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Abstract

Aim of this paper is to present a new fractal approach linking the macroscopic mechanical properties of micro- and
nano-structured materials with the main parameters: composition, grain size and structural dimension, as well as con-
tiguity and mean free path. Assuming the key role played by the interfaces, the proposed fractal energy approach unifies
the influences of all the above parameters, through the introduction of a fractal structural parameter (FSP), which rep-
resents an extension of the Gurland’s structural parameter. This modeling approach is assessed through an extensive
comparison with experimental data on poly crystalline diamond (PCD) and WC–Co alloys. The results clearly show
that the theoretical fractal predictions are in a fairly good agreement with the experiments on both hardness and tough-
ness. This new synthetic parameter is thus proposed to investigate, design and optimize new micro- and nano-grained
materials. Eventually, FSP-based optimization maps are developed, that allow to design new materials with high hard-
ness and toughness.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Composites consisting of a brittle hard material, whether ceramic or intermetallic, reinforced with a ductile
phase, are very important in several industrial applications, due to their mechanical properties, which include high
hardness, wear resistance and toughness. From an experimental point of view, a direct relationship between the
fabrication process, the microstructure and the properties of these materials has been evidenced [1–3]). In the Lit-
erature several approaches, experimental, numerical and theoretical, have been proposed to correlate the macro-
scopic properties with the material microstructure, but a general theory for the dependence of hardness and
toughness of composites such as WC–Co alloy or poly-crystalline diamond (PCD) on microstructural parameters
has not been presented yet. In particular, tungsten carbide cobalt (WC–Co) alloys, due to their importance in
industrial applications, have been investigated in great detail by several authors, who analysed the microstructural
details and tried to pinpoint the most important parameters affecting the macroscopic properties [4–14]. Several
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Nomenclature

C contiguity
D fractal exponent
d mean grain size
dr reference grain size
H hardness
h mean free path
KIC toughness
l characteristic crack length
N0 number of grains
p(Æ) probability density function
R structural size
r grain size
rmin minimum grain size
rmax maximum grain size
Sg total grain surface
V volume
Vg total grain volume
v volumetric fraction of grains
vr reference volumetric fraction of grains
W total dissipated energy
Wc dissipated energy per unit volume
a scaling exponent
c fractal exponent
kr model parameter
kK model parameter
kKr model parameter
rc strength
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different approaches have been proposed for modeling both hardness (or strength) and toughness of these mate-
rials, aiming at tailoring the mechanical properties of the composite materials by controlling the microstructure all
along the fabrication process [15–21].

Regarding WC–Co alloys, the relation between fracture strength (and fracture toughness) and microstructure is
a very attracting question, since experiments have clearly shown that these properties depend not only on the
mean grain size d of WC but also on its volume fraction v, the mean free path h of the Co binder and the con-
tiguity C of WC particles [15,16]. The choice of the independent parameters is still not clear and matter of
research, particularly regarding the role of contiguity [20]. In their pioneering paper, Lee and Gurland [16] first
pointed out the role of contiguity C and concluded that this parameter could not be left out in any modeling
attempt, whilst more recently Makhele-Lekala et al. [20] explicitly aimed at the derivation of an empirical formula
relating hardness to WC grain size d and mean free path h of Co, without explicit inclusion of contiguity. A sim-
ilar result was obtained by Liu et al. [22] on the basis of a micromechanical model for polycrystalline aggregates
with annular flaws surrounding the grains. Golovchan and Litoshenko [23] strengthened the view which considers
contiguity not as a fundamental parameter, evidencing a dependency of C on the coefficient of variation of the
WC grain size, whilst Armstrong and Cazacu [21] again include it in their analysis. The role of Cobalt mean free
path h in controlling the fracture toughness of WC–Co alloys, first pointed out by Sigl and Fischmeister [24], is
also not completely understood.

In spite of the large number of theoretical and experimental investigations, a unified approach to the strength and
toughness of these materials is at its early stages [25]. Aim of this paper is the generalization and unification of the influ-
ences of the effects of all the above parameters, for both strength and toughness. In addition, the proposed model will
also include the effect of the structural dimension R [26], that will be defined later. It is worthwhile noting that in the
fractal model, that we are going to present, the mean free path h of the Co binder and the contiguity C of WC particles
are not included directly, since their effects are implicitly taken into account by the proposed fractal structural
parameter.
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2. Composition, contiguity, grain size, mean free path and structural size

The effect of composition can be taken into account by means of mixture rules. Within these rules, the mechan-
ical behaviour of the mixture is usually assumed to be independent of the grain and structural sizes. On the other
hand, this result is clearly an oversimplification, as experiments demonstrate. Even if more sophisticated estimates
of the overall tensor mechanical properties of heterogeneous solids and a comparison with the most common rules
of mixture have been recently proposed [27,28], a clear understanding of the phenomenon is still absent in the
literature.

