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Phenomenological approach to mechanical damage growth analysis

Nicola Pugno,l Federico Bosia,2 Antonio S. Gliozzi,2 Pier Paolo Delsanto,2 and Alberto C;’:upintelri1
1Department of Structural Engineering and Geotechnics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2Department of Physics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
(Received 27 February 2008; revised manuscript received 16 June 2008; published 3 October 2008)

The problem of characterizing damage evolution in a generic material is addressed with the aim of tracing
it back to existing growth models in other fields of research. Based on energetic considerations, a system
evolution equation is derived for a generic damage indicator describing a material system subjected to an
increasing external stress. The latter is found to fit into the framework of a recently developed phenomeno-
logical universality (PUN) approach and, more specifically, the so-called U2 class. Analytical results are
confirmed by numerical simulations based on a fiber-bundle model and statistically assigned local strengths at
the microscale. The fits with numerical data prove, with an excellent degree of reliability, that the typical
evolution of the damage indicator belongs to the aforementioned PUN class. Applications of this result are

briefly discussed and suggested.
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I. INTRODUCTION

It is well known that the mechanisms governing the evo-
Iution of damage and fracture in solids may vary greatly,
depending on the kind of materials considered, their degree
of disorder, the size scale involved, the type of applied load-
ing, etc. [1]. However, regardless of the mechanisms occur-
ring at the microscale and of the specific values of the elastic
parameters, some ubiquitous elements recur in the overall
macroscopic behavior. Indeed, similar patterns of acoustic
emission activity, stress-strain relationship, or nonlinear hys-
teretical behavior can be observed in very different material
specimens ([2] and references therein). This is also true for
the observed scaling properties of other quantities, such as
the dissipated energy or the material strength, for which a
fractal geometrical dependence seems to have been ascer-
tained [3]. In fact, the overall macroscopic behavior of sys-
tems undergoing damage seems to emerge from phenomena
occurring at the microscale, which are also typical of other
physical systems that are driven out of equilibrium (e.g.,
Barkhausen noise in ferromagnets [4]) and can therefore be
treated with methods typical of statistical mechanics [5].
More in general, one would expect strong similarities to exist
between the damage evolution in materials and other self-
limiting growth phenomena observed in other contexts,
where the macroscopic growth process is governed by a sta-
tistical ensemble of smaller-scale units. Examples outside the
area of physics or material science could be the individual
cells in the case of ontogenetic growth or individual settle-
ments in the case of urban growth (for which the evolution
equations may be derived from energetic considerations [6]).

A considerable amount of effort has been devoted in past
years to the description of those systems occurring in such
diverse fields as physics, biology, statistics, and economics
that undergo a time evolution that includes a growth phase
often followed by saturation. Historically, well-established
models, such as those based on the logistic [7], Von Berta-
lanffy [8], or Gompertz [9] equations, have been often ap-
plied and modified according to the specific problems to be
studied. More recently, the allometric growth model of West
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and collaborators [6] has stimulated further interest in the
analysis of the mechanisms responsible for growth and in the
search for common characteristics between systems, which
are very different in both scale and context [10,11]. This has
led to the development of very interesting concepts, such as
the formulation of life’s universal scaling laws [12]. An ex-
tension of West’s law to neoplastic growths has been also
suggested by Delsanto and collaborators [13,14], in which a
dynamical evolution of the fractal exponent is proposed to
describe the transition from an avascular to an angiogenetic
stage of the tumor growth. These studies have led to the
development of a phenomenological universality (PUN)
“bottom-up” approach [15], which seeks to describe an al-
most endless variety of self-limiting growth problems, inde-
pendently of the field of application.

In this paper we aim to derive equations that should apply
to a generic damage evolution model and to compare them
with previous growth models (derived in the framework of a
top-down approach). We then exploit a simple numerical
model to simulate a typical damage progression experiment
on a generic material sample and obtain the macroscopic
behavior from a statistical ensemble of microscopic ele-
ments. The synthetic data are then fitted using the PUN for-
malism. This procedure allows the determination, with a high
degree of confidence, of a correspondence between damage
growth problems and other phenomena belonging to the
same PUN class, possibly leading to some cross-fertilization
among apparently totally unrelated phenomenologies.

