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Thermomechanical Stresses in Fullerenes at Nanotube
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The thermomechanical stresses acting between a nanotube and fullerenes encapsulated on it are computed. After a general
formulation, based on elasticity, we have applied the analysis to C82@(10,10) or C60@(10,10) peapods finding stresses in the
gigapascal range or vanishing, respectively. The analysis suggests that a thermal control could be used to produce smart fullerenes
at nanotube systems, for example, as two-stage nanovectors for drug delivery.
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1. INTRODUCTION

The Royal Swedish Academy of Sciences awarded the 1996
Nobel Prize in Chemistry jointly to Curl, Kroto, and Smalley
for their discovery in 1985, together with Heath and O’Brien
[1], of fullerenes. It is common belief that the discovery
of carbon nanotubes (CNTs) took place in 1991 thanks
to Iijima [2], who reported in Nature the observation of
multiwalled CNTs. In 1993, in the same issue of Nature,
two independent groups, again Iijima with Ichihashi [3]
and Bethune et al. [4], reported the observation of single-
walled CNTs. The impact of these papers on the scientific
community has been unquestionably tremendous. In spite
of this, the first direct observation of a multiwalled CNT
(by force subsequent to the production of the transmission
electron microscope) was previously reported in 1952 in the
Journal of Physical Chemistry of Russia by Radushkevich and
Lukyanovich [5], whereas an image, even if controversial, of
a single- (or possibly double-) walled CNT was reported in
1976 by Oberlin el al. in the Journal of Crystal Growth [6].
Two editorials, appearing in Carbon in 1997 [7] and 2006
[8], support these pioneering observations.

Aside from the controversy surrounding the discovery
of nanotubes, fullerenes and nanotubes have introduced
humanity to the new nanoera. In particular, the giant
strength and Young’s modulus of carbon fullerenes and
nanotubes, combined with a low density, promise to rev-
olutionize materials science, as required in the design of

super-strong space elevator megacables [9] or super-adhesive
Spiderman suits [10]. Combining the two nanostructures
even more intriguing systems could be realized.

In this paper, we analyze the thermomechanical stresses
acting between a nanotube and encapsulated fullerenes (e.g.,
see [11, 12]). We have solved the problem treating the
fullerenes as a fluid inside an elastic channel (nanotube). We
have applied the analysis to a C82@(10,10) system finding
huge thermomechanical stresses, in the gigapascal range. A
C60@(10,10) system is also considered for comparison and
is found free of stresses. Thus the analysis suggests that a
thermal control could be used to produce smart fullerenes
at nanotube systems, for example, as two-stage nanovectors
for drug delivery.

2. THE THERMOMECHANICAL ELASTIC MODEL

Consider a nanotube filled by fullerenes (Figure 1). After a
temperature variation, the nanotube diameter will change,
interacting with the fullerenes. We treat the nanotube as
an elastic cylindrical shell and the fullerenes as elastic
spheres. We assume a constant pressure distribution between
nanotube and fullerenes, due to the small spacing between
fullerenes (0.34 nm), so that their action on the nanotube can
be considered as a distributed pressure, for example, as a fluid
inside an elastic channel.

Let us consider a linear elastic isotropic sphere of inner
and outer radii a and b subjected to inner and outer pressures
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Figure 1: Example of fullerenes at nanotubes (Courtesy of Chiu Po-
Wen).

p and q, respectively. The radial σr and circumferential σϑ
stressesat a generic radius a < r < b are [13]
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b3 − a3

(
− b3q + a3p +

a3b3

r3
(q − p)

)
,

σϑ = 1
b3 − a3

(
− b3q + a3p − a3b3

2r3
(q − p)

)
.

(1)
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where E and ν are the Young modulus and Poisson ratio of
the material and u is the radial elastic displacement (along
r). We will apply (1) and (2) to fullerenes, thus considering
them as elastic spheres.

Analogously, let us consider a linear elastic isotropic
cylinder (of length L) of inner and outer radii a and b
subjected to inner and outer pressures p and q, respectively.
The radial and circumferential stresses at a generic radius
a < r < b are [13]
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Linear elastic isotropic laws for cylindrical symmetry become

εr ≡ du
dr
= σr

E/
− ν/

E/
σϑ, εϑ ≡ u

r
= σϑ

E/
− ν/

E/
σr ,

E/ = E, v/ = ν for plane stress;

E/ = E

1− v2
, v/ = v

1− v
for plane strain.