Nevertheless, indicating with rc the strength of a micro- or nano-structured material, which is composed by a matrix
having strength rhmatrixi

c and grains with volumetric fraction v and strength rhgraini
c , the simplest rule of mixture (direct

rule) would predict:
rc ¼ ð1� vÞrhmatrixi
c þ vrhgraini

c : ð1Þ
A similar mixture rule may also be written for the fracture toughness KIC:
KIC ¼ ð1� vÞKhmatrixi
IC þ vKhgraini

IC : ð2Þ
The role of contiguity C, which is defined, according to Gurland [15], as the average fraction of surface area

shared by a grain with all neighbouring particles of the same phase, may be taken into account by simply substi-
tuting the real volume fraction v of each phase with its continuous fraction v(C), that can be evaluated through the
contiguity C as
vðCÞ ¼ vC: ð3Þ
As a consequence, the role of the contiguity can be simply considered substituting in the rules of mixture, at the place of
the real volume fraction v, the effective one v(C) [16]. This approach is still popular and re-proposed also in the paper by
Armstrong and Cazacu [21], although it is quite clear that the contiguity is not an independent parameter [23], since it
depends on d and v, see Appendix A.

The effect of the grain size may also play a considerable role. As the grain size decreases, there is a signif-
icant increase in the volume fraction of grain boundaries or interfaces. This characteristic strongly influences the
chemical and physical properties of the material. In materials that are conventionally quite strong but very brit-
tle, such as intermetallic compounds and ceramics, grain size reduction enhances ductility through the increased
probability of grain boundary sliding, offering considerable processing advantage and performance improve-
ments. In the case of metals, on the other hand, the decrease in grain size may bring to significant increases
in yield strength and elastic modulus, through the introduction of additional grain boundaries that can act as
effective barriers to dislocation motion. This effect is usually described by means of the well-known Hall–Petch
law [29,30]:
rc � k / d�1=2; ð4Þ
where d is the mean grain size (and k is a constant).
The effect of the Co mean free path h on strength is again of the Hall–Petch type and similar to that reported in Eq.

(4) if d is replaced by h [16]. Its effect on the fracture toughness is less clear and various dependencies of KIC on h have
been proposed: according to Ravichandran [19], KIC � k0 / h (k 0is a constant), whilst Armstrong and Cazacu [21] pro-
pose a dependence of the form: KIC � k0 / h1=2. This uncertainty will be overcome in the forthcoming treatment, in
which the effect of the mean free path is not considered, since this variable depends on the volume fraction v of hard
phase and on the grain size d.

The effect of all these parameters are usually dealt with in a cascade-like approach [16,21]. In the case of hardness (or
strength), for instance, first a mixture rule of the type of Eq. (1) is written, then the effects of grain size d and mean free
path h are included by replacing rhmatrixi

c and rhgraini
c with Hall–Petch empirical relationships (see Eq. (4)). The effect of

contiguity C may be taken into account by replacing the volume fraction with the continuous volume fraction v(C) of
Eq. (3), as already stated.

Regarding the structural size R, which is a characteristic length of the structure (e.g. the beam height in a three-point
bending specimen, or the diameter in a cylindrical specimen), there is a large literature on its effect, which is usually
called the size-scale effect. Dealing specifically with grained materials, it has been found experimentally that strength
decreases with the structural size, whereas fracture energy increases [31,32]). All these effects will be included in the frac-
tal treatment, that we are going to present.
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3. Energy scaling

In order to predict the influence of grain size, structural dimension and composition (volumetric grain content)
in a unified manner, a fractal approach is herein considered. Contiguity and mean free path are considered depen-
dent parameters. Accordingly, we assume a fractal (or self-similar) distribution of reinforcement grains, for which
the probability density function p(r), describing their distribution in size r in the range ½rmin; rmax� has to be written
as [33–35]:
pðrÞ ¼ D

1� rmax

rmin

� ��D

rD
min

rDþ1
ffi D

rD
min

rDþ1
ð5Þ
where 2 6 D ¼ 3c 6 3 is the fractal exponent, rmin is the size of the smallest grain and rmax that of the largest
grain. Notice that we assume rmin � rmax, so that the first denominator in the previous equation is very close
to unity and the above approximation is justified. On the other hand, different types of grain size distribution
can be considered as limit cases of the fractal approach, as discussed for the Gaussian by Carpinteri and Pugno
[25].

