

Original Communication

Nanocomplex oscillations as forewarning of fatigue collapse of NEMS

Nicola Pugno*

Department of Structural Engineering and Geotechnics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

ABSTRACT

In this paper we demonstrate that complex oscillations precede the fatigue collapse of nanoelectromechanical systems. As a prototype of working nano-device, we consider a nanowirebased nanoswitch loaded by a periodic electromechanical force. Just before failure, nano-subharmonics are abruptly generated in the nanodisplacement field. Such a forewarning, found to be larger for smaller systems, could thus be used as a simple binary tool for monitoring the nanosystem integrity, atomistic cracks remaining undetectable by current microscopes.

KEYWORDS: complexity, sub-harmonics, nonlinearity, dynamics, forewarning, collapse, fatigue, cracks, nano-electromechanical systems

1. INTRODUCTION

Nano-electromechanical systems (NEMS) will probably revolutionize our future technology, due to their extreme miniaturized size. Only recently, some research groups have been able to manufacture nano-systems. For instance, Kim and Lieber [1] developed a nanotweezer; its mechanical capability was demonstrated by gripping and manipulating submicron clusters and nanowires. Likewise, Rueckes *et al.* [2] investigated a carbon nanotube-based nonvolatile random access memory, by considering an innovative bistable nanoswitch based on electrostatic and van der Waals forces; the viability of the concept was demonstrated by the experimental realization of a reversible bistable nanotube-based bit. Furthermore, the first really true nanotube-based nano-electromechanical system, fully integrating electronic control and mechanical response, was recently developed by Fennimore et al. [3], through the realization of a rotational motor; the authors reported the construction and successful operation of a fully synthetic nanoscale electromechanical motor incorporating a rotational metal plate with a multi-walled carbon nanotube serving as the key motion-enabling element. More recently other NEMS have been built. For example, Ke et al. [4], similarly to [1], reported the development of a nanoswitch, as well as of a detailed analytical study on the pull-in voltage required to the on/off transition of the device.

In parallel to this fast acceleration in the development of nano-systems, key analyses on their static and dynamic behaviours have been reported [4-10], mainly devoted to the prediction of the NEMS pull-in voltage. In spite of this, the monitoring of such nano-systems during their fatigue life, still represents a difficult task. Nevertheless, the study of the nonlinear dynamics of nano-systems may represent a powerful tool for damage detection and non-destructive monitoring. The analysis of the dynamic response of a structure to excitation forces and the monitoring of alterations, which may occur during its lifetime, can be employed as a global integrity-assessment technique to detect, for example, the presence of a crack. The damage assessment problem in cracked large structures has been extensively studied in the

^{*}nicola.pugno@polito.it

last decade [11-15], highlighting that the vibration based inspection is a valid method to detect, localise and quantify cracks especially in onedimensional structures. Dealing with the presence of a crack in a beam, previous studies have demonstrated that a transverse crack can change its state, from open to closed and viceversa, when the structure, subjected to an external load, vibrates [13, 14]. As a consequence, a nonlinear dynamic behaviour is introduced, that could be useful for crack detection.

In this paper we consider a nanowire loaded by a periodic electromechanical force and show that strong damage, arising just before failure, abruptly induces sub-harmonics in the nano-displacement field: thus, complex oscillations precede the collapse of nano-systems, and their extreme miniaturized size is found to enlarge this forewarning. Such a finding could thus be used as a simple binary tool for monitoring the NEMS integrity and its eventual substitution in integrated nanostructured architectures.

2. Nanocomplexity during fatigue of NEMS

Consider a nanowire of length *L*, cross-section base *B* and height *H*, suspended at a gap distance *G* over a substrate, from which a difference in voltage *V* is imposed, Figure 1. We discretize the system with an opportune number of degrees of freedom. The working conditions are simulated by a periodic electromechanical vector of loads (forces/couples) $\{V\}$, mainly a function of the applied voltage. The nano-displacements $\{X\}$ (translations and rotations) must thus satisfy the dynamical equilibrium of the system:

$$[M]{\ddot{X}} + [D]{\dot{X}} + [S]{X} + {F({X})} = {V}$$
(1)

where [M], [D] and [S] represent respectively the mass, damping and stiffness matrixes of the nanosystem, derivable according to the Beam Theory [14], and $\{F(\{X\})\}$ is the nonlinearity induced by the presence of nano-cracks (the dot over the symbols represents the time derivative). It is given by [14]:

$$\{F(\{X\})\} = \sum_{i} [\Delta S^{(i)}] f^{(i)}(\{X\})\{X\}$$
$$f^{(i)}(\{X\}) = \frac{X_{i_{r}} - X_{i_{l}}}{|X_{i_{r}} - X_{i_{l}}|}_{\max}$$
(2)

