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An analogy between the adhesion of liquid drops and
single-walled nanotubes
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This paper establishes an analogy between the adhesion of liquid drops and single-walled nanotubes. Carbon nanotubes are
found to be ‘‘super-hydrophobic’’ for radii smaller than �6 Å, whereas the ‘‘hydrophobic/hydrophilic’’ transition takes place at
a radius of �16 Å. The liquid drop analogy provides simple laws for treating the complex problem of the adhesion of highly
deformed single-walled nanotubes. We compare our findings with atomistic or continuum simulations and elastica solutions, finding
a relevant agreement.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The adhesion of liquid drops, reviewed notably by
Quèrè [1] is a fascinating field, some two hundred years
old, and could present analogies with the adhesion of
single-walled nanotubes, recently theoretically investi-
gated by Tang et al. [2]. Continuum [3] or atomistic
[2,4] simulations have confirmed the complex behaviour
involved in the adhesion of single-walled nanotubes,
mainly due to the inevitable presence of large displace-
ments, deformations and contacts. Such adhesion is
therefore outside the domain of linear elasticity and falls
under the elastica theory of shells, for which only
numerical integrations can be obtained [2]. Self-col-
lapsed configurations have also been numerically com-
puted [3,5]. Adhesion between nanotubes is imposed
by van der Waals attraction and, due to the tremendous
surface to volume ratio [6] of nano-objects, becomes pre-
dominant at the nanoscale. Geckos and spiders take
advantage of this, but nanoscale adhesion could pose
limitations to the range of applicability of nano-systems.
Such reasons have motivated the present study, with the
aim of providing simple laws for treating this complex
phenomenon.

The adhesion of a small (i.e. one for which surface
tension prevails over gravity) liquid drop is fully
described by the contact angle h (a function of the
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liquid/solid/vapour surface energies) between drop and
substrate: see Figure 1a (with r = 0). With R0 the radius
of the drop in air and R the radius of curvature of the
spherical cap describing the adhering drop, the radius
of the contact area a can be calculated assuming mass
conservation. The adhesion between single-walled nano-
tubes of radius R0 can be similarly described by the con-
tact angle h (which we expect to be a function of the
adhesion work and bending stiffness), the radius of
curvature R of the deformed non-contact segment, the
radius of curvature r of the blunt notches (that, as a first
approximation, could be assumed to be zero, as for a li-
quid drop) and the contact half-length a = (R � r)sinh
(see Fig. 1a). The nanotube mass conservation basically
imposes its inextensible condition, i.e. a + (p � h)r +
Rh = pR0 (Fig. 1a). Accordingly we deduce:

a
pR0

¼ 1� r=R0

1þ h= sin h
: ð1Þ

For small contacts h! p and a/(p R0) � (1 � r/R0)sinh/
h. This asymptotic solution in the limit of r/R0! 0 can
be directly compared with the analytical result reported
in Ref. [2]; thus, we can define the contact angle for a
single-walled nanotube, having Young’s modulus E,
Poisson’s ratio v, thickness t and contact surface energy
cS (here due to van der Waals attraction):

sin h
h
¼ 1� R�0

R0

; R�0 ¼
ffiffiffiffiffiffiffi
D

2cS

s
; D ¼ Et3

12ð1� v2Þ ; ð2Þ
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Figure 1. Single-walled nanotube (liquid drop) geometry, under large contact/deformation (a), squashed configuration (b), and continuum (up) or
atomistic (down) computed shapes for a (20,0) carbon nanotube [3].
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where D is the nanotube bending stiffness, as imposed by
the shell model. Thus the contact will be ‘‘hydrophobic’’
(h > p/2, water/nanotube repellent) or ‘‘hydrophilic’’
(h < p/2) for R0 < R=

0 or R0 > R=
0 with R=

0 ¼
pR�0=ðp� 2Þ � 2:75R�0 (e.g. R=

0 � 16:5 Å for R�0 � 6 Å)
and ‘‘super-hydrophobic/hydrophilic’’ (h � p,0) for
Table 1. Adhesion of single-walled carbon nanotubes (SWCNTs): shapes co
according to the present drop analogy, simply assuming r = 0 and R�0 � 6 Å

SWCNTs R0 [Å] Computed shapes (reference)

(10,0) 3.915
[2]

(12,0) 4.698 [2]

(30,0) 11.745 [2]

(10,10) 6.781 [4]

(10,10) 6.781 [3]

(20,20) 13.562 [4]

(20,20) 13.562 [3]

(40,40) 27.127 [4]

(40,40) 27.127 [3]

Nanotube (40,40) is the only ‘‘hydrophilic’’ one.
R0 � R�0 or R0 � R=
0. A ‘‘super-hydrophobic’’ nanotube

would have interesting properties, e.g. vanishing rolling
friction, ideal for nano-rolling bearings. In fact Eq. (2)
implies that the contact area is zero (h = p) for
R0 6 R�0, as emphasized in Ref. [2]. Thus R�0 represents
a minimum radius, which gives an estimation of the
mputed by atomistic [2,4] or continuum simulations [3] and prediction
(D = 1.44 · 10�19 Nm, 2cS = 0.40 J/m2)

h [�] R
R0

U
10�10 J=m

a
pR0

h
2R0

180.00 1.00 0.00 0.00 1.00

180.00 1.00 0.00 0.00 1.00

110.01 1.10 4.95 0.33 0.74

161.00 1.00 1.55 0.10 0.97

161.00 1.00 1.55 0.10 0.97

100.84 1.15 5.40 0.36 0.68

100.84 1.15 5.40 0.36 0.68

68.18 1.48 6.60 0.44 0.46

68.18 1.48 6.60 0.44 0.46
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radius r of the blunt notches (and thus, in our treatment,
0 6 r=R0;R�0=R0 6 1Þ.

