than a given threshold, the
probability per unit of time of migration towards the
nearest neighbor shells arises, so that some cells leave that
shell. The threshold value is a function of the cell mean
radius and of r0. Thus, the mechanical stress-driven
migration is essentially triggered by the unbalance between
the volume of each shell and the one occupied by the living
and dead cells. If the latter is too large, a higher level of
packing and cell deformation occurs with mass transport as
consequence. Different weights are assigned in computing
the volume occupied by the living vs. dead cells, in order to
account for their different deformation. Also, a rigid
Heaviside function is replaced by a sigmoid (see Griffa
et al. (2004) for the mathematical detail). Fig. 2 shows the
radial distribution of viable cells within the simulated
spheroid at three different time steps belonging respectively
to the three cited stages of growth. The simulation aims at
reproducing the typical layout of an MTS in terms of cell
state spatial distribution.
3. A link to phenomenology: macroscopic model

Both the discussion in the Introduction and Fig. 2
suggest the use of a three-layer macroscopic model for the
tumor. Using the WBE model, as extended to tumors by
Guiot et al. (2003), we assume that a central core of dead
cells (region Z0) is surrounded by a first layer Z1 of
quiescent cells, and by an outer layer Z2 of active cells and
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Fig. 2. The three stages of development of a MTS, as obtained from a mesoscopic simulation at three successive times. In the first stage all cells are

proliferating. In the second one a region of quiescent cells emerges and soon occupies most of the interior. In the third one a necrotic core develops, which,

however, includes some viable cells in the process of dying (especially at its rim). The mesoscopic parameters for the simulations are m ¼ 0:003, r ¼ 0:025,
d ¼ 0:01, s ¼ 1:7 in the nonzero zones defined in Fig. 1.
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neglect, as temporary, any mixing, i.e. the presence of cells
in the ‘‘wrong’’ regions. We label the three cell species 0, 1,
and 2 respectively, and call their corresponding masses
mi ði ¼ 0; 1; 2Þ. It is important to remark that the central
core Z0 and the two layers Z1 and Z2 need not to be
spherical, i.e. the macroscopic model may be used to
describe not only MTS’s, but also almost any kind of pre-
vascular in vivo solid cancers.

Since energy is transported to the tumor cells by the
diffusing nutrients, we assume that it is proportional to the
amount of the latter. Therefore, applying the law of energy
conservation as in Delsanto et al. (2004), we may write the
energy balance for region Z2 as,

B2 dt ¼ N2x2 dtþ �dN2 þ wdN2, (4)

where

w ¼
kPM

z

� �
(5)

and N2 is the total number of cancer cells in Z2 at time t, P

is the hydrostatic pressure on the spheroid wall, B2 is the
net nutrient-associated energy inflow into Z2 during the
interval dt, z is the mass density, assumed to be uniform, x2
is the metabolic rate for a single cancer cell, and � is the
energy required to create a new cell in a ‘‘soft’’ environ-
ment. If M is the mass of a single cell, m2 ¼MN2.
In Eq. (4) the last term on the right-hand-side is new with

respect to Delsanto et al. (2004), and represents the amount
of energy required by the volumetric expansion. It includes
not only the mechanical work done by the biologically
growing system against its environment at pressure P, i.e.
(from thermodynamics) PdV 2, which is comparatively
small (and would correspond to a value of k ¼ 1), but also
the excess energy required to create new biological material
in a stressed environment. Such excess energy is the result
of complex biological processes and can be assumed (at
least as a first approximation) to be proportional to the
volume increase, dV2 ¼M dN2.
Two plausible and complementary assumptions can be

formulated regarding the pressure dependence, as a
function of the constitutive laws of the matrix and
tumor materials. In a recent paper Guiot et al. (2006b),
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the interface pressure increases due to the tumor elastic
growth, until a characteristic strength of the matrix is
reached, the stress released and a new annular region of
matrix colonized by the tumor. In this model a perfectly
plastic constitutive law for the matrix is also assumed,
corresponding to a strain flow at a given value P. For such
a case the pressure P is expected to be constant,
representing the yielding strength of the matrix material.
Obviously these two assumptions represent limit conditions
of a more complex reality, but the introduction of P

represents an important novelty with respect to previous
models (for which P ¼ 0), due to the role of mechanical
stress in triggering and controlling various biomechanical
and biophysical processes (Chaplain et al., 2006), both at
the single cell level (remodulation of intracellular structures
by the cell deformation and consequent change in gene
expression and protein synthesis, Ingber et al., 1995) and at
the multicellular one (change of intercellular communica-
tions via release of molecules, apoptosis and cell prolifera-
tion control via the change of cell adhesion, Shraiman,
2005; Hufnagel et al., 2007; Helmlinger et al., 1997).

