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The influence of the slenderness (shape effects) of a specimen in compression and of the friction between it and the

loading platens on the dissipated energy density and on the compressive strength (strain-softening response) is

theoretically and experimentally analysed. The energy dissipated during the process is assumed to be proportional

to the area of the free surface of the fragments created under compression. A very general law, describing the

energy dissipation in natural as well as in man-made fragmentation phenomena, is herein presented, obtaining, as

particular cases, the classical comminution laws (Surface, Volume and Third Comminution theories). As a

consequence, the dissipated energy density and the strength for a structural element under compression are

obtained, by varying its slenderness under different boundary friction conditions. Finally, a comparison between

experimental data and theoretical predictions on shape effects is presented. The influences of the specimen

slenderness and friction on dissipated energy density and compressive strength are captured by the proposed model

in a satisfactory way.

Notation

A f total fracture surface area of fragments

b specimen basis side

D fractal exponent

h specimen height

Np total number of fragments

P cumulative size-distribution function for

fragments

p probability size-distribution function for

fragments

r fragment size

rmax size of the largest fragment

rmin size of the smallest fragment

V = l3 specimen volume under compression

Vf = l3f fragmented volume

W energy dissipated during fragmentation

� friction-exponent

º =
h

b
specimen slenderness

�C material strength

� =
W

V
dissipated energy density under

compression

Introduction

Although the compressive mechanical behaviour of

concrete, has been studied by several authors, there is

still no complete or systematic treatment, even if many

salient aspects have already been emphasised. The most

important of these aspects is represented by the phe-

nomenon of strain-softening, that presents different

characteristics by varying the test conditions. There are

in fact several parameters to be taken into account, and

two are the most important: the slenderness of the

specimen and the friction between the specimen and

the loading platens.

The investigations carried out by Carpinteri et al.
1,2

emphasised these aspects both numerically and experi-

mentally. The present investigation deals with this topic

from a theoretical point of view based on the fractal

fragmentation theory.
3–5

Several theoretical models have been proposed link-

ing fractals
6,7

to fracture and fragmentation.
8

These

models have been recently reviewed by Perfect.
9

Carpinteri
10

and Carpinteri et al.11,12 used the fractal

and multifractal approaches to explain the scaling laws

Magazine of Concrete Research, 2002, 54, No. 6, December, 473–480

473

0024-9831 # 2002 Thomas Telford Ltd

Department of Structural Engineering and Geotechnics, Politecnico di

Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

(MCR 952) Paper received 25 June 2001; last revised 25 January

2002; accepted 9 June 2002



for strength and toughness in the breaking behaviour of

disordered materials. Engleman et al.13 applied the

maximum entropy method to show that the number-size

distribution follows a fractal law for fragments that are

not too large. By combining a fractal analysis of brittle

fracture with energy balance principles, Nagahama
14

and Yong and Hanson
15

were able to derive a theor-

etical expression for the fragment size distribution as a

function of energy density. Aharony
16

predicted the

fragment size distribution from clusters of connected

bonds in a cubic lattice using percolation theory. On

the other hand, only more recently has the fragmenta-

tion theory been applied to the study of compres-

sion.
11,17

The aim of this paper is to evaluate the shape effects

on the energy dissipation and strength during the frag-

mentation of specimens under compression, by varying

their slenderness, taking into account friction phenom-

ena. This result is a considerable advancement on the

previous knowledge.

Fractal fragmentation theory

After comminution or fragmentation, the cumulative

distribution of particles with radius smaller than r

is
5,18–20

p(, r) ¼ 1� rmin

r

� �D

(1)

with D typically comprised between 2 and 3 (e.g.

artificially crushed quartz D = 1·89, disaggregated

gneiss D = 2·13, disaggregated granite D = 2·22, broken

coal D = 2·50, projectile fragmentation of quartzite

D = 2·55, projectile fragmentation of basalt D = 2·56,

fault gouge D = 2·60, sandy clays D = 2·61, terrace

sands and gravels D = 2·82, glacial till D = 2·88, ash

and pumice D = 3·54).
18

The related boundary conditions are

p(, rmin) ¼ 0 (2a)

p(, rmax) ffi 1 (2b)

if rmin � rmax.

Of course, the complementary cumulative distribu-

tion of particles with radius larger than r is

p(. r) ¼ 1� p(, r) ¼ rmin

r

� �D

(3)

The probability density function p(r) times the interval

amplitude dr represents the percentage of particles with

radius comprised between r and r þ dr. It is provided

by derivation of the cumulative distribution function

equation (1)

p(r) ¼ dp(, r)

dr
¼ D

rD
min

r Dþ1
(4)

The total fracture surface area is obtained by inte-

gration

A f ¼
ð rmax

rmin

N p(4�r2) p(r)dr

¼ 4�N p

D

D� 2
rD

min

1

rD�2
min

� 1

rD�2
max

� �

ffi 4�N p

D

D� 2
r2

min (5)

where Np is the total number of particles.