Introducing Eq. (2) into Eq. (1) we find the following
nonlinear law:

a
pR0

¼ ð1� R�0=R0Þð1� r=R0Þ
2� R�0=R0

: ð3Þ

For small contacts/deformations (h! p or R�0=R0 ! 1)
and vanishing blunt radius (r/R0 ! 0) the prediction
of Eq. (3) is identical to the asymptotic solution reported
in Ref. [2], whereas for large contacts/deformations
(h! 0 or R�0=R0 ! 0) a=ðpR0Þ ¼ ð1� r=R0Þ=2, as coher-
ently imposed by the inextensible condition (see Fig. 1b).
However, note that in the limit of small contacts/defor-
mations and non-vanishing blunt radius our prediction
is slightly different from that reported in Ref. [2]; for
example for r ¼ R�0, a=ðpR0Þ ¼ ð1� R�0=R0Þa with a = 2,
whereas in Ref. [2] a = 1.

The (maximum) height of the flattened nanotube can
be geometrically derived as (Fig. 1a):

h
2R0

¼ Rþ r
2R0

� R� r
2R0

cos h;
R

pR0

¼
1� a

pR0
� p�h

p
r

R0

h
;

ð4Þ
where h is defined in Eq. (2). For h! 0, h,/(2R0)! r/R0

as coherently imposed by the inextensible condition (see
Fig. 1b), whereas for h! p, h,/(2R0) ! 1.

During the loss of adhesion, the classical fracture
mechanics energy balance must hold. Accordingly, the
opposite of the variation of the total potential energy
(elastic energy minus external work) with respect to
the crack surface area (complementary to the contact
area) must be equal to the work of adhesion 2cS (see
Refs. [7,8]). Thus dU = 4cSda (the external work is here
zero), where U denotes the elastic energy per unit length
stored in the nanotube. By integration, following Ref.
[9], we can calculate the energy stored in the largely
deformed nanotube:

U ¼ 4cSa ¼ 4pR0cS
ð1� R�0=R0Þð1� r=R0Þ

2� R�0=R0

: ð5Þ

Let us consider the numerical example investigated in
Ref. [2], as shown in Figure 1c (adapted from Ref.
[2]). Note the similarity between the deformed shapes
of a nanotube and a drop. For the investigated (20,0)
nanotube (R0 = 7.83 Å) the size of the contact calcu-
lated [2] by molecular simulations is 2a = 8.73 Å, with
a flattened nanotube height equal to h = 11.75 Å
(Fig. 1c). Such values are comparable with those ob-
tained by numerically integrating the elastica differential
equation, which yields [2] 2a = 7.67 Å and h = 12.96 Å
(Fig. 1c). The critical radius R�0 must be around 5 Å,
as reported in Ref. [2] ðR�0 � 4:77 ÅÞ or as suggested
by the shape of self-collapsed nanotubes [3] ðR�0 �
r � 5:5 ÅÞ. Note that, taking the theoretical value of
2cS = 0.40 J/m2, R�0 � 4:77 Å would correspond to D =
0.91 · 10�19 Nm, whereas R�0 � 5:5 Å to D = 1.21 ·
10�19 Nm (in Ref. [3] values from the literature between
D = 1.37 · 10�19 Nm and D = 2.35 · 10�19 Nm are re-
ported, whereas in Ref. [2] slightly smaller values, as
emphasized by the same authors, were calculated). We
consider the two limiting hypotheses of r = 0 or
r ¼ R�0. For r = 0 and R�0 � 6 Å we deduce plausible
values of 2a = 9.32 Å and h = 14.35 Å (h = 2.51 radians,
i.e. 143.81�, thus this nanotube is ‘‘hydrophobic’’; the
deformed radius is R = 7.94 Å and the computed elastic
energy per unit length is U = 3.73 · 10�10 J/m). Alterna-
tively, for r ¼ R�0 and R�0 � 4 Å we again deduce plausi-
ble values of 2a = 7.90 Å and h = 13.65 Å (h = 1.92
radians, i.e. 110.01�, R = 8.21 Å, U = 3.16 · 10�10 J/m).
Fitting independently r and R�0 we could identically
match the atomistic simulation results for both a and
h. We further compare our approach with additional de-
formed nanotube shapes computed according to atomis-
tic [2,4] or continuum [3] simulations: the results are
reported and discussed in Table 1. In these cases too a
good agreement is found.

We conclude that our liquid drop analogy could be
useful in treating with simple laws, i.e. Eqs. (1)–(5),
the complex problem of the adhesion of largely de-
formed single-walled nanotubes e.g. in nanovector
therapeutics.
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