The main assumption of the theory is that energy dissipation due to the presence of the reinforcement phase occurs
only at the interfaces. It consists of different phenomena, such as constrained deformation of the matrix between grains,
plasticity and fracture propagation. In particular we assume that the energy dissipation W, connected to the presence of
the grains, is statistically expected to be proportional to their total surface area Sg [33], i.e.:
W / Sg /
Z rmax

rmin

r2dN /
Z rmax

rmin

N 0r2pðrÞdr / N 0r2
min; ð6Þ
where rmax is the size of the largest grain and N0 is the total number of grains. On the other hand, the total volume Vg of
the grains is
V g /
Z rmax

rmin

r3dN /
Z rmax

rmin

N 0r3pðrÞdr / N 0rD
minr3�D

max : ð7Þ
Notice that both equations are obtained under the assumption that rmin � rmax. Deriving the expression of N0 from the
previous equation and putting it into Eq. (6), yields:
W / V gr2�D
min rD�3

max : ð8Þ
As a consequence, the energy dissipated in the grains per unit volume V of the specimen becomes:
W C ¼
W
V
/ vr2�D

min rD�3
max ; ð9Þ
where v ¼ V g/V represents the volumetric fraction of the grains. Assuming the statistical self-similarity hypothesis, i.e.,
rmax /

ffiffiffiffiffiffi
V g

3
p

(the larger the total volume of grains, the larger the largest grain), the effect of the structural size (size effect)
can be obtained as
W C / vr2�D
min V

D�3
3

g : ð10Þ

Usually rmin is assumed to be a constant, i.e., a material property. The mean value of the external surface of grains,
proportional to hr2i, as well as of their volume, proportional to hr3i, are substantially estimated in Eqs. (6) and (7).
On the other hand, the evaluation for the mean value of the grain size r gives:
hri / 1

N 0

Z rmax

rmin

rdN /
Z rmax

rmin

rpðrÞdr / r:min ð11Þ
Introducing D ¼ 3c and Eq. (11) into Eq. (10), noting that V � R3 with R structural size, and d � hri being the grain
size, we can write:
W C / vcd2�3cR3ðc�1Þ; ð12Þ
that represents the scaling law of the additional energy density dissipated as a consequence of the presence of the grains
and interfaces. It is worthwhile noting that this relation implicitly considers the grains embedded in the matrix; as a
consequence, this energy density is not intrinsic to the grains only, but to the grains in the matrix. Eq. (12) is of great
importance to predict the increment in strength due to the presence of grains, as discussed below. It is also noticeable
that this result is consistent with findings by Carpinteri and Pugno [33–35] from fragmentation theories, see
Appendix C.
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4. Grain and structural size effects

According to the fractal approach, the relationship of Eq. (12) represents the unified law to evaluate the grain and
structural size-effects, as well as the influence of composition, on the dissipated energy density. Let us focus our atten-
tion onto a structure of size R, constituted by a two-phase material, with only one grained phase of mean grain size d

and volumetric percentage v. Noting that the square root of the dissipated energy due to the presence of the grains per
unit specimen volume (if we assume negligible size-effects on the elastic modulus) can be considered to be proportional
to the strength of the grains (not intrinsic, but in the matrix), and coupling Eq. (12) with a classical rule of mixture gives
the following unified scaling law:
rc ¼ ð1� vÞrhmatrixi
c þ vrhgraini

c ; ð13aÞ
rhgraini

c � krv
c
2R

3
2ðc�1Þd1�3

2c; ð13bÞ
where kr is a constant and rhmatrixi
c is the strength of the matrix. It is interesting to observe that, considering self-similar

structures with the same scaling for the grain sizes, i.e., d / R, v = const., the size effect on strength does not vanish – see
Eq. (13):
rc / R�
1
2; ð14Þ
if we assume that the second term in Eq. (13a) is the dominating one. On the other hand, the exponent c disappears.
This seems to suggest that the size-effect of Eq. (14) is intrinsic, whereas the change of the exponents in the scaling laws
(‘‘geometrical’’ multifractality) is a consequence of the competition between the grain size and the structural dimension,
as demonstrated by means of a statistical approach by Carpinteri et al. [36,37].