On the other hand, the total volume of the particles

is

V f ¼
ð rmax

rmin

N p

4

3
�r3

� �
p(r)dr

¼ 4

3
�N p

D

3� D
rD

min r3�D
max � r3�D

min

� �

ffi 4

3
�N p

D

3� D
rD

min r3�D
max (6)

If we assume a material ‘quantum’ of size rmin =

constant
5,19,21–23

and a hypothesis of self-similarity, that

is, rmax /
ffiffiffiffiffiffi
V f

3
p

,
24

the energy W dissipated to produce

the new free surface in the comminution process, which

is proportional to the total surface area A f ,
25,26

can be

obtained eliminating the particle number from equa-

tions (5) and (6)

W / A f / V
D=3
f (7)

and represents an extension of the Third Comminution

theory, where W / V 2:5
f .

27
The extreme cases contem-

plated by equation (7) are represented by D = 2, surface

theory,
28,29

when the dissipation really occurs on a sur-

face (W / V
2=3
f ), and by D = 3, volume theory,

29,30

when the dissispation occurs in a volume (W / Vf ).

The experimental cases of comminution are usually

intermediate, as well as the size distribution for con-

crete aggregates due to Füller.
31

On the other hand,

concrete aggregates frequently are a product of natural

fragmentation or artificial comminution. If the material

to be fragmented is concrete, we have therefore a

double reason to expect a fractal response.

The energy dissipation occurs on a two-dimensional

surface, rather than on a morphologically fractal set.

On the other hand, the distribution of particle size

follows a power-law, the number of infinitesimal par-

ticles tending to infinity.

The fundamental assumptions of material ‘quantum’

and of self-similarity can be derived from the more

general hypothesis that the energy dissipation must oc-

cur in a fractal domain comprised, in any case, between

a surface and a volume.
19–20

If we assume D , 2, from equation (5) we have
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A f ffi 4�N p

D

2� D
rD

min r2�D
max (8)

equation (6) is still valid and then equation (7)

becomes

W / A f /
V f

rmax

(9)

From equation (9) we obtain rmax = constant·
ffiffiffiffiffiffi
V f

3
p

, if

the dissipation is assumed to be proportional to V
2=3
f

even when D , 2. The self-similarity assumption has a
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Fig. 1. Micro-cracked confined regions for friction tests
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Fig. 2. Stress–strain experimental curves: (a) specimen with side-length of 50 mm; (b) specimen with side-length of 100 mm; (c)

specimen with side-length of 150 mm
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statistical nature:
24

the larger the fragmented volume,

the larger the largest fragment.

If we assume D . 3, from equation (6) we have

V f ffi
4

3
�N p

D

D� 3
r3

min (10)

equation (5) is still valid and then equation (7) becomes

W / A f /
V f

rmin

(11)

From equation (11) we obtain rmin = constant, if the

dissipation is assumed to be proportional to Vf even

when D . 3. The material quantum has been experi-

mentally observed.
19,20,22

Shape effects

A specimen under compression will be fragmented

following the cumulative particle size distribution of

equation (1) with D around 2.
17,20

The fragmented volume Vf = l3
f and the volume of

the specimen under compression V = l3 are not neces-

sarily conincident, so that a power-law relation is

assumed
5

l f / l� (12)

In the extreme cases, the fragmented volume is in-

dependent of the specimen volume so that the exponent

� is equal to zero, or they are directly proportional so

that � is equal to 1. The exponent � permits to model

(b)
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Fig. 2. continued
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the friction between loading platens and specimen.

Only when there is not any friction, the more intuitive

hypothesis of direct proportionality between fragmented

volume and specimen volume can be assumed. As a

matter of fact, the frictional shearing stresses acting at

the interface produce triaxially-confined regions near

the bases where a multitude of microcracks propa-

gate.
1,2

In other words, the micro-cracked confined

region, that is, the fragmented volume, will be constant

varying the slenderness (Fig. 1). For these reasons, we

expect larger values of � for frictionless tests than for

friction ones.

Considering specimens with constant basis area

A = b2, the specimen slenderness º (height h over basis

side b) can be obtained as

º ¼ V

Vº¼1

¼ b2 h

b3
¼ h

b

and, from equations (7) and (12), we can evaluate the

relative dissipated strain energy density � = W=V dur-

ing the compression of the specimen as a function of

its slenderness

�

�º¼1

¼ º
�D�3

3 (13)

Based on equation (13), the shape effects on the

(c)
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compressive strength �C can be extimated assuming

� / �2
C. This hypothesis is only a rough assumption to

have a first estimation of the shape effect on the com-

pressive strength. It corresponds to assume that the pre-

peak area under the stress–strain curve, that is,

1=(2E)�2
C / �2

C, is proportional to the post-peak area.