The left-hand side of Eq. (4), B2 dt, describes the energy
necessary for the overall thermodynamic processes occur-
ring within the cell population occupying the region Z2.
This energy, as previously stated, results from the balance
of two different flows of nutrients molecules (the carriers of
energy for every metabolic process): the total diffusive
inflow towards the spheroid, which is proportional to a
power p2 of its whole mass, according to the general law
relating the mass of a biological system and the rate of
energy inflow needed for maintenance and proliferation
(West et al., 1999, 2001; Guiot et al., 2003), and the
nutrient molecules flow towards the inner region Z1, which
produces an energy leakage rate for the Z2 population, but
an energy acquisition rate for the Z1 one proportional to
the p1 power of its mass, according to the same law. Thus,

B2 ¼ B02ðm0 þm1 þm2Þ
p2 � B01ðm0 þm1Þ

p1 , (6)

where B01 and B02 are constants. The assumption that
cellular feeding is controlled only by diffusive processes, i.e.
that the tumor is in a pre-vascular stage, would imply that
p1 ¼ p2 ¼

2
3
, because the inflow through the surface is

proportional to the 2
3
power of the volume. By contrast

WBE’s law assumes that resources are transported to the
cells through a fractal hierarchical branching network
(West et al., 1999), which implies p ¼ 3

4
. In fact, the power

law dependence of B on m has been recognized for a long
time (Kleiber, 1932), but the value of the exponent and its
ultimate meaning are still sources of controversy (Dodds
et al., 2001; Makarieva et al., 2003). It has been recently
pointed out that our model (and in particular a careful
monitoring of the p exponent) may enable us to predict the
progression of a tumor (Guiot et al., 2006a; Carpinteri and
Pugno, 2005; Guiot et al., 2006b).

On heuristically justified grounds, we can also apply the
same formulation to describe cell evolution in Z0 and Z1,
using the same approach and the same type of rules which
connect the energy rate consumed by a cell population to
its total mass through a power law. By extending the
definition of B02 and x2 to the other two regions and using
Eqs. (4) and (6), the subsequent equation for the temporal
evolution of the masses of each cell population is obtained:

dmi

dt
¼ ai

Xi

j¼0

mj

 !pi

� ai�1

Xi�1
j¼0

mj

 !pi�1

� bimi, (7)

where mi is the total mass of the ith population, for
i ¼ 0; 1; 2, and

ai ¼
MB0i

�þ kPM=z
, (8)

bi ¼
xi

�þ kPM=z
, (9)

with a�1 ¼ 0. The growth of the tumor mass in each region
is proportional to the difference between the net energy
input (first term minus second term) in Eq. (7) and
the amount of energy used for cell maintenance (third
term). Eqs. (7)–(9) define a consistent phenomenological
model whose parameters may be evaluated from the
results of macroscopic experiments. They belong to
a class, called U2, of a recently proposed classification
scheme for phenomenological universalities in growth
problems (Castorina et al., 2006). U2 includes, as special
cases, the WBE, the logistic and all the other previously
proposed growth models. The introduction of the expan-
sion term in Eq. (4) leads to a reduction in the size of most
of the coefficients, a fact whose consequences will be
explored later. The outer shell coefficients a2 and b2 can be
obtained from experimental observations of the whole
spheroid (Condat and Menchón, 2006). The coefficients
a0 and b0 can be obtained form observations of the
necrotic core.
If we assume that necrotic cells do not consume energy

x0 ¼ 0. Then b0 ¼ 0 and Eq. (7) for m0 can be straightfor-
wardly solved, yielding,

m0ðtÞ ¼ ½ð ~mÞ
1�p0 þ a0ð1� p0Þðt� t0Þ�

1=ð1�p0Þ, (10)

where p0a1 and ~m is the mass at time t0. If we choose t0 as
the time of onset of the necrotic core, ~m ¼ 0. At long times
the necrotic mass increases as a power law; in particular, if
p0 ¼

2
3
, m0ðtÞ�t3. For p0 ¼ 1, there is exponential growth at

all times. Since a0 is expected to decrease with increasing
pressure, the necrotic core (and the rest of the tumor) will
grow more slowly under conditions of higher pressure.
A tumor steady state can be obtained from Eqs. (7) only if
b0a0.