(4)

We can assume plain stress condition (i.e., σz = 0) or plane
strain condition (i.e., εz = 0, for which in addition σz =
ν(σr +σϑ)). Assuming a nanotube with free ends, the first case
is the most realistic, whereas the second case better describes
fixed ends; thus we will treat nanotubes as elastic cylinders,
by (3) and (4).

Consider a single fullerene at temperature T as a linear
elastic isotropic sphere (elastic properties with subscript “ f ”)
having inner and outer radii ri and ro, respectively. The

confinement from the nanotube is described by the external
pressure p. According to (1) and (2)

σr(r) = −1− r3
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]
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where utot is the total (elastic + thermal) radial displacement,
α f is the thermal expansion coefficient for fullerene (in
general a function of the temperature, see Section 3), and ΔT
is the temperature variation.

Thus the fullerene elastic outer radius r∗o (ro if unstr-
essed) is

r∗o = ro + utot
(
r = ro

)
. (6)

Now consider a nanotube at temperature T as a linear
elastic isotropic cylinder (elastic properties with subscript
“n”) having inner and outer radii Ri and Ro, respectively. The
confinement from the fullerenes is described by the internal
pressure p. According to (3) and (4):
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2
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utot(r)= u(r)+αn(T)ΔTr=
[
σϑ(r)

E/
n
− ν/n

E/
n
σr(r)+αn(T)ΔT

]
r.

(8)

Thus the nanotube elastic inner radius R∗i (Ri if unstressed)
is

R∗i = Ri + utot
(
r = Ri

)
. (9)

The compatibility of the displacements (elastic contact
between nanotube and fullerenes) implies

r∗o (p,ΔT) = R∗i (p,ΔT). (10)

The solution of (10) gives the effective internal pressure
p∗; the fullerenes/nanotube internal/external radius as a
function of temperature are simply given by r∗i (p∗,ΔT) =
r∗o (p∗,ΔT) − tR∗o (p∗,ΔT) = R∗i (p∗,ΔT) + t, where t
is the shell thickness (0.34 nm); moreover, r∗0 (p∗,ΔT) =
R∗i (p∗,ΔT) can be derived from (9). From the computed
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Table 1: Computed values for C60@(10,10), thermomechanical stresses are vanishing.

T [K] αf [K−1] αn [K−1] r/o [nm] R/
i [nm] r∗o [nm] R∗i [nm]