II. DAMAGE GROWTH MODEL

Let us consider an unspecified physical system subjected
to an external stress that is increasing in time. In fact, the
analysis presented in this section can be extended to other
systems in diverse fields, where some kind of “damage indi-
cator” Y, as well as a generic “external stress” o causing the
damage can be identified [16,17]. For example, we could
consider a solid having a volume V with a growing damaged
subvolume portion v, due to an increasing external stress o.
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Thus, we would define Y=v/V and write the damage evolu-
tion equation in the classical form [18,19]

dy
5 =8.0). (1)
During the damage process, the power loss by both fracture
and friction can be written as W=wuv? [3,20], where p
=D/3 and D is the fractal dimension [21] of the dissipation
domain (2<D<3) and w is the power loss per “fractal vol-
ume.” Indeed, it has been often observed that the damage
process occurs in a fractal domain comprised between that of
a surface and of a volume, with size-dependent multifractal
exponent D, ranging from 2 for small sizes to 3 for large
sizes. Rare cases with D>3 (e.g., for asteroids D is around
4) have also been observed in the fracture of three-
dimensional solids (this seems to be a consequence of a par-
ticle size distribution with D >3 [22]).
The conservation of energy implies

W=fv +F dv/dt, (2)

since the energy is dissipated both as friction (f) on preex-
isting defects and in fracture (F), to create new defects. Ac-
cordingly, by dividing (2) by V and rearranging, we may
describe the growth of fractal damage as

Wy Ly (3)
dt FV'7 F

Since it is reasonable to assume that this type of physical
system belongs to the category of self-limiting growth phe-
nomena (but this condition can be straightforwardly elimi-
nated), we impose the saturation of the damage factor (i.e.,
dY/dt=0 at Y=1), so that w=fV'~?. Accordingly,

dy f

—==(Y"-Y). 4

=R ) (4)
This growth law is identical to Eq. (9) in [14], which is the
characteristic equation for the PUN class U2, provided

f
;m=p= 7 ()
It is interesting to note the analogy between this system
and other self-limiting growth phenomena, where the evolu-
tion equations are determined by the balance between com-
peting processes. Fracture and friction in this case play the
role of, e.g., cell growth and maintenance.
Integrating Eq. (4), the evolution of the damage can con-
sequently be described by

Y(t,0) = [1= (1= Yg7)ePH-PIi=p), (6)

where Y,=Y(0,0) and where we used Y.=lim,_. Y(z,0)
=1.

In the case of a linearly increasing applied stress o=kt,
Eq. (6) can also be seen as a damage evolution equation with
respect to stress. This dependence is visualized in Fig. 1. We
have chosen for simplicity the following set of parameters:
f=11J/s, F=11], and k=2 X 10° Pa/s. Four different curves
are presented, for p=0.1, 0.6, 0.8, and 0.9. Two different
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FIG. 1. (Color online) Damage factor (¥) dependence on in-
creasing stress o for increasing values of the fractal exponent p.

types of growth curves (logistic- or sigmoid-like) can occur
for different p values, depending on whether inflection points
exist for >0 or not.

Turning to the time dependence expressed in Eq. (6), the
model predicts a maximum damage rate (d°Y/dt*=0) before
failure (as observed during acoustic emission) at ¥
:—ﬁln[ﬁﬁ], with Y*=p"U-"_—je. as a function of the
fractal dimension only. In fact, Y* could represent a “critical
damage level”. Defining the failure at a conventional value
of the damage level (e.g. percolation threshold) Y*<Y,<1
one can derive the time to failure 7,=r*, since Y(,0)=1.