Figure 1. Single- or doubly-clamped vibrating cracked nanowire-based NEMS; V is the applied voltage, G is the gap, L is the length, B and H are the base and height of the cross-section, c is the crack length.

where $[S]+\sum_i [\Delta S^{(i)}(c_i)]$ is the stiffness matrix of the undamaged nano-system and $[\Delta S^{(i)}(c_i)]$ is half of the variation in stiffness, derivable according to Fracture Mechanics [14], introduced when the *i*th crack is fully open, a function of the *i*th crack depth c_i . According to this notation $f^{(i)}(\{X\})$ ranges linearly between -1 and +1 and models the transition between the conditions of *i*th crack fully-open and fully-closed, depending on the curvature of the corresponding cracked element ($X_{i_{l,r}}$ are the left and right rotations of the *i*th cracked finite element).

The force vector $\{V\}$ is assumed to have a period $P = 2\pi/\omega$. Thus, according to Fourier, it can be developed in the following form:

$$\{V\} = \sum_{j=0}^{Q} \left(\{V_S\}_j \sin \frac{j}{n} \omega t + \{V_C\}_j \cos \frac{j}{n} \omega t\right)$$
(3)

with n=1, where t is the time. Q should be large enough to reach a good approximation. A different from the unity parameter n describes sub-harmonic generation ([16, 17]) and thus complexity, that is a transition towards a deterministic chaos. Thus, assuming as the period of the displacement a multiple n of the period of the excitation (in the experiments [15] $n \ge 2$), and according to Fourier analysis, we can write $\{X\}$ formally as $\{V\}$ in eq. (3) if the substitution $V \to X$ is made (here $n \ne 1$). Introducing this time-dependent $\{X(t)\}$ into the crack function $\{F(X)\}$ and developing according to Fourier analysis yields again the same expansion of eq. (3) if $V \to F$, where $\{F_{s,c}\}$ are known functions of the constants $\{X_{s,c}\}$.

By introducing such expressions for V, X, F into eq. (1) and balancing the harmonics with the same angular frequency, would formally solve the problem, correlating load and displacement. Accordingly, a algebraic system of Q+1 nonlinear equations is derived in the form of:

$$\begin{bmatrix} A(j) \end{bmatrix} \{ X_{sc}(j) \} = \{ V_{sc}(j) \} - \{ F_{sc}(j) \}, \\ \{ Y_{s} \}_{j} \\ \{ Y_{c} \}_{j} \end{bmatrix} = \{ Y_{sc}(j) \} \forall Y = V, X, F, j = 0, \dots, Q$$
 (4)

where [A(j)] is a known matrix (see [14,16,17] for details).

The force vector $\{V\}$ acting on the nano-system is the sum of the mechanical $\{V_{mech}\}$, electrostatic $\{V_{elec}\}$ and van der Waals $\{V_{vdW}\}$ loads. The Pauli's repulsion can also be similarly introduced in the model, but it would play a role if and only if nanowire and substrate are in contact. While the mechanical load directly acts on the nano-system (e.g., as in mass nano-sensors), the electric and van der Waals loads can be derived from the related energies $E_{elec,vdW}$ as:

$$\{V\} = \{V_{mech}\} + \{V_{elec}\} + \{V_{vdW}\},$$

$$\{V_{elec,vdW}\} = -\frac{dE_{elec,vdW}}{d\{X\}}$$
(5a)

$$E_{elec} = \frac{C(\lbrace X \rbrace)V^2}{2},$$

$$E_{vdW} = \int_{\Omega_1} \int_{\Omega_2} \frac{C_6 n_1 n_2}{x^6} d\Omega_1 d\Omega_2$$
(5b)

where *C* is the NEMS electrical capacitance, $\Omega_{1,2}$ are the two domains between which we are calculating the van der Waals forces (e.g., nanowire and substrate), having atomic densities

 $n_{1,2}, C_6$ is a material constant and x is the modulus of the position vector [6].