The developed fractal theory unifies the grain and structural size effects and is in agreement with well-known size-
effect laws [25], as well as with the Hall–Petch relationship (c = 1; note that this corresponds to different grain size dis-
tributions, such as Gaussian [25], see Appendix B). We also note that Eq. (13) represent an extension of the Gurland
[15] structural parameter, defined as
rc / k þ v
1
3d�

1
2 ð15Þ
and more generally an extension – including the volumetric content – of the Hall–Petch relationship [25]. For the hard-
ness (or for the wear resistance) the same scaling of Eq. (13) is expected since:
H / rc: ð16Þ
The relationship analogous to the Hall–Petch law, has been experimentally confirmed for the hardness H, as an empir-
ical law [15,16] for carbon-based materials, in agreement with the scaling of Eq. (13b).

An approximated law also can be proposed for the fracture toughness, with respect to the size and the volumetric
content of grains. According to Griffith, if the characteristic crack length is l, Khgraini

IC / rhgraini
c

ffiffi
l
p

. Two plausible hypoth-
eses for l are l / R or l / d; thus, in general, we assume l / d1�2aR2a where a; 0 < 2a < 1, is a constant. Accordingly, a
classical rule of mixture yields:
KIC � ð1� vÞKhmatrixi
IC þ vKhgraini

IC ; ð17aÞ

Khgraini
IC � kKrhgraini

c d1=2�aRa; ð17bÞ
where kK is a constant and Khmatrixi
IC is the fracture toughness of the matrix.
5. Fractal structural parameter and deviations from the empirical Hall–Petch law

The predictions of the fractal approach for the strength or hardness and for the fracture toughness are described by
Eqs. (13) and (16) Accordingly, we can define a Fractal Structural Parameter (FSP) as
FSP ¼ v
c
2R

3
2ðc�1Þd1�3

2c ð18Þ
for which:
rhgraini
c / FSP: ð19Þ
Previous investigations on fragment size distributions [34] seem to suggest c = 2/3 at small scale, as well as c = 1 at large
scale. These limit cases, together with their intermediate reference case, correspond respectively to:
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c ¼ 2=3 : FSP / v
1
3R�1=2d0; ð20aÞ

c ¼ 5=6 : FSP / v
5

12R�1=4d�1=4; ð20bÞ
c ¼ 1 : FSP / v

1
2R0d�1=2: ð20cÞ
Since rC / k þ FSP, Eqs. (20) indicate a deviation of the exponent in the Hall–Petch relationship of Eq. (4). It is inter-
esting to observe that Masamura et al. [38] describe a similar deviation for the exponent of the Hall–Petch relationship.
The experiments on fine grained micro- and nano-structured materials seem in fact to suggest three different regions for
the exponent of the Hall–Petch relationship:

a region for single crystal to a grain size of about 1 lm, where the exponent seems to be close to 1/2.
a region for grain sizes ranging from about 1 lm to 30 nm, showing exponents lower than 1/2.
a region below a very small critical grain size (of about 30 nm), with the exponent equal to zero.

Note that, in this case, the reinforcement grain size effect is null, whereas the size-scale effect (i.e. the effect of the
structural size R) is maximum.

Thus, it appears that the fractal approach is not only able to justify the empirical Hall–Petch law, but also to predict
the deviation of its exponent. The inverse Hall–Petch behaviour (i.e. softening associated with grain refinement), exper-
imentally observed by several Authors, may be interpreted in the present framework by using values of c smaller than 2/
3. In this case the dependency of strength on the grain size becomes positive, since the exponent 1� ð3=2Þc in Eq. (18)
changes its sign.

On the other hand, it is clear that both scaling laws (Eqs. (13) and (16)) are monotonic laws, therefore not apt to
describe a transition from the usual Hall–Petch behaviour to the anomalous, inverse one. Therefore, in the following
assessment on experimental data, only monotonic data sets will be considered.
6. Experimental assessment of the FSP on WC–Co alloys and PCD

It has been already shown that the specimen size effects predicted by Eqs. (18) and (19) agree with the experiments
satisfactorily (see [35]), so that we are herein more interested in the effects of grain size and volumetric content of grains.
Eqs. (13) for strength (or hardness) may be rewritten as
y ¼ ðrc � ð1� vÞrhmatrixi
c ÞR3

2

vdR
3
2

¼ kr v
1
2R

3
2d�

3
2

� �c
¼ krxc: ð21aÞ
Therefore, the fractal approach implies a power law between y and x with an exponent c comprised between 2/3 and 1.
This is equivalent to verify the validity of the FSP-based approach. The advantage here is that the exponent c, as well as
the constant of proportionality kr, can be easily obtained as best fit parameters.

