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Abstract In this paper the simplest mathematical model to design nano-bio-inspired hier-
archical materials is proposed. Simple formulas describing the dependence of strength, tough-
ness and stiffness on the considered size-scale are derived, taking into account the toughening
biomechanisms.
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1 Introduction

Biological materials exhibit several levels of hierarchy, from the nano- to the macro-scale.
For instance, sea shells have 2 or 3 orders of lamellar structures, as well as bone, similarly
to dentin, has 7 orders of hierarchy (Currey 1977, 1984). These nano-bio-materials are com-
posed by hard and strong mineral structures embedded in a soft and tough protein matrix.
In bone and dentin, the mineral platelets are ∼3 nm thick, whereas in shells their thickness
is of ∼300 nm, with very high slenderness. With this hard/soft nano-hierarchical texture,
Nature seems to suggest us the key for optimizing materials with respect to both strength and
toughness, without losing stiffness. Even if hierarchical materials are recognized to possess
a fractal-like topology (Lakes 1993), only few engineering models explicitly considering
their complex structure are present in the literature (see Gao 2006, Pugno 2006 and related
references). In this letter, a concise mathematical model is presented, based on the force
equilibrium. An energy formulation has been recently proposed by Pugno and Carpinteri
(2008).
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2 The mathematical model

Strength, toughness and stiffness of materials are measured by tensile tests. Imagine a virtual
tensile test on a hierarchically fibre-reinforced bar. Its cross-section, composed by hard inclu-
sions embedded in a soft matrix, is schematized in Fig. 1.

The smallest units, at the level N , are considered scale-invariant and related to the the-
oretical material strengths of the hard and soft phases, respectively σh , σs , where usually
σh � σs . Each inclusion at the level k + 1 contains nk smaller ones, each of them with
cross-sectional area Ak . Thus, the total number of inclusions at the level k is

Nk =
k∏

j=1

n j .

The equilibrium equation is F ≡ AσC = Fh + Fs = Nk Akσhk + (A − Nk Ak) σsk =
NN AN σhN + (A − NN AN ) σs N , ∀k, where F is the critical applied force, Fh, Fs are the
forces carried by the hard and soft phases respectively, A ≡ A0 is the cross-section area
of the bar, σC is its strength, σhN ≡ σh , σsk ≡ σs (∀k), and the subscript k refers to the
quantities at the level k. Note that

ϕk = nk+1 Ak+1

Ak

represents the cross-sectional fraction of the inclusions at the level k + 1 in the inclusions at
the level k.

Natural optimization suggests self-similar structures (Brown and West 1999), for which
nk = n and ϕk = ϕ, thus k-independent numbers and fractions; accordingly Nk = nk . Since
the inclusions present a fractal distribution (Carpinteri and Pugno 2005), we expect Fh ∝ RD

where R = √
A is a characteristic size and D is a constant, the so-called “fractal exponent”;

the constant of proportionality can be deduced noting that Fh (A = AN ) = AN σhN , and thus
F = σhN R2−D

N RD . Accordingly, from Fh = σhN R2−D
N RD = σhN nN R2

N , we derive:

N = D
ln R/RN

ln n
, (1)

that defines the number of hierarchical levels that we need to design an object of charac-
teristic size R. Equation 1 shows that only few hierarchical levels are required for span-
ning several orders of magnitude in size. For example, for a nano-structured hierarchical
“universe”, considering for R its actual radius, i.e., R ≈ 1026 m, for the smallest units a

Fig. 1 The cross-section
of a hierarchical bar A=A0

A1, 1
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A1, n1

A2, n2
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Fig. 2 The Sierpinski carpet (D = 1.89) at different level of observation; it corresponds to a deterministic
hierarchical bar in which the empty space is the soft matrix, and the complementary zones are the hard
inclusions

radius on 1 nm, i.e., RN ≈ 10−9 m, n = 5 and D = 2 would result in only 100 hierarchical
levels.