The fatigue crack growth in a nano-system can be followed by considering our recently proposed quantized Paris' law [18], in dimensionless form:

$$\frac{\mathrm{d}\,c_i/q}{\mathrm{d}N} = p \frac{\Delta K_i^{*m}}{K_c} \tag{6}$$

where q is the fracture quantum (related to the atomic size of the nano-system), N is the number of load cycles ($\dot{N} = P^{-1}$), ΔK_i^* is the variation of the root mean square of the stress-intensity factor at the tip of the *i*th crack (of length c_i), K_c is the material fracture toughness, and p,m are the material Paris' dimensionless constants. Thus [$\Delta S^{(i)}(c_i)$] can be accordingly updated during fatigue nano-crack growth.

Coupling eqs. (4-6), the dynamic behaviour of electromechanical nano-systems with propagating fatigue nano-cracks can be predicted. Each of the Q+1 systems in eq. (4) can be solved numerically using an iterative procedure, starting assuming $\{F(j)\} = \{0\}$ and then evaluating $\{F(j)\}$ according

to the solutions for $\{X(j)\}$ derived at the previous step, updating the force and damage according to eqs. (5) and (6), until a satisfactory convergence is reached.

Our methodology, taking into account the variable contact between the crack faces, can straightforwardly be applied also to study the nano-subharmonics generated in the dynamics of different small contacts [19].

3. In-silicon nano-experiments

For the sake of simplicity we here assume a large gap *G* if compared to the maximum nanowire deflection $|\{X\}|_{max}$, so that the capacitance *C* becomes independent from $\{X\}$ and the van der Waals energy negligible [6]. For such a case we found a distributed electrostatic force per unit length f_{elec} plus a concentrated force F_{elec} acting at the nanowire tip (if cantilever) in the following form:

$$f_{elec} \approx (1 - \alpha) \frac{\varepsilon_0 V^2}{2G^2}, \ F_{elec} \approx \alpha \frac{\varepsilon_0 V^2 L}{2G^2}$$
 (7)

where $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{m}^{-2}$ is the vacuum

permittivity and α is the charge tip concentration fraction (roughly $\alpha \approx 1$ for singly-clamped or $\alpha \approx 0$ for doubly-clamped NEMS [7,8]).

Moreover, by integrating eq. (6), we derive the following simplified solution (exact for the Griffith's case):

$$\frac{T(c/H)}{T(0)} = \frac{N(c/H)}{N(0)} \approx \frac{(1+q/H)^{1-m/2} - (c/H+q/H)^{1-m/2}}{(1+q/H)^{1-m/2} - (q/H)^{1-m/2}}, \ m \neq 2$$
(8a)

$$\approx \frac{\ln \left\{ (1+q/H)/(c/H+q/H) \right\}}{\ln \left\{ (1+q/H)/(q/H) \right\}}, \quad m=2 \quad (8b)$$

where N(c/H) represents the number of cycles needed to reach the fatigue failure of a nanosystem containing a nano-crack of relative depth c/H. Thus N(0) is the fatigue life for the undamaged system, whereas T(c/H)/T(0)represents the relative time to failure of the damaged NEMS (*T*=*NP*). Note the correction imposed by the quantization, whereas the classical Paris' law would correspond to q/H = 0 (large systems), giving trivially $N(c/H)/N(0) = \delta_{dH,0}$.

A cantilever nanowire having size of B=H=10nm, G=100nm and L=1000nm, with a crack at the middle position of length equal to 0 (undamaged case), 3, 6 or 9nm is considered. Assume V=47.5volts (lower than the pull-in voltage), corresponding to a force at the tip of ~1nN (but we note that our model is linear with respect to the force and since we are going to show dimensionless results the applied voltage is here arbitrary), with a frequency $P^{-1}=20$ MHz ($\sim \frac{1}{2}$ of the nanowire fundamental frequency). The Young's modulus be 1TPa and the density equal to 1300kg/m^3 (carbon). We have assumed a modal damping of 10^{-2} and a discretization in 20 finite elements. We compute the amplitudes of the harmonics j/n in the tip displacement, normalized to that of the linear component (j/n=1). We have found that values of n=4 and Q=16 give a good approximation, that is, for larger values of n and *Q*, substantially coincident solutions are obtained. Thus, 1 offset (j/n=0), 1 linear component (j/n=1), high-harmonics (j/n=2,3,4) and 12 sub-3 harmonics (i/n different from an integer number)are sufficient to describe the dynamics of our nano-system. In-silicon nano-experiments were