So, that

�C

�C(º ¼ 1)
¼ º

�D�3

6 (14)

Equations (13) and (14) represent the two fundamen-

tal shape effect laws, based on the developed fractal

fragmentation theory, where D is close to 2 and � can

be considered a best-fit parameter, expected to be lar-

ger for frictionless tests than for friction ones.

Experimental assessment

In this section, a comparison between the experi-

mental
1,2

and the theoretical predictions of equation

(13) is presented. The comparison regards prismatic

concrete specimens (normal strength concrete with �C

around 40 MPa) with a square basis (50 3 50,

100 3 100, 150 3 150 mm2), three different slender-

nesses (0·5, 1·0, 2·0), with or without friction between

the specimen itself and the loading platens, for a total

of 18 cases (Fig. 2).

The friction condition is represented by the direct

contact between specimen and platens, since the shear-

ing stresses at the interface arise in opposition to the

lateral Poisson’s expansion of the specimen. On the

other hand, the introduction of Teflon layers between
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Fig. 3. Dissipated energy density plotted against specimen slenderness. Comparison between theoretical straight line (equation
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the specimen and the loading platens allows for the

lateral expansion of the material; as a consequence,

the shearing stresses at the interface become negligible

(the friction coefficient in that case is close to 0·01).

For more experimental details see Reference 2.

Although the verification of the theoretical work is

based on limited data, equations (13) and (14), de-

scribed by a straight line in a bi-logarithmic diagram,

are experimentally confirmed (Figs 3 and 4). For each

curve, the best-fit parameter � has been reported. The

roughness of the assumption � / �2
C is the reason for

which we derive different values of � for the energy

dissipated and the strength.

As expected, the best-fit parameters � are smaller for

friction tests than for the corresponding frictionless

ones.

Conclusions

A very general law (equation (7)) describing the

energy dissipation in natural or man-made fragmenta-

tion phenomena has been herein presented. It has been

applied to the study of compression. As a consequence,

the very simple shape effect laws of equations (13) and

(14), based on the developed fractal fragmentation the-

ory, can be used to predict the slenderness and friction

influences on the dissipated energy density and com-

pressive strength of quasi-brittle materials under com-

pression.

The analysis of the results presented in the paper

shows a satisfactory correspondence between the theor-

etical predictions and the experimental data. The

experimental ductility and compressive strength

0.3

0.2

0.1

0

�0.1

�0.2

0.40.2�0.2�0.4

log: slenderness

lo
g:

 r
el

a
tiv

e
st

re
ng

th

50 � 50 mm2 with friction

y � �0.52x � 0.04
R2 � 0.96, � � �0.06

0.40.20�0.2�0.4

0.04

0.02

0

�0.02

�0.04

0.1

0.05

0
�0.4 �0.2 0 0.2 0.4

0.40.20

0.06

0.04

0.02

0
�0.02

�0.04

�0.2�0.40.40.20

0.15

0.1

0.05

0
�0.05

�0.1
�0.2�0.4

�0.4 �0.2 0

�0.1

�0.2

0.1

0
0.2 0.4

50 � 50 mm2 without friction

100 � 100 mm2 without friction

150 � 150 mm2 without friction150 � 150 mm2 with friction

100 � 100 mm2 with friction

log: slenderness

log: slenderness

log: slendernesslog: slenderness

log: slenderness

lo
g:

 r
el

a
tiv

e
st

re
ng

th

lo
g:

 r
el

a
tiv

e
st

re
ng

th

lo
g:

 r
el

a
tiv

e
st

re
ng

th

lo
g:

 r
el

a
tiv

e
st

re
ng

th

lo
g:

 r
el

a
tiv

e
st

re
ng

th

y � �0.10x � 0.00
R2 � 0.99, � � 1.20

y � �0.09x � 0.03
R2 � 0.5, � � 1.23

y � �0.33x � 0.01
R2 � 0.99, � � �0.51

y � �0.25x � 0.02
R2 � 0.95, � � 0.75

y � �0.11x � 0.00
R2  � 1, � � 1.17

0

Fig. 4. Compressive strength plotted against specimen slenderness. Comparison between theoretical straight line (equation (14)

with best-fit parameter �) and experimental points (bi-logarithmic diagrams: y = log�C/�C(º = 1) against x = logº)

Fractal fragmentation and quasi-brittle materials in compression

Magazine of Concrete Research, 2002, 54, No. 6 479



increments with the specimen slenderness decrement,

as well as the friction influence, are quantitatively cap-

tured by the proposed approach.
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