When the material strength is predicted, then the fracture toughness can be also estimated by Eqs. (16):
y ¼ ðKIC � ð1� vÞKhmatrixi
IC ÞR3

2

v1þc
2d

3
2R

3
2

¼ kK kr R
3
2d�

3
2

� �cþ2
3a ¼ kKrxcþ2

3a; ð21bÞ
by fitting kKr, a.
We refer to the experimental investigation on fine grained PCD, reported by Lammer [39] and Huang et al. [40]. In

addition, to assess the FSP on a larger data set, we also refer to the extensive experimental investigations on micro- and
nano-grained WC–Co alloys available in the Literature [16,9,24,7,4,8,5,11,6,10,41,12].

In Fig. 1, the experimental assessment of the fractal theory according to Eq. (21) (assuming a unit specimen size; all
the parameters are expressed in [SI] units), is presented for the strength and toughness of PCD. Data set [39] has been
shifted vertically by unity for clarity reasons. Such experiments strongly confirm the prediction of the fractal approach.
The exponents c, which are the slopes in the strength diagrams, are found belonging to the theoretical range for each
considered material.

In Fig. 2 the same analysis is carried out for the strength and toughness of WC–Co alloys, confirming the same find-
ings. The reported data sets have been taken from: [4–6,8–10,12,15–17,20,24,41]. Also in this case the data sets have
been shifted vertically by unity for clarity reasons. In each case, the agreement between FSP-based mixture rule and
experiments is very good, as shown also by values of the regression parameter R2. Three of these data sets are not com-
plete and report hardness data only [15,16,20].
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Fig. 1. PCD – Comparison between theory (straight line) and experiments (points): strength (a) and toughness (b). Data set [39] has
been shifted vertically by unity for clarity reasons.
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Fig. 2. WC–Co alloys – Comparison between theory (straight line) and experiments (points): strength (a) and toughness (b). Data
relative to the inversion of the Hall–Petch law have been discarded and reported in Fig. 3. All data sets (except [41]) have been shifted
vertically for clarity reasons.
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It is worthwhile noting that the FSP-based mixture rules fit the experiments on hardness better than those on frac-
ture toughness; this trend is particularly evident with the data sets by Nakamura and Gurland [9] and Sadahiro and
Takatsu [10].

As already stated, both scaling laws (Eqs. (13) and (16)) are monotonic laws, therefore not apt to fit data describing
a transition from the usual Hall–Petch behaviour to the anomalous, inverse one. As a consequence, only data sets
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Fig. 3. WC–Co alloys – Comparison between theory (straight line) and experiments (points): strength (a) and toughness (b). Data
relative to the inversion of the Hall–Petch law only. All data sets (except [15]) have been shifted vertically for clarity reasons.
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displaying a monotonic trend in hardness (or strength) vs. grain size d have been fitted. In the case of data sets display-
ing both Hall–Petch ranges [15,17,24], data relative to the inverse Hall–Petch behaviour have been discarded and then
fitted separately in Fig. 3, together with two more data sets [7,11], which display the inverse Hall–Petch behaviour only.
Once again, different data sets have been shifted vertically by unity for clarity reasons.

Also in this case the agreement between the proposed approach and the experiments is remarkably good. It is worth-
while noting that the inverse Hall–Petch behaviour is described consistently by a c exponent falling outside the canon-
ical range, i.e., lower than 2/3 (see Fig. 3a). In the case of the data set by Gurland [16], however, it results that the effect
of composition v is not captured by the FSP (see Fig. 3a). In other words, data do not collapse onto the same line and
different values of v arrange themselves on different lines.

We also notice that, with these data sets, the FSP-based mixture rules fit the data of fracture toughness better than
those of hardness, in contrast to what happened with the previous data sets. Regarding toughness, if we consider the
data sets by Sigl and Fischmeister [24] and Pickens and Gurland [17], which display both Hall–Petch ranges, it may be
noted that the slope in the toughness diagram does not change significantly (compare Fig. 2b with Fig. 3b).