performed and are summarized in Figures 2-5. In Figure 2 the high-harmonics and the offset are shown as a function of the crack-depth: a continuous growth is clearly observed, suggesting that such components can help in detecting weak damage [14]. In contrast, in Figure 3 the growth of the sub-harmonics and thus of the system complexity is shown to be extremely discontinuous [16, 17]. A threshold appearance is clearly observed (compare with the offset growth, also reported in Fig. 3); for our system, the complexity abruptly arises at a relative crack-depth of $(c/H)_{complexity} \approx 60\%$, thus nano-sub-harmonics can help in detecting strong damage in NEMS. In Figure 4 the correlation between the crack-depth and the failure forewarning (i.e., $T((c/H)_{complexity})/T(0)$) is depicted

Figure 2. The continuous growth of the nano-high-harmonics by increasing the NEMS damage.

Figure 3. The discontinuous growth of the nano-subharmonics by increasing the NEMS damage.

Figure 4. The failure forewarning by varying the NEMS size: it increases by decreasing the system size (m=3).

Figure 5. The failure forewarning by varying the Paris' exponent: it increases by decreasing m (H/q=100).

(considering m=3, usually m>2) as a function of q/H, showing that the forewarning is sizedependent. In particular for $(c/H)_{complexity} \approx 60\%$ we have $T((c/H)_{complexity})/T(0)$ of 1%, 3% or 11% for H/q equal respectively to 1000, 100 or 10. Smaller systems are thus more sensitive to the proposed monitoring technique. In Figure 5 (considering H/q = 100, plausibly for our system assuming $q\sim0.1$ nm), the failure forewarning as a function of the crack-depth is depicted by varying the Paris' exponent *m*: smaller values would help the monitoring.

4. CONCLUSION

Our findings clearly suggest that nanocomplexity abruptly precedes the fatigue collapse of a NEMS and can thus be used as a simple binary innovative tool for monitoring the NEMS integrity.

REFERENCES

- 1. Kim, P., and Lieber, C. M. 1999, Science, 286, 2148.
- Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung C.-L., and Lieber, C. M. 2000, Science, 289, 94.
- Fennimore, A. M., Yuzvinsky, T. D., Han, W.-Q., Fuhrer, M. S., Cumings, J., and Zettl., A. 2003, Nature, 424, 408.
- 4. Ke, C. H., Pugno, N., Peng, B., and Espinosa, H. 2005, J. of the Mechanics and Physics of Solids 53, 1314.
- Dequesnes, M., Rotkin, S. V., and Aluru, N. R. 2002, Nanotechnology, 13, 120.
- 6. Pugno, N. 2004, Recent Research Developments in Sound and Vibrations 2, 197.
- Pugno, N., Ke, C. H., and Espinosa, H. 2005, J. of Applied Mechanics 72, 445.
- Ke, C. H., Espinosa, H., and Pugno, N. 2005, J. of Applied Mechanics 72, 519.
- 9. Pugno, N. 2005, J. of Nanoengineering and Nanosystems, 219, 29.
- 10. Pugno, N. 2005, Glass Physics and Chemistry, 31, 535.
- 11. Gudmundson, P. 1983, J. of Mechanics Physics Solids, 31, 329.
- 12. Ostachowicz, W., and Krawczuk, M. 1990, Computers & Structures, 36, 245.
- Ruotolo, R., Surace, C., Crespo, P., and Storer, D. 1996, Computers & Structures, 61, 1057.
- Pugno, N., Surace, C., and Ruotolo, R. 2000, J. of Sound and Vibration, 235, 749.
- 15. Brandon, J. A., and Sudraud, C. 1998, J. of Sound and Vibration, 211, 555.
- Carpinteri, A., Pugno, N. 2005, J. of Applied Mechanics, 72, 511.
- Carpinteri, A., Pugno, N. 2005, J. of Applied Mechanics, 72, 519.
- Pugno, N., Ciavarella, M., Cornetti, P., Carpinteri, A. 2006, J. of Mechanics Physics Solids, 54, 1333.
- Burnham, N. A., Kulik, A. J., and Gremaud, G. 1995. Phys. Rev. Lett. 74, 5092.