4. The bridge: intermediate model

To formulate an auxiliary model that allows us to bridge
the gap between the mesoscopic and macroscopic descrip-
tions, we start by rewriting the equation describing the
evolution of the number of cancer cells in the nth
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mesoscopic shell as a first order differential equation that
explicitly exhibits the cell fluxes. Assuming that the time
step t is very small, we write,

c�n � cn � t
dcn

dt
. (11)

The mesoscopic equation (1) then becomes

dcn

dt
¼ bncn þ Fn�1 �Cn�1 þCn � Fn, (12)

where Fn and Cn stand for the outward and inward cell
flows, respectively,

Fn ¼ ðnþ 1Þ2=3r20m
þ
n cn, (13)

Cn ¼ ðnþ 1Þ2=3r20m
�
nþ1cnþ1, (14)

where bn ¼ rn � dn is the difference between the reproduc-
tion and death rates, except in Z0 where bn ¼ �ln.

Next we regroup the shells with npn0, n0onpn1 and
n1onpn2 ¼ N in the three regions, Z0, Z1 and Z2,
respectively. Although the equation describing the nutrient
evolution in the mesoscopic model (Eq. (3)) is not explicitly
considered, the role of the nutrient distribution is clear:
since the nutrient comes from outside and is progressively
consumed (or stored for later consumption) by the viable
cells inside, the above stratification is a reasonable
approximation (Mueller-Klieser, 2000). Of course, due to
the randomness inherent to the involved processes, we
would expect a smoother distribution in the experimental
data. In order to set the model in a form adequate for the
comparison, we proceed as follows:
1.
 At each discretization step we will conceptually separate
the description of growth into two stages. In the first
stage cells multiply, migrate and die, but the volumes of
the various zones are kept constant. In the second stage,
the zone radii are allowed to vary in order to restore cell
concentration uniformity. Therefore the rescaled zone
volumes ‘‘recapture’’ the cells that left each zone during
the first step; this corresponds to a loss of mass �dmi for
the zone Zi.
2.
 Since we are solely interested in the number of cells
inside each region, we can sum over the contributions of
all its shells. Internal migrations in each region do not
affect the number of cells therein and are therefore
irrelevant. The only migration terms that matter are
those across the region boundaries, that is to the shells
n ¼ n0, n1 and n2 ¼ N.
3.
 By definition, all cells are included in the MTS; thus, no
cells can enter from the outside: Cn2 ¼ 0. We will
disregard the centripetal migrations Cn0 and Cn1 since
they would amount to including active cells in Z1 or
quiescent ones in Z0 (which is forbidden by our
definition of the regions). Operationally, this implies
setting the transport coefficients m�ni

¼ 0 at the region
edges. Alternatively, we may redefine F̄n as the net
balance Fn �Cn.
4.
 As a coarse grain approximation, the rates dn, rn and ln

may be reasonably equated in each region to their
asymptotic values or to 0 as a consequence of the
sigmoidal functions implementing their dependence
from nutrient concentrations. This corresponds to
selecting very steep sigmoidal functions (Griffa et al.,
2004). It follows that dn ¼ rn ¼ 0 in the first (necrotic)
region, since dead cells cannot die or reproduce; we also
fix ln ¼ l in the same region. In Z1 we set dn ¼ d and
rn ¼ 0, while in Z2 we write dn ¼ 0 and rn ¼ r, with
both r and d being the asymptotic values of the
corresponding variables.

With the above assumptions, we can use the set of
equations (12) to obtain equations for the total numbers of
cells c̄i ¼

P
cj in their respective regions Zi (i ¼ 0; 1; 2).