Summarizing, the FSP of Eq. (18) represents an important tool to predict grain size effects, as well as the influence of
the volumetric grain content, for micro- and nano-grained materials. In addition, the FSP may also describe the influ-
ence of the structural size on material properties.
7. Material design and optimization

From the FSP-based laws (Eqs. (13) and (16)), strength and toughness can be derived as functions of volumetric
grain content, grain size and structural dimension. According to the FSP-based laws in which the constant of propor-
tionality and the exponents are fitted from the experiments by Huang et al. [40], the following laws for PCD (in [SI]) are
found:
rcðd; vÞ � ð1� vÞrhmatrixi
c þ 200� 106 � v1:391d�0:172; ð22aÞ

KICðd; vÞ � ð1� vÞKhmatrixi
IC þ 99� 106 � v1:391d0:196; ð22bÞ
with rhmatrixi
c � 500 MPa, Khmatrixi

IC � 20 MPa
ffiffiffiffi
m
p

. The structural dimension R is here neglected (and fictitiously assumed
to be equal to the unity in [SI]) as a consequence of the identical sizes for the investigated specimens. In addition,
considering a reference PCD with grain size dr and volumetric content vr, we can deduce the increments in strength
(or hardness H / rcÞ and fracture toughness expected by using a new PCD material, designed with different grain
size d and volumetric content v. For example, for the hardness we would have to evaluate the ratio



Fig. 4. PCD optimization map. Iso-hardness lines are drawn in blue and iso-toughness lines in red. Numbers along the curves indicate
hardness and fracture toughness increments % [40].
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½Hðd; vÞ � Hðdr; vrÞ�=Hðdr; vrÞ � 100%. In Fig. 4, the increments of the hardness and of the fracture toughness for a stan-
dard PCD (vr � 0:9, dr � 30 lm, rhmatrixi

c � 500 MPa, Khmatrixi
IC � 20 MPa

ffiffiffiffi
m
p
Þ are reported. The experimental range for

the grain size is from 5 to 90 lm, whilst that for the volumetric content is from 0.89 to 0.95; thus, large part of the graph
is, strictly speaking, an extrapolation. This diagram can be considered as a PCD optimization map. Note the small
(orange) region where both the increments are positive: a new PCD belonging to this region will be harder and tougher
at the same time (with respect to the reference one). Basically, the increment in hardness is given by the increase in the
volume fraction of hard phase, which counterbalances the increase in d. The increment in fracture toughness, on the
other hand, is given by the rising of the grain size d, which counterbalances the decrease of the ductile phase volume
fraction.

The same operation has been performed also in the case of the WC–Co alloy. According to the FSP-based laws in
which the constant of proportionality and the exponents are fitted from the experiments on nano-structured alloys cre-
ated by Jia et al. [12], the following laws (in [SI]) are found:
Fig. 5.
indica
rcðd; vÞ � ð1� vÞrhmatrixi
c þ 242� 106 � v1:382d�0:146; ð23aÞ

KICðd; vÞ � ð1� vÞKhmatrixi
IC þ 151� 106 � v1:382d0:201; ð23bÞ
with rhmatrixi
c � 500 MPa, Khmatrixi

IC � 20 MPa
ffiffiffiffi
m
p

. The structural dimension R is again neglected (and fictitiously assumed
to be equal to the unity in [SI]), since all specimens come from the same data set [12]. Considering a reference alloy with
grain size dr and volumetric content vr, we can deduce the increments in strength (or hardness H / rcÞ and fracture
toughness expected by using a new WC–Co material, designed with different grain size d and volumetric content v.
WC–Co alloy optimization map. Iso-hardness lines are drawn in blue and iso-toughness lines in red. Numbers along the curves
te hardness and fracture toughness increments % [12].
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In Fig. 5, the increments of the hardness and of the fracture toughness for a reference WC–Co Alloy (vr � 0:8,
dr � 2 lm, rhmatrixi

c � 500 MPa, Khmatrixi
IC � 20 MPa

ffiffiffiffi
m
p
Þ are reported. This diagram may be considered as a WC–Co al-

loy optimization map. In this case, the experimental range for the grain size is from 70 nm to 2.5 lm, whilst that for the
volumetric content is from 0.69 to 0.90.