290 0.000006 −0.000009 0.500000 0.530000 0.500000 0.530000

280 0.000005 −0.000008 0.499973 0.530045 0.499973 0.530045

270 0.000005 −0.000008 0.499950 0.530086 0.499950 0.530086

260 0.000005 −0.000008 0.499931 0.530124 0.499931 0.530124

250 0.000004 −0.000008 0.499917 0.530159 0.499917 0.530159

240 0.000004 −0.000007 0.499906 0.530191 0.499906 0.530191

230 0.000003 −0.000007 0.499900 0.530219 0.499900 0.530219

220 0.000003 −0.000007 0.499898 0.530245 0.499898 0.530245

210 0.000003 −0.000006 0.499900 0.530267 0.499900 0.530267

200 0.000002 −0.000006 0.499906 0.530286 0.499906 0.530286

190 0.000002 −0.000006 0.499917 0.530302 0.499917 0.530302

180 0.000001 −0.000005 0.499931 0.530315 0.499931 0.530315

170 0.000001 −0.000005 0.499950 0.530324 0.499950 0.530324

160 0.000000 −0.000005 0.499973 0.530331 0.499973 0.530331

150 0.000000 −0.000005 0.500000 0.530334 0.500000 0.530334

140 0.000000 −0.000004 0.500031 0.530334 0.500031 0.530334

130 −0.000001 −0.000004 0.500067 0.530331 0.500067 0.530331

120 −0.000001 −0.000004 0.500106 0.530324 0.500106 0.530324

110 −0.000002 −0.000003 0.500150 0.530315 0.500150 0.530315

100 −0.000002 −0.000003 0.500198 0.530302 0.500198 0.530302

90 −0.000003 −0.000003 0.500250 0.530286 0.500250 0.530286

80 −0.000003 −0.000002 0.500306 0.530267 0.500306 0.530267

70 −0.000003 −0.000002 0.500367 0.530245 0.500367 0.530245

60 −0.000003 −0.000002 0.500329 0.530219 0.500329 0.530219

50 −0.000002 −0.000002 0.500286 0.530191 0.500286 0.530191

40 −0.000002 −0.000001 0.500238 0.530159 0.500238 0.530159

30 −0.000001 −0.000001 0.500186 0.530124 0.500186 0.530124

20 −0.000001 −0.000001 0.500129 0.530086 0.500129 0.530086

10 0.000000 0.000000 0.500067 0.530045 0.500067 0.530045

value of the pressure p∗ the thermomechanical stresses and
strains in the fullerenes and nanotubes can be calculated via
(1)–(4).

3. APPLICATION TO THE C82(10,10) OR
C60(10,10) PEAPODS

According to the previous analysis, we consider nanotube
or fullerenes as elastic cylindrical or spherical thin shells;
we assume a constant thickness t and plane stress condition
and both nanotube and fullerenes composed by the same
material, for which we assume Ef = En = E ≈ 1 TPa,
ν f = νn = ν ≈ 0 (carbon). For an (n,m) nanotube and for
Cl fullerenes, the mean radii (at room temperature, i.e., at
290 K) are respectively given by

Rn = Ro + Ri

2
≈ 0.0392

√
n2 + m2 + nm nm,

Rf = r = ro + ri
2

≈ 0.0458
√
l nm,

(11)

so that Ri = Rn− t/2 and ro = Rf + t/2 with t = 0.3 nm (close
to the van der Waals spacing [14]). For ro > Ri mechanical
stresses will be present.

In addition, the thermal volumetric expansion coefficient
β f of carbon fullerenes is [15]

β f ≈ 3α f (T) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1× 10−5 T

70
T < 70 K,

1× 10−5 T − 150
80

70 K ≤ T < 400 K,

(12)

which thus changes sign around 70 K, whereas the thermal
expansion coefficient of a carbon nanotube, according to
[15], is always negative in the considered temperature range:

αn ≈ −1.2× 10−5 T

400
T < 400 K. (13)
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Table 2: Computed values for C82@(10,10), thermomechanical stresses are in the gigapascal range.

T [K] r/o [nm] R/
i [nm] p [MPa] σr f , σrn [MPa] σϑ f [MPa] σϑn [MPa] r∗o [nm] R∗i [nm]