Summing Eqs. (12) over n for all the shells included in each
of the three regions Zi, we obtain

dc̄2

dt
¼ rc̄2 þ F̄n1 � F̄n2 , (15)

dc̄1

dt
¼ �dc̄1 þ F̄n0 � F̄n1 , (16)

dc̄0

dt
¼ �F̄n0 � lc̄0. (17)

The outward cell flux from the outermost shell of each
region Zi ði ¼ 0; 1; 2Þ across the surface separating it from
the next region (the matrix in the case i ¼ 2) can be
renamed as F̄i : F̄0 ¼ F̄n0 , F̄1 ¼ F̄n1 and F̄2 ¼ F̄n2 , where
n2 ¼ N.
In Eq. (16) dc̄1 is the total dying cell rate. Since cells in

the necrotic core may only be reabsorbed, the only
contributions to cell variation in Z0 are given by the flux
�F̄0 and the absorption �lc̄0.
Next we evaluate the fluxes F̄i. The factor r20ðnþ 1Þ2=3 in

Eqs. (13) and (14), for n ¼ ni (i ¼ 0; 1; 2), corresponds to
the square of the external radius, R2

i , of the corresponding
zone, Zi. Because migrations to other regions start
only from the outermost shell in each region, the fluxes
will be proportional to Zmi ði ¼ 0; 1; 2Þ, where mi � mþni

is the local mobility and Z ¼ cni
is the mean number of

cells in the nith isovolumetric shell. We keep Z approxi-
mately constant because of the migration mechanism
based on the mechanical stress-driven mass transport. In
fact the outer shell of each zone is subject to an
outwards chemotaxis-based cell migration due to the
gradient in the concentration of nutrients (Dorie et al.,
1982, 1986; McElwain and Pettet, 1993) (which tends to
increase local cell density), but also to the mechanical
opposition of the external cells (or the extracellular
matrix in the case of the proliferant rim Z2). The
intermediate increase of cell density is then compensated
by the stress-driven migration (invasion in the case of the
proliferative rim), in order not to increase the cell density
above its maximum allowed value (Deisboeck et al., 2005).
The constant cell density assumption in the formulation of
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the IM is in agreement with many experimental observa-
tions (Freyer and Sutherland, 1986b, 1985, 1980), although
other recent investigations (Nirmala et al., 2001) show that
it may slightly vary in time and space due to the local
heterogeneities at smaller scales within the MTS. The fluxes
can be written as

F̄i ¼ micni
R2

i ¼ miZ
3

4pz

Xi

j¼0

mj

 !2=3

. (18)

Next, we correlate Eq. (7) for the mass variations with
Eqs. (15)–(17) for the variations in cell numbers. Using the
two-stages model at each discretization step, as discussed
before, from mi ¼Mc̄i, it follows

dc̄i

dt
¼ �

1

M

dmi

dt
. (19)

Now we can combine Eqs. (15)–(19) to write the
equations for the mass variations in each of the three zones:

dm2

dt
¼ �rm2 � sm1ðm0 þm1Þ

2=3
þ sm2ðm0 þm1 þm2Þ

2=3,

(20)

dm1

dt
¼ �dm1 � sm0m

2=3
0 þ sm1ðm0 þm1Þ

2=3, (21)

and

dm0

dt
¼ �lm0 þ sm0m

2=3
0 , (22)

where

s ¼MZ
4p
3
z

� ��2=3
. (23)

By comparing Eq. (7) with Eqs. (20)–(22), we find that
both models coincide if the following parameter identifica-
tion is performed.

a0 ¼ sm0; a1 ¼ sm1; a2 ¼ sm2, (24)

b0 ¼ �l; b1 ¼ �d; b2 ¼ r (25)

and

p0 ¼ p1 ¼ p2 ¼
2
3
. (26)

We have thus related the parameters corresponding to
the mesoscopic and macroscopic formulations. That pi ¼

2
3

was to be expected by the construction of the mesoscopic
model, but the other relations provide us with information
about the dependence of the mesoscopic parameters on
pressure. For instance, the interzone migration fluxes must
decrease with increasing pressure,

mi ¼
MB0i

s �þ
kPM

z

� � . (27)

