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Abstract In this paper the simplest mathematical model to design nano-bio-inspired hier-
archical materials is proposed. Simple formulas describing the dependence of strength, tough-
ness and stiffness on the considered size-scale are derived, taking into account the toughening
biomechanisms.
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1 Introduction

Biological materials exhibit several levels of hierarchy, from the nano- to the macro-scale.
For instance, sea shells have 2 or 3 orders of lamellar structures, as well as bone, similarly
to dentin, has 7 orders of hierarchy (Currey 1977, 1984). These nano-bio-materials are com-
posed by hard and strong mineral structures embedded in a soft and tough protein matrix.
In bone and dentin, the mineral platelets are ~3 nm thick, whereas in shells their thickness
is of ~300nm, with very high slenderness. With this hard/soft nano-hierarchical texture,
Nature seems to suggest us the key for optimizing materials with respect to both strength and
toughness, without losing stiffness. Even if hierarchical materials are recognized to possess
a fractal-like topology (Lakes 1993), only few engineering models explicitly considering
their complex structure are present in the literature (see Gao 2006, Pugno 2006 and related
references). In this letter, a concise mathematical model is presented, based on the force
equilibrium. An energy formulation has been recently proposed by Pugno and Carpinteri
(2008).
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2 The mathematical model

Strength, toughness and stiffness of materials are measured by tensile tests. Imagine a virtual
tensile test on a hierarchically fibre-reinforced bar. Its cross-section, composed by hard inclu-
sions embedded in a soft matrix, is schematized in Fig. 1.

The smallest units, at the level N, are considered scale-invariant and related to the the-
oretical material strengths of the hard and soft phases, respectively o, oy, where usually
o > o,. Each inclusion at the level k£ + 1 contains n; smaller ones, each of them with
cross-sectional area Aj. Thus, the total number of inclusions at the level k is

k
Ny = Hnj.
j=1

The equilibrium equation is F = Aoc = Fy + Fs = NiyAkonk + (A — NiAp) o =
NyAnopn + (A — NyAn) ogny, Yk, where F is the critical applied force, Fy,, Fy are the
forces carried by the hard and soft phases respectively, A = Ay is the cross-section area
of the bar, o¢ is its strength, oy = o, o5k = oy (Vk), and the subscript k refers to the
quantities at the level k. Note that

N1 Ag+1
Ax

represents the cross-sectional fraction of the inclusions at the level & + 1 in the inclusions at
the level k.

Natural optimization suggests self-similar structures (Brown and West 1999), for which
ng = n and g = ¢, thus k-independent numbers and fractions; accordingly Ny = n*. Since
the inclusions present a fractal distribution (Carpinteri and Pugno 2005), we expect Fj, oc RP
where R = +/A is a characteristic size and D is a constant, the so-called “fractal exponent™;
the constant of proportionality can be deduced noting that Fj, (A = Ay) = Anonn, and thus
F = opn RIZ\,_DRD. Accordingly, from Fj, = oj,n R%V_DRD = opyn™ R, we derive:

InR/Ry

N=D——, (D
Inn

Pk =

that defines the number of hierarchical levels that we need to design an object of charac-
teristic size R. Equation 1 shows that only few hierarchical levels are required for span-

ning several orders of magnitude in size. For example, for a nano-structured hierarchical
026

“universe”, considering for R its actual radius, i.e., R =~ 10°° m, for the smallest units a

Fig. 1 The cross-section
of a hierarchical bar

A=A0

@ Springer



Mechanics of hierarchical materials 223

Fig. 2 The Sierpinski carpet (D = 1.89) at different level of observation; it corresponds to a deterministic
hierarchical bar in which the empty space is the soft matrix, and the complementary zones are the hard
inclusions

radius on 1nm, i.e., Ry ~ 10°m, n = 5 and D = 2 would result in only 100 hierarchical
levels.