In comparison with the previous case, where the range for the grain size d did not extend below 1 lm, the difference
is given by the presence of two regions (marked in orange) where both the increments are positive. One of them is sim-
ilar to that in Fig. 4: in fact, it is characterized by a simultaneous increase in both d and v. The second region, which
extends itself towards the left, i.e. towards nano-sized grains, is characterized by a simultaneous decrease in both d and
v. Thus, the mechanisms which produce better material properties are opposite to those operating in the other region.
The hardness increases thanks to the decrease in the grain size, which counterbalances the decrease in the volume frac-
tion v of hard phase. On the other hand, fracture toughness increases, despite the grain size decrease, thanks to the
increase in the ductile phase volume fraction. This remark suggests that better nano-grained composites should be pro-
duced by coupling nano-sized grains with volume percentages smaller than those usually employed in conventional
micro-grained alloys.
8. Conclusions

A generalization of the Hall–Petch law for grain size effect on material strength, rC / k þ d�1=2, was introduced by
Gurland [15], as rc / k þ v

1
3d�

1
2, to take into account the volumetric grain content. Our approach represents a further

generalization of the Gurland’s parameter, introducing a fractal structural parameter (FSP), in which the scaling related
to the structural dimension R is also included and in which the fractal exponents are generalized, i.e.,
rC / k þ v

c
2R

3
2 c�1ð Þd1�3

2c.
The fractal approach seems to present at the same time the fascinating advantages of incorporating the classical

approach with different types of grain size distributions (e.g., the Gaussian and the Log-normal), the influence of
the composition, as well as reasonable grain and structural size-effects. In addition, it provides hints for the design
of conventional, as well as nano-structured brittle materials reinforced with a ductile phase. For these reasons, and
in virtue of a very broad successful assessment with experimental data from the Literature, the Fractal Structural
Parameter (FSP) could help in designing optimized innovative micro- and nano-structured materials.
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Appendix A. The role of contiguity and mean free path

Let contiguity Ci be defined for a given phase i. We can extend the concept defining the contiguity Cij of the phase i

with respect to the phase j as the average fraction of surface area shared by the grains of the phase i with all neigh-boring

particles of the phase j.
According to such definition, an estimation of the contiguity can be obtained assuming that the shared surface area

between the two phases i and j, Sij, is statistically proportional to the product of their total surface areas Si, Sj:
Cij ¼
Sij

Si
/ SiSj

Si
¼ Sj: ð24Þ
From Eq. (6), noting that Sg � W � W CV , the relation between surface and volume is S � V c (c � D/3), or for a given
phase j:
Sj / V
cj
j ; ð25Þ
so that Eq. (24) becomes:
Cij / V
cj
j : ð26Þ
Considering that Ci 	 Cii and assuming ci ¼ c:
Ci ¼ vc
i : ð27Þ
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In the fractal approach, the contiguity effect is simply equivalent to consider a different power of the volumetric fraction
of the phase. In other words, in the fractal approach the parameter c plays the key role, since also the contiguity is not
an independent parameter. It is interesting to observe that, according to Eqs. (3) and (27), the classical direct rule of
mixture of Eqs. (1) and (2) for the generic property P, may be rewritten as
P ¼
XN

i¼1

P iv
1þc
i ð28Þ
and is close to the empirical rule of mixture in which the volumetric fraction is raised to the exponent 2, obtained as a
limit case for c = 1. Accordingly, the fractal approach provides the reason for the exponent 2 in the empirical mixture
rule, which is often used in order to have a better description of the experimental data [42].

Regarding the mean free path h, it could be shown that it is a function of the mean grain size d and of the volumetric
fraction of grains v, if a regular arrangement of grains is assumed. For instance, by assuming a tetrakaidecahedra shape
for the grains, [43]. provided a simple formula relating these three quantities:
v ¼ ðd � hÞ3

d3
; ð29Þ
In the case of more realistic distribution of grains, with dispersion of grain size d, it has been shown by means of ster-
eology [44]. that h depends not only on d and v, but also on the contiguity C:
h ¼ d
ð1� vÞ

vð1� CÞ : ð30Þ
Since the contiguity C itself depends on v and d (see Eq. (27) or the relations proposed by Golovchan and Litoshenko
[23], it is clear that h also depends on these two variables.
Appendix B. The Gaussian and the Log-normal distributions

From the fractal approach, the scaling of the energy density has been obtained as reported in Eq. (12). In this appen-
dix we show how such a result is more general than expected. In particular, we show that, assuming a Gaussian distri-
bution for the grain sizes, the energy density scales as predicted by the fractal approach in the limit case of c = 1. Let us
assume a Gaussian (or normal) distribution of grains, for which the probability density function p(r) is
pðrÞ ¼ 1ffiffiffiffiffiffi
2p
p

r
exp �ðr � rmÞ2

2r2

" #
; ð31Þ
where r is the standard deviation and rm is the mean grain size, i.e.:
hri / 1