This is reasonable, because migration is hindered by
the increased cell concentration. The reproduction rate is
decreased by the same factor:

r ¼
x2

�þ
kPM

z

, (28)

which is also consistent with predictions put forward on the
basis of experimental data (Helmlinger et al., 1997). Since it
is not a priori clear what the dependence of b0 and b1 on P

should be, we cannot draw general conclusions on the
mesoscopic coefficients l and d. However, if we assume
that the dependence of b1 on P is the same as that of b2,
then we can conclude that the death rate is decreased by
increasing pressure, a somewhat surprising result, which
however, agrees with the results of Helmlinger et al. (1997),
who observed that solid mechanical stress decreases the
apoptotic rate. This decrease in the apoptotic rate is likely
to be due to increased packing and concomitantly
enhanced cell–cell interactions, which trigger the suppres-
sion of apoptotic cell death. Moreover, d40 implies b1o0,
that is, the proliferating-to-quiescent bulk transformation
is faster than the quiescent-to-dead bulk transformation.
Similarly, l40 implies that the bulk dying rate must be
larger than the reabsorption rate.

5. Conclusions

Through the introduction of an intermediate model, we
have proved the consistency of two very different models
for heterogeneous MTS growth: a macroscopic model,
based on the ontogenetic growth model of West, Brown
and Enquist, and a mesoscopic one, based on the coarse-
graining of the cell system. Besides its intrinsic importance
as a bridging tool, this unification helps us to establish a
correspondence between hard-to-measure microscopic
parameters and their more accessible macroscopic counter-
parts (see e.g. Fig. 3). The correspondence between the two
models is remarkable, since they stem from completely
different approaches, as stated in the Introduction. It is
important to note that:
1.
 The IM model in its present form is not self-standing,
i.e. it cannot by itself be used for actual simulations,
since it implicitly depends on the evolving nutrient
distribution (provided by the Eq. (3) in the mesoscopic
model).
2.
 The consumption rate of nutrients due to the metabo-
lism, which is explicit in the mesoscopic model is only
implicit in the IM, via the ‘‘ignored’’ Eq. (3). Thus the
metabolism parameters bi correspond to the ‘‘cell
activity’’ parameters in bi in the IM.
3.
 According to Eqs. (20) to (22), the parameters pi are all
equal to 2

3, which indicates that feeding must be
diffusion-controlled to ensure consistency between the
models. However, the values of the parameters pi

depend on the nature of nutrient transport. For
instance, MTS internal vascularization is likely to
change their values. The present treatment lends itself
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Fig. 3. Comparison between the results of a macroscopic (dashed line)

and a mesoscopic (full dots) simulation with the experimental data (empty

squares, Freyer and Sutherland, 1986a) referring to a MTS made of

EMT6/Ro mouse mammary carcinoma cells grown in a culture medium.

The parameters for the macroscopic simulations are: a1 ¼ 0:15, a2 ¼ 0:48,
a3 ¼ 0:59, b0 ¼ �0:012, b1 ¼ 0:0016, b2 ¼ 0:037; the mesoscopic para-

meters are the same as in Fig. 2.
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to suggest, through simulations and mathematical
analysis, the relevance of the effects of different tumor
microenvironments, some of which are easier to study in

vitro or by implanting MTS in model laboratory animals
(Oudar, 2000). For example, we could extend it to the
case of underfeeding (Delsanto et al., 2004; Griffa and
Scalerandi, 2005) and to the development of angiogen-
esis. In the latter case, it would be useful to find a
connection between the various extant mesoscopic
model (Dodds et al., 2001; Byrne and Chaplain, 1995;
Byrne et al., 2006), and the simple predictions about the
dependence of the growth rate on the instantaneous
mass furnished by the macroscopic approach (Menchón
and Condat, 2007). One could also explicitly consider
the presence of growth inhibitors or consider the role of
the necrotic mass in regulating the number of viable
quiescent cells at the interface between the Z0 and Z1

regions. It is well known that necrotic death is
closely related to the release of cytotoxic intra-cellular
substances in the extra-cellular microenvironment
(Greenspan, 1974; Freyer, 1988; Groebe and Mueller-
Klieser, 1996). This process deserves to be considered
with care. To conclude, we have used the simplest
possible form for the dependence of the extra term in the
WBE equation on the pressure. Our results could be
easily generalized to more complicated cases by repla-
cing kP in Eq. (4) with a suitable positive, monotoni-
cally increasing function F ðPÞ. This would not introduce
any qualitative changes in the results obtained here.
Finally, we must remark that in our model the growth
process is controlled by nutrient consumption and the
possible influence of growth promoters/inhibitors is
neglected. We also have neglected part of the cell–cell
interactions and cell-cycle details (Jiang et al., 2005).
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