The scaling exponent D can be determined noting that A − NN AN = A (1 − φ), where
φ = ϕN represents the macroscopic (at level 0) cross-sectional fraction of the hard inclu-
sions. Thus, we derive R/RN = (n/ϕ)N/2. Introducing this result into Eq. 1 provides the
fractal exponent, as a function of well-defined physical quantities:

D = 2 ln n

ln n − ln ϕ
. (2)

Note that D represents the fractal dimension of the inclusions, i.e., of a lacunar two-
dimensional domain in which the soft matrix is considered as empty (Carpinteri 1994a,b);
for example, the dimension of the well-known Sierpinski carpet (Fig. 2), is D = 1.89.

Since σhN nN R2
N = σhN R2−D

N RD and R/RN = (n/ϕ)N/2, we derive:

φ = ϕN = (R/RN )D−2 . (3)

Thus, from the equilibrium equation a scaling of the strength is predicted:

σC = σhϕN + σs

(
1 − ϕN

)
= σh (R/RN )D−2 + σs

(
1 − (R/RN )D−2

)
. (4)

Noting that n > 1 and ϕ < 1, we deduce 0 < D < 2 and thus Eq. 2 predicts that “smaller
is stronger” (σh � σs).

On the other hand, the energy balance implies W ≡ AGC = Wh + Ws = Ak Ghk +
(A − Nk Ak) Gsk = NN AN GhN + (A − NN AN ) Gs N , ∀k, where W , Wh, Ws are, respec-
tively the dissipated fracture energies in the bar, hard and soft phases, and GC , GhN ≡ Gh ,
Gsk ≡ Gs (∀k) are the fracture energies per unit area of the bar, hard and soft phases,
respectively; usually Gh � Gs . Accordingly, the fracture energy must scale as:

GC = GhϕN + Gs

(
1 − ϕN

)
= Gh (R/RN )D−2 + Gs

(
1 − (R/RN )D−2

)
. (5)

And thus “larger is tougher”. In the next section, toughening mechanisms will be introduced
in the model.

On the other hand, the compatibility equation implies (bars in parallel): K ≡ E A =
Kh + Ks = Nk Ak Ehk + (A − Nk Ak) Esk = NN AN EhN + (A − NN AN ) Es N , ∀k, where
K , Kh, Ks are respectively the “elastic” force of the bar, hard and soft phases and E , EhN ≡
Eh , Es N ≡ Es are the Young’s moduli of the bar, hard and soft phases, respectively. Accord-
ingly, the Young’s modulus must scale as:

E = EhϕN + Es

(
1 − ϕN

)
= Eh (R/RN )D−2 + Es

(
1 − (R/RN )D−2

)
. (6)

Since usually Eh � Es , “smaller is stiffer”.
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Equations 4–6 show that at the smaller size-scales the inclusions are dominating, whereas
at the larger size-scales the matrix dominates. These equations present the same self-consistent
form: in fact, regarding the generic property X (σC , GC or E) at the level N − 1, X N−1 =
Xhϕ + Xs (1 − ϕ). Thus, at the level N − 2 : X N−2 = X N−1ϕ + Xs (1 − ϕ) = Xhϕ2 +
Xs

(
1 − ϕ2

)
and iterating X ≡ X0 = XhϕN + Xs

(
1 − ϕN

)
, as described by Eqs. 4–6. In

addition, it is clear that the scaling laws predicted by Eqs. 4–6 are particularly reasonable,
since they predict two asymptotic behaviours for macro- and nano size-scales. Note that for a
three-dimensional architecture (i.e., particle inclusions and not longitudinal fibres) for which
also the third dimension plays a role, in the stiffness of Eq. 6 the factor 2 must be replaced by
3, ϕ becomes the volume fraction rather than the cross-sectional fraction and D is deduced
from Eq. 2 considering again the factor 3 instead of 2; this is true if we consider valid the
rule of mixture of Eq. 6 also for a nonparallel architecture.

Then, the fracture toughness can be derived as K I C = √
GC E , whereas the hardness

H ∝ σC formally making the substitution σC → H in Eq. 4. Note that the important equal-
ity (3) would allow us to derive scaling laws from “rules of mixture” also in different systems
and for different properties, e.g., the friction coefficient.

Finally, for quasi-fractal hierarchy, described by n(R) and ϕ(R) weakly varying with the
size R, function D(R) should be considered in Eqs. 4–6, as deducible from Eq. 2.