III. NUMERICAL SIMULATIONS

In order to verify the applicability of the model proposed
in the previous section, we have generated synthetic data
using a recently developed simulation code for the descrip-
tion of damage progression and acoustic emission (AE) in
materials [23] and verified the correlation of the results with
the U2 class. The simulation code is based on an equal-load-
sharing fiber-bundle-model (FBM) approach [24-28], with
randomly assigned (Weibull-distributed) fiber strengths oc;;.
The specimen is modeled by adopting a discretization in N,
“bundles” of N, fibers and by applying at every time step the
analytically calculated local loads deriving from an increas-
ing externally applied stress o(z). An AE event is generated
whenever the local stress exceeds the assigned fiber peak
stress. In this case the corresponding fiber stiffness k;; is set
to zero and the related section (or bundle) undergoes a cor-
responding stiffness reduction. This can be considered as an
example of a model with quenched disorder. An alternative
approach is to adopt a model with annealed disorder by de-
creasing adjacent fiber strengths in correspondence with fiber
ruptures. However, this modification is beyond the scope of
this work and will be discussed elsewhere.

Energy dissipation owing to the formation of new fracture
surfaces at each AE event is also accounted for in the formu-
lation: energy balance requires that the variation of the total
potential energy AU;;(r), when an AE event occurs at the
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location (i, ), be compensated by the kinetic energy AT;(1),
released in the form of a stress wave, and dissipated energy
AQ,(1), in the formation of a crack surface at micro- or
mesoscale. Thus, we can write

AUij(f) + ATij(f) + AQ,-j(t) =0. (7)

The potential energy variation AU,(1) is related to the im-
posed displacement x(z) (or force) and the overall specimen
stiffness variation AK;(¢) occurring in correspondence with
the AE event,

1
AU;(1) = Ex(t)zAKij(t)7 (8)

while the dissipated energy A();; is assumed to be propor-
tional to the newly created crack surfaces A;;:

AQllz GCAl]’ (9)

where G is the critical strain energy release rate of the ma-
terial. The surfaces A;; are also assigned randomly, according
to either a uniform or an inverse power-law distribution, in
conformity with the multiscale character of the fracturing
process [3].

As discussed elsewhere [23], the model yields results that
are consistent with the experimental results from AE tests
used to characterize damage progression in materials. In par-
ticular, avalanches in fiber ruptures occur, due to the load
transfer from broken to intact fibers in the course of loading.
Specific distributions for these avalanches are known for dif-
ferent FBMs—namely, an asymptotic power-law distribution
with exponent —5/2—occurring in the majority of cases,
although exceptions exist [24,25]. The present model also
yields a power-law distribution P for the released AE
energy T

P(T) = T, (10)

with an exponent « which typically varies between —1.6 and
—2.1, depending on the chosen parameters (mainly the cho-
sen Weibull modulus m). Typical results are shown in Fig. 2
for a Young’s modulus of E=23 GPa, a material nominal
strength of o,=10 MPa, G-=10, N,=5000, Ny,=1000, and
m=2. The scaling exponent here is a=-1.9. This and other
numerically computed exponents differ from the —5/2 value,
but are closer to the experimental values found in the litera-
ture (see [29] and references therein). It has been suggested
that this power-law behavior could be indicative of an
underlying critical dynamics of the process, related to the
absence of a characteristic length and a self-similarity in the
microfracturing phenomenon.

As system variable characterizing the damage evolution
we now choose Y(1)=T(r)/Ty,~i.e., the kinetic energy T re-
leased due to AE at time ¢ divided by the total energy T\
released in the entire loading cycle. An initial condition of
Yy=0.1 is chosen to account for preexisting damage in the
sample. A specimen with the discretization N,=1000 and
N,=100 is considered, subjected to a linearly increasing
load. To evaluate the influence of the Weibull modulus, three
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FIG. 2. (Color online) Distribution P(T) of the simulated re-
leased AE energy T during damage progression in a virtual speci-
men. Simulation data include error bars.

different values are considered: m=2.5, m=1.7, and m=0.7.
The results are discussed together with PUN analysis in the
following section.

IV. COMPARATIVE ANALYSIS

Numerical results from Sec. III are analyzed using the
PUN approach [14], based on a power-series expansion of
the second derivative 7 of the rescaled system variable with
respect to its first derivative a=z. The stress o is assumed to
be the independent variable.