The scaling exponent D can be determined noting that A — NyAy = A (1 — ¢), where
¢ = ¢V represents the macroscopic (at level 0) cross-sectional fraction of the hard inclu-
sions. Thus, we derive R/Ry = (n/¢)" 2, Introducing this result into Eq. 1 provides the
fractal exponent, as a function of well-defined physical quantities:

2Inn
D= ——. ()
Inn —Ing

Note that D represents the fractal dimension of the inclusions, i.e., of a lacunar two-
dimensional domain in which the soft matrix is considered as empty (Carpinteri 1994a,b);
for example, the dimension of the well-known Sierpinski carpet (Fig. 2), is D = 1.89.

Since ohNnNR%v = ahNRjz\,*DRD and R/Ry = (n/go)N/z, we derive:

¢ =" = (R/RN)P72. 3)

Thus, from the equilibrium equation a scaling of the strength is predicted:

oc =ong" +oy (1= ") =on RIRNP 2 40y (1= R/RNPZ). &)

Noting thatn > 1 and ¢ < 1, we deduce 0 < D < 2 and thus Eq. 2 predicts that “smaller
is stronger” (oy > 0%).

On the other hand, the energy balance implies W = AG¢c = W, + Wy, = AxGpr +
(A — NxAyx) Gk = NNANGurn + (A — NvAN) Ggn, Vk, where W, Wy, Wy are, respec-
tively the dissipated fracture energies in the bar, hard and soft phases, and G¢, Gy = G,
Gsk = Gy (Vk) are the fracture energies per unit area of the bar, hard and soft phases,
respectively; usually G;, < Gy. Accordingly, the fracture energy must scale as:

Ge = Gro" + G, (1 - wN) — G (R/Ry)P2 + G, (1 — (R/RN)D_z) O 6)

And thus “larger is tougher”. In the next section, toughening mechanisms will be introduced
in the model.

On the other hand, the compatibility equation implies (bars in parallel): K = EA =
Kpn + Ks = Ny AgEpk + (A — Nk Ap) Esg = NNANEpN + (A — NyAN) Egn, Yk, where
K, K, K are respectively the “elastic” force of the bar, hard and soft phases and E, Ejy =
Ey, Eqy = Ej are the Young’s moduli of the bar, hard and soft phases, respectively. Accord-
ingly, the Young’s modulus must scale as:

E=E" +E (1-0") = B R/RNP 2+ E, (1= R/RWP) . (6)

Since usually Ej; > E, “smaller is stiffer”.
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Equations 4-6 show that at the smaller size-scales the inclusions are dominating, whereas
at the larger size-scales the matrix dominates. These equations present the same self-consistent
form: in fact, regarding the generic property X (oc, Gc or E) atthe level N — 1, Xy_1 =
Xn0 + Xg (1 — ). Thus, at the level N —2 : Xy_» = Xy_10 + Xy (1 — @) = Xp0? +
X, (1 — ¢?) and iterating X = Xo = X;¢" + X, (1 — ¢"), as described by Eqgs. 4-6. In
addition, it is clear that the scaling laws predicted by Eqs. 4-6 are particularly reasonable,
since they predict two asymptotic behaviours for macro- and nano size-scales. Note that for a
three-dimensional architecture (i.e., particle inclusions and not longitudinal fibres) for which
also the third dimension plays a role, in the stiffness of Eq. 6 the factor 2 must be replaced by
3, ¢ becomes the volume fraction rather than the cross-sectional fraction and D is deduced
from Eq. 2 considering again the factor 3 instead of 2; this is true if we consider valid the
rule of mixture of Eq. 6 also for a nonparallel architecture.

Then, the fracture toughness can be derived as K;c = +/G¢cE, whereas the hardness
H o< oc formally making the substitution oc — H in Eq. 4. Note that the important equal-
ity (3) would allow us to derive scaling laws from “rules of mixture” also in different systems
and for different properties, e.g., the friction coefficient.

Finally, for quasi-fractal hierarchy, described by n(R) and ¢ (R) weakly varying with the
size R, function D(R) should be considered in Egs. 4-6, as deducible from Eq. 2.