3 Toughening mechanisms: viscoelasticity, plasticity and crack
deflection or bridging

Introducing a Young’s modulus we have implicitly assumed linear elasticity. For a more
realistic behaviour of the matrix, we should consider visco-elasticity, often observed in bio-
tissues. If µv ≡ (

E0 − E∞)
/E∞, with E0, E∞ short- and long-time elastic moduli, respec-

tively (E0 ≥ E∞, where the equality is valid for linear elasticity), the effective fracture
energy becomes G+

s = (1 + µv) Gs . The parameter µv represents an enhancement factor
for fracture energy dissipation due to the viscoelastic properties of the medium, e.g., for bone
µv ≈ 4 or for shell µv ≈ 1.5 (see Ji and Gao 2004). Including plasticity, if µp represents
the enhancement factor due to the plastic work during fracture G+

s = (1 + µ) Gs , where
µ = µv +µp . The factor µp can be estimated noting that the effect of plasticity on the crack
propagation is described by a blunting of the crack tip due to dislocation emissions. If a is the
“fracture quantum”, a material/structural parameter, µp = ρ/(2a) (Pugno and Ruoff 2004),
ρ being the tip radius.

According to the previous analysis and Fig. 1, the fracture surface is assumed to be pla-
nar. On the other hand, the inclusions could serve as hard structures to deflect the crack
path or as crack bridging elements. In the latter case, the inclusions will be pulled-out after
fracture, incrementing the dissipated energy in a fashion similar to the former mechanism
(if fracture of the matrix is assumed similar to that of the interface; it is evident that this hypoth-
esis can be easily removed). To model such effects, we simply assume the two-dimensional
scheme reported in Fig. 3, which is a lateral view of the crack surface of Fig. 1. According
to this scheme G++

s l = G+
s (l + nh), where l is the nominal crack length, n is the num-

ber of inclusions along l and h is their height. Noting that ϕ = nt/ l, with t thickness of
the inclusions, and that λ = h/t is their slenderness, the effective fracture energy becomes
G++

s = (1 + λϕ) G+
s . Thus, for this toughening mechanism, the fracture energy G++

s can
be even much larger (µ ≈ ϕ ≈ 1; λ � 1) than the intrinsic fracture energy of the matrix
Gs , if large values for λ are considered. This explains (Ji and Gao 2004) why the shape of
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Fig. 3 The lateral view of the
crack surface: toughening
mechanics

n

1

l

h

t

mineral crystals is found to be very anisometric (platelets): the anisometry is larger for bone
and dentin (platelets 3 nm thick and up to 100 nm long) as well as for enamel (15–20 nm
thick, 1,000 nm long) than for nacre (i.e., see shells, 200–500 nm thick and 5–8µm long).
For details on the hierarchical bone structure, see Akkus et al. 2004. Thus, Eq. 5 in general
has to be considered with the substitutions:

Gs → (1 + µ) (1 + λϕ) Gs (7a)

Gh → 0 (7b)

since in this case no dissipation occurs in the hard phase.
Furthermore, a soft matrix activates shear mechanisms rather than longitudinal ones,

according to the tension-shear chain model recently proposed (Ji and Gao 2004). Since in
this case matrix does not carry tensile load, the substitution:

σs → 0 (8)

should be considered in Eq. 4. Considering a linear variation of the shear stress (but stress
concentration factors could be included, Pugno and Carpinteri 2003) with a maximum value
τ implies a maximum normal stress σ in the platelet equal to λτ (Ji and Gao 2004). Thus,
load transfer requires λτs > σh where τs is the shear strength of the matrix; this shows that
low values of τs are compensated in Nature by high slendernesses λ. Note that according to
Ji and Gao (2004) an in-series tension/shear rather than an in-parallel tension architecture, as
considered in Eq. 6, emerges. However, their asymptotic behaviours (for realistic sufficiently
large size-scales R) are identical if in Eq. 6 the Young’s modulus of the matrix is assumed to
be negligible, i.e.

Es → 0 (9)

4 Conclusions

The developed mathematical model, summarized in the numbered equations, allows us to
preliminary design nano-bio-inspired hierarchical materials, by following a bottom-up pro-
cedure. The complexity of the problem has imposed a simplified treatment with associated
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limitations; nevertheless, the model could be useful for preliminary designing micro- or
nano-structured hierarchical materials.
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