We recall here the basic formalism

i=fla)= 2, b,d", (11)
n=1

Y Y,
Z(T)ZIH(E)/IH(Z)’
o322

G_Z(T)_YO do do )’

o 1 (dY
=2 () (12)
ln(Yoc/Yo) YO dt 0

where

and

Yo=Y(0), Y.=lim Y(0). (13)

If a satisfactory fit of the experimental data is obtained by
truncating the set at the Nth term (or power of a), then we
state that the underlying phenomenology belongs to the PUN
class UN. In the present context we will limit the discussion
to the first three classes Ul, U2, and U3, and assume Y.,
=1, as discussed in Sec. II.

To determine the lowest class to satisfactorily describe the
data, the curve f(a) is plotted as a function of a for each of
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FIG. 3. Comparison among the Ul, U2, and U3 fittings of the curve f(a), obtained from the simulation data for the three considered
values of the Weibull modulus m. While U2 provides a substantial improvement over Ul (dotted), almost no gain is obtained with U3, in
spite of the additional parameter. In fact, in the figures, the U3 are almost indistinguishable from U2 curves.

the three selected values of the Weibull modulus, showing
that in each case the class U2 provides an excellent fit to the
data obtained by simulation. Indeed, as shown in Fig. 3, in
all the three cases the Ul dotted straight line does not ad-
equately fit the curves f(a), while the U2 line exhibits a very
good agreement (R>>0.998), and there is almost no im-
provement in going to U3, in spite of the additional param-
eter included in this class. This confirms the validity of the
model presented in Section II.

Let us now use Eq. (6) to fit the curves Y(o,7) obtained
numerically as a function of the applied stress. The data in
Fig. 4 show that different types of curves are obtained for
Weibull modulus values of m>1 and m<1, respectively.
This could be expected, due to the fact that the Weibull dis-
tribution becomes monotonically decreasing for m <1. Both
types of curves can nevertheless be adequately fitted by U2
curves, with excellent values of R2. This again confirms the
validity of the proposed damage model.

From the fit it is possible to extract the value of the p
parameter. For the three values of m=2.5, 1.7, and 0.7 we
obtain p=0.90, 0.83, and 0.62, respectively. The logistic-type
behavior of Y(o,f) obtained for m=0.7 corresponds to p
<0.67—i.e., D <2—while the sigmoid-type curves obtained
for m>1 correspond to p >0.67—i.e., 2 <D <3—thus high-
lighting the relationship between the Weibull modulus and p.

V. CONCLUSIONS

The PUNS represent a tool for the classification and inter-
pretation of different phenomenologies in the context of
cross-disciplinary research. The PUN class U2 is of special
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FIG. 4. Simulated damage factor Y (dots) vs applied stress for
different values of the Weibull modulus: m=0.7, 1.7, and 2.5 start-
ing from the top, respectively. The data are fitted with Eq. (6). The
excellent values of R? confirm that the analyzed phenomenology
belongs to the PUN U2 class.
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relevance, since it includes, as subcases, all growth models
proposed to date [30]. As an example of an application of the
proposed methodology, we have considered here the study of
the damage evolution in a generic physical system subjected
to an external stress, which is increasing in time. We have
found a correspondence between the probability function,
which determines the type of damage evolution, and the ex-
ponent p of the U2 fitting curve.

Given the absolute generality of the approach, our find-
ings give rise to a number of intriguing questions. For ex-
ample, if we proceed in analogy with the work by West and
collaborators in the field of allometric scaling of living or-
ganisms [5], can a “universal” damage growth curve be con-
structed also for materials subject to loading, once the re-
quired set of rescaling parameters is known? If this were
true, many applications could be envisaged. One possibility
could be to exploit the method as a simple tool to verify
specimen integrity. In principle, for a given known material,
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it could be possible to extract only a small part of the curve
Y(o,1) and derive the value of p. Once the p parameter is
known, it is trivial to extract other relevant parameters, such
as the critical damage level of the structure under study. Fi-
nally, the capability of the method to detect and quantify
minute differences among similar-looking data (e.g., between
the sigmoidal curves obtained with m=2.5 and 1.7) demon-
strates its ability to act as a “magnifying glass” in the analy-
sis of experimental data (in this case to evaluate the damage
state of a sample).
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