290 0.56000 0.53000 18939.39 −18939.39 −12941.92 42929.29 0.55469 0.55919

280 0.55997 0.53004 18892.14 −18892.14 −12909.63 42822.18 0.55468 0.55916

270 0.55994 0.53009 18849.84 −18849.84 −12880.72 42726.29 0.55466 0.55914

260 0.55992 0.53012 18812.49 −18812.49 −12855.20 42641.64 0.55465 0.55912

250 0.55991 0.53016 18780.09 −18780.09 −12833.06 42568.21 0.55465 0.55911

240 0.55990 0.53019 18752.65 −18752.65 −12814.31 42506.01 0.55464 0.55909

230 0.55989 0.53022 18730.16 −18730.16 −12798.95 42455.04 0.55464 0.55909

220 0.55989 0.53024 18712.63 −18712.63 −12786.96 42415.30 0.55464 0.55909

210 0.55989 0.53027 18700.05 −18700.05 −12778.37 42386.78 0.55465 0.55909

200 0.55990 0.53029 18692.42 −18692.42 −12773.16 42369.49 0.55466 0.55910

190 0.55991 0.53030 18689.75 −18689.75 −12771.33 42363.44 0.55467 0.55911

180 0.55992 0.53031 18692.03 −18692.03 −12772.89 42368.61 0.55469 0.55913

170 0.55994 0.53032 18699.27 −18699.27 −12777.83 42385.01 0.55471 0.55915

160 0.55997 0.53033 18711.46 −18711.46 −12786.16 42412.63 0.55473 0.55917

150 0.56000 0.53033 18728.60 −18728.60 −12797.88 42451.49 0.55475 0.55920

140 0.56004 0.53033 18750.69 −18750.69 −12812.97 42501.57 0.55478 0.55923

130 0.56007 0.53033 18777.74 −18777.74 −12831.46 42562.89 0.55481 0.55927

120 0.56012 0.53032 18809.75 −18809.75 −12853.33 42635.43 0.55485 0.55932

110 0.56017 0.53031 18846.70 −18846.70 −12878.58 42719.20 0.55489 0.55936

100 0.56022 0.53030 18888.62 −18888.62 −12907.22 42814.19 0.55493 0.55942

90 0.56028 0.53029 18935.48 −18935.48 −12939.24 42920.42 0.55497 0.55947

80 0.56034 0.53027 18987.30 −18987.30 −12974.65 43037.88 0.55502 0.55953

70 0.56041 0.53024 19044.07 −19044.07 −13013.45 43166.56 0.55508 0.55960

60 0.56037 0.53022 19033.19 −19033.19 −13006.02 43141.91 0.55504 0.55956

50 0.56032 0.53019 19020.96 −19020.96 −12997.66 43114.18 0.55499 0.55951

40 0.56027 0.53016 19007.37 −19007.37 −12988.37 43083.36 0.55494 0.55946

30 0.56021 0.53012 18992.41 −18992.41 −12978.15 43049.47 0.55489 0.55940

20 0.56014 0.53009 18976.10 −18976.10 −12967.00 43012.49 0.55483 0.55933

10 0.56007 0.53004 18958.43 −18958.43 −12954.92 42972.43 0.55476 0.55927

Thus, according to these numerical solutions, following the
analysis reported in Section 2, we derive

p= p∗

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E
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)(

1+αnΔT
)

Rn/t
(
Rn − t/2

)
+Rf /(2t)

(
Rf + t/2

) =χ

if χ > 0 (contact),

0 if χ ≤ 0 (no contact),

σ (max)
r f ,n = −p, σϑ f = −

Rf

2t
p, σϑn = Rn

t
p,

R∗f ,n = Rf ,n

(
1 +

σϑ f ,n

E
+ α f ,nΔT

)
,

R/
f ,n = Rf ,n

(
1 + α f ,nΔT

)
,

(14)

where σ (max)
r is the maximum radial stress, thus evaluated at

ro and Ri (at ri and Ro we have σr = 0) and R/
f ,n are the radii of

the nanotube and fullerenes if assumed to be not interacting.

The cases of a (10,10) nanotube (Rn ≈ 0.68 nm) coupled
with C60 (Rf ≈ 0.35 nm) or C82 (Rf ≈ 0.41 nm) fullerenes
cooled from 290 K to 10 K are reported in Tables 1 and 2,
respectively. Note that the diameter variation is very small,
but stresses are huge for C82@(10,10), in the gigapascale
range, but are vanishing for the C60@(10,10) peapod. Note
the maximum circumferential tensile stress in the nanotube
around 70 K of 43 GPa, whereas the circumferential com-
pression in the fullerenes is of 13 GPa; the calculated contact
pressure is of 19 GPa.

Considering different elastic constants (E, ν) would cor-
respond to slightly different values, whereas the thermal
expansion coefficients and in general the radii, unfortunately
not fully defined for an atomistic object (see (8) and (11)),
play a dramatic role on the computed thermomechanical
stresses. Thus the analysis is accurate in the procedure but the
deduced thermal stresses must be viewed just as an example
of calculation. Slightly changing the definition of the radii
(e.g., considering a different value for t) we have found an
intermediate behaviour in which the interaction fullerenes-
nanotube vanishes only in a given temperature range. This
suggests that fullerenes (other types of nanoparticles can
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be envisioned too) could be released from the nanotube by
thermal activation, a perhaps useful concept for producing
innovative two-stage nanovectors capable of smartly deliver-
ing the fullerenes/drugs by a remote thermal control.

4. CONCLUSIONS

According to our analysis, the thermomechanical stresses of
a fullerenes at nanotube peapod can be tuned by varying the
temperature in a controllable way. Tunable stiffness and band
structure (metallic, semiconductor) of a nanotube could thus
be achieved by embedding fullerenes on it and by controlling
the temperature. The analysis suggests that smart fullerenes
at nanotube peapods, such as two-stage nanovectors for drug
delivery, could in principle be realized by remote thermal
activation.
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