3 Toughening mechanisms: viscoelasticity, plasticity and crack
deflection or bridging

Introducing a Young’s modulus we have implicitly assumed linear elasticity. For a more
realistic behaviour of the matrix, we should consider visco-elasticity, often observed in bio-
tissues. If 4, = (E O_E °°) /E®°, with EO, E% short- and long-time elastic moduli, respec-
tively (E0 > E®, where the equality is valid for linear elasticity), the effective fracture
energy becomes G§ = (1 + ) Gs. The parameter w, represents an enhancement factor
for fracture energy dissipation due to the viscoelastic properties of the medium, e.g., for bone
My & 4 or for shell u, ~ 1.5 (see Ji and Gao 2004). Including plasticity, if 1, represents
the enhancement factor due to the plastic work during fracture G;F = (1 + ) Gg, where
M = [y + up. The factor 1, can be estimated noting that the effect of plasticity on the crack
propagation is described by a blunting of the crack tip due to dislocation emissions. If a is the
“fracture quantum”, a material/structural parameter, 1, = p/(2a) (Pugno and Ruoff 2004),
p being the tip radius.

According to the previous analysis and Fig. 1, the fracture surface is assumed to be pla-
nar. On the other hand, the inclusions could serve as hard structures to deflect the crack
path or as crack bridging elements. In the latter case, the inclusions will be pulled-out after
fracture, incrementing the dissipated energy in a fashion similar to the former mechanism
(if fracture of the matrix is assumed similar to that of the interface; it is evident that this hypoth-
esis can be easily removed). To model such effects, we simply assume the two-dimensional
scheme reported in Fig. 3, which is a lateral view of the crack surface of Fig. 1. According
to this scheme G;H'l = Gj' (I + nh), where [ is the nominal crack length, n is the num-
ber of inclusions along / and 4 is their height. Noting that ¢ = nt/l, with ¢ thickness of
the inclusions, and that A = &/t is their slenderness, the effective fracture energy becomes
Gt = (1 4+ 1p) G . Thus, for this toughening mechanism, the fracture energy G7* can
be even much larger (u =~ ¢ ~ 1; A > 1) than the intrinsic fracture energy of the matrix
Gy, if large values for A are considered. This explains (Ji and Gao 2004) why the shape of
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Fig. 3 The lateral view of the /_\’
crack surface: toughening

mechanics !

mineral crystals is found to be very anisometric (platelets): the anisometry is larger for bone
and dentin (platelets 3nm thick and up to 100nm long) as well as for enamel (15-20nm
thick, 1,000nm long) than for nacre (i.e., see shells, 200-500nm thick and 5-8 pm long).
For details on the hierarchical bone structure, see Akkus et al. 2004. Thus, Eq. 5 in general
has to be considered with the substitutions:

Gs = (1 4+ ) (1 +29) Gy (7a)

Gy, —0 (7b)

since in this case no dissipation occurs in the hard phase.

Furthermore, a soft matrix activates shear mechanisms rather than longitudinal ones,
according to the tension-shear chain model recently proposed (Ji and Gao 2004). Since in
this case matrix does not carry tensile load, the substitution:

og — 0 (8)

should be considered in Eq. 4. Considering a linear variation of the shear stress (but stress
concentration factors could be included, Pugno and Carpinteri 2003) with a maximum value
T implies a maximum normal stress o in the platelet equal to At (Ji and Gao 2004). Thus,
load transfer requires At; > o} where t; is the shear strength of the matrix; this shows that
low values of 7, are compensated in Nature by high slendernesses A. Note that according to
Ji and Gao (2004) an in-series tension/shear rather than an in-parallel tension architecture, as
considered in Eq. 6, emerges. However, their asymptotic behaviours (for realistic sufficiently
large size-scales R) are identical if in Eq. 6 the Young’s modulus of the matrix is assumed to
be negligible, i.e.

E, =0 9

4 Conclusions
The developed mathematical model, summarized in the numbered equations, allows us to

preliminary design nano-bio-inspired hierarchical materials, by following a bottom-up pro-
cedure. The complexity of the problem has imposed a simplified treatment with associated
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limitations; nevertheless, the model could be useful for preliminary designing micro- or
nano-structured hierarchical materials.
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