N 0

Z 1

0

rdN /
Z 1

�1
rpðrÞdr ¼ rm: ð32Þ
Note that the integrals evaluated between minus infinite and zero must give negligible contributions to the final results,
the variable r being defined as positive. The energy dissipation W connected to the presence of the grains is statistically
expected to be proportional to their total surface area, i.e.:
W / Sg /
Z 1

0

r2dN ¼
Z 1

0

N 0r2pðrÞdr ¼ N 0ðr2
m þ r2Þ: ð33Þ
On the other hand, the total volume of the grains is
V g /
Z 1

0

r3dN /
Z 1

0

N 0r3pðrÞdr ¼ N 0ðr3
m þ 3rmr2Þ: ð34Þ
Deriving the expression of N0 from the previous equation and introducing it into Eq. (33), being rm � d, yields the
asymptotic behaviour:
W / V gd�1 / vd�1; ð35Þ
identical to Eq. (12) if c = 1. The same result is provided if we consider a Log-normal distribution, for which the prob-
ability density function p(r) is
pðrÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p

S
exp �ðlnðrÞ �MÞ2

2S2

" #
; ð36Þ
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where M is the scale parameter and S P 0 the shape parameter. The mean grain size rm and the standard deviation r are
given by
rm ¼
Z 1

�1
rpðrÞdr ¼ exp M þ S2

2

� �
; ð37Þ

r2 ¼
Z 1

�1
ðr � rmÞ2pðrÞdr ¼ expð2M þ S2Þ½expðS2Þ � 1�: ð38Þ
As in the previous case, the energy dissipation W connected to the presence of the grains is statistically expected to be
proportional to their total surface area, i.e.:
W / Sg /
Z 1

0

r2dN ¼
Z 1

0

N 0r2pðrÞdr ¼ N 0 exp½2ðM þ S2Þ�: ð39Þ
On the other hand, the total volume of the grains is
V g /
Z 1

0

r3dN /
Z 1

0

N 0r3pðrÞdr ¼ N 0 exp 3M þ 9

2
S2

� �
: ð40Þ
Deriving the expression of N0 from the previous equation and introducing it into Eq. (39), being rm � d, yields the
asymptotic behaviour:
W / V g exp � M þ 5

2
S2

� �� �
/ v

1

d
d2

d2 þ r2

� �2

/ vd�1; ð41Þ
which is identical to Eq. (12) if, again, c = 1.
Appendix C. Agreement with fragmentation theory

The scaling law of the additional energy density dissipated as a consequence of the presence of the grains and inter-
faces, Eq. (12), may be interpreted with findings by [33–35] from fragmentation theories. In a fragmentation process of a
mixture of total volume V, with phases of volumes Vi, the total dissipated energy W can be evaluated as
W ¼
XN

i¼1

W i ¼
XN

i¼1

CiV
ci
i ¼ CV c; ð42Þ
where ci ¼ 2=3 to 1 are the fractal exponents and Ci are material constants of the phases (the so-called fractal fragmen-

tation strengths). The parameters c and C represent the fractal exponent and fragmentation strength of the mixture. The
constants Ci are by definition the size-independent mechanical properties of the materials. For the particular case of
ci ¼ c:
C ¼
XN

i¼1

Civ
c
i ; ð43Þ
where vi ¼ V i=V is the volumetric fraction of the phase i. The exponent c ¼ 2=3 describes a rule of mixture governed by
the surfaces of the components, as well as the exponent c = 1 represents, as a limit case, the classical approach describ-
ing volume dominated processes. Eqs. (42) and (43) are consequences of the universal laws derived in the evaluation of
the multiscale energy dissipation during fragmentation and comminution [33]. Eq. (43) shows that fractal mechanical
properties, rather than the classical ones, should be considered as the real properties of the phases and of the mixture.
Comparing Eqs. (12) and (42) yields the dependence of the material property on the grain size:
C / d2�3c: ð44Þ
This equation, for multi-phase materials, would have to be applied to each phase i, yielding:
Ci / d2�3ci
i : ð45Þ
Assuming ci ¼ c and introducing Eq. (45) into Eq. (43) yields:
C ¼
XN

i¼1

kid
2�3c
i vc

i ; ð46Þ
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where ki is a constant related to the phase i. Eq. (46) represents the fractal size-independent specific energy dissipation,
in agreement with Eq. (12).
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