
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nanocomplex oscillations as forewarning of fatigue  
collapse of NEMS   
 

ABSTRACT  
In this paper we demonstrate that complex 
oscillations precede the fatigue collapse of nano-
electromechanical systems. As a prototype of 
working nano-device, we consider a nanowire-
based nanoswitch loaded by a periodic electro-
mechanical force. Just before failure, nano-sub-
harmonics are abruptly generated in the nano-
displacement field. Such a forewarning, found to 
be larger for smaller systems, could thus be used 
as a simple binary tool for monitoring the nano-
system integrity, atomistic cracks remaining 
undetectable by current microscopes.  
 
KEYWORDS: complexity, sub-harmonics, non-
linearity, dynamics, forewarning, collapse, fatigue, 
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1. INTRODUCTION 
Nano-electromechanical systems (NEMS) will 
probably revolutionize our future technology, due 
to their extreme miniaturized size. Only recently, 
some research groups have been able to 
manufacture nano-systems. For instance, Kim and 
Lieber [1] developed a nanotweezer; its mechanical 
capability was demonstrated by gripping and 
manipulating submicron clusters and nanowires. 
Likewise, Rueckes et al. [2] investigated a carbon 
nanotube-based nonvolatile random access 
memory, by considering an innovative bistable 
nanoswitch based on electrostatic and van der 
Waals forces; the viability of the concept was 
 
 

demonstrated by the experimental realization of a 
reversible bistable nanotube-based bit. Furthermore, 
the first really true nanotube-based nano-electro-
mechanical system, fully integrating electronic 
control and mechanical response, was recently 
developed by Fennimore et al. [3], through the 
realization of a rotational motor; the authors 
reported the construction and successful operation 
of a fully synthetic nanoscale electromechanical 
motor incorporating a rotational metal plate with a 
multi-walled carbon nanotube serving as the key 
motion-enabling element. More recently other 
NEMS have been built. For example, Ke et al. [4], 
similarly to [1], reported the development of a 
nanoswitch, as well as of a detailed analytical 
study on the pull-in voltage required to the on/off 
transition of the device.  
In parallel to this fast acceleration in the 
development of nano-systems, key analyses on 
their static and dynamic behaviours have been 
reported [4-10], mainly devoted to the prediction 
of the NEMS pull-in voltage. In spite of this, the 
monitoring of such nano-systems during their 
fatigue life, still represents a difficult task. 
Nevertheless, the study of the nonlinear dynamics 
of nano-systems may represent a powerful tool for 
damage detection and non-destructive monitoring. 
The analysis of the dynamic response of a 
structure to excitation forces and the monitoring of 
alterations, which may occur during its lifetime, 
can be employed as a global integrity-assessment 
technique to detect, for example, the presence of a 
crack. The damage assessment problem in cracked 
large structures has been extensively studied in the 
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last decade [11-15], highlighting that the vibration 
based inspection is a valid method to detect, 
localise and quantify cracks especially in one-
dimensional structures. Dealing with the presence 
of a crack in a beam, previous studies have 
demonstrated that a transverse crack can change 
its state, from open to closed and viceversa, when 
the structure, subjected to an external load, 
vibrates [13, 14]. As a consequence, a nonlinear 
dynamic behaviour is introduced, that could be 
useful for crack detection.  
In this paper we consider a nanowire loaded by a 
periodic electromechanical force and show that 
strong damage, arising just before failure, abruptly 
induces sub-harmonics in the nano-displacement 
field: thus, complex oscillations precede the 
collapse of nano-systems, and their extreme 
miniaturized size is found to enlarge this 
forewarning. Such a finding could thus be used as 
a simple binary tool for monitoring the NEMS 
integrity and its eventual substitution in integrated 
nanostructured architectures.  
 
2. Nanocomplexity during fatigue of NEMS 
Consider a nanowire of length L, cross-section 
base B and height H, suspended at a gap distance 
G over a substrate, from which a difference in 
voltage V is imposed, Figure 1. We discretize the 
system with an opportune number of degrees of 
freedom. The working conditions are simulated by 
a periodic electromechanical vector of loads 
(forces/couples) { },V mainly a function of the 
applied voltage. The nano-displacements { }X  
(translations and rotations) must thus satisfy the 
dynamical equilibrium of the system: 

[ ]{ } [ ]{ } [ ]{ } { }( ){ } { }VXFXSXDXM =+++ &&&          (1) 

where [M], [D] and [S] represent respectively the 
mass, damping and stiffness matrixes of the nano-
system, derivable according to the Beam Theory 
[14], and  { }( ){ }XF  is the nonlinearity induced by 
the  presence of nano-cracks (the dot over the 
symbols represents the time derivative). It is given 
by [14]: 
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where [S]+∑i[∆S(i)(ci)] is the stiffness matrix of the 
undamaged nano-system and  [∆S(i) (ci)] is half of 
the variation in stiffness, derivable according to 
Fracture Mechanics [14], introduced when the ith 
crack is fully open, a function of the ith crack 
depth ci. According to this notation ( ) { }( )Xf i  
ranges linearly between −1 and +1 and models the 
transition between the conditions of ith crack 
fully-open and fully-closed, depending on the 
curvature of the corresponding cracked element 
(

rli
X

,
 are the left and right rotations of the ith 

cracked finite element).  
The force vector { }V  is assumed to have a 
period ωπ2=P . Thus, according to Fourier, it 
can be developed in the following form: 
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with n=1, where t is the time. Q should be large 
enough to reach a good approximation. A different 
from the unity parameter n describes sub-harmonic 
generation ([16, 17]) and thus complexity, that is a 
transition towards a deterministic chaos. Thus, 
assuming as the period of the displacement a 
multiple n of the period of the excitation (in the 
 

 

Figure 1. Single- or doubly-clamped vibrating cracked 
nanowire-based NEMS; V is the applied voltage, G is 
the gap, L is the length, B and H are the base and height 
of the cross-section, c is the crack length.  
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n1,2, 6C  is a material constant and x is the modulus 
of the position vector [6]. 
The fatigue crack growth in a nano-system can be 
followed by considering our recently proposed 
quantized Paris’ law [18], in dimensionless form:  

                    
C

m
ii

K
K

p
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qc *

d
d ∆

=                      (6) 

where q is the fracture quantum (related to the 
atomic size of the nano-system), N is the number 
of load cycles ( 1−= PN& ), *

iK∆  is the variation of 
the root mean square of the stress-intensity factor 
at the tip of the ith crack (of length ic ), CK  is the 
material fracture toughness, and p,m are the 
material Paris’ dimensionless constants. Thus 
[ ∆ S(i)(ci)] can be accordingly updated during 
fatigue nano-crack growth.  
Coupling eqs. (4-6), the dynamic behaviour of 
electromechanical nano-systems with propagating 
fatigue nano-cracks can be predicted. Each of the 
Q+1 systems in eq. (4) can be solved numerically 
using an iterative procedure, starting assuming 

( ){ } { }0F j =  and then evaluating ( ){ }jF  according 

to the solutions for ( ){ }jX  derived at the previous 
step, updating the force and damage according to 
eqs. (5) and (6), until a satisfactory convergence is 
reached. 
Our methodology, taking into account the variable 
contact between the crack faces, can straight- 
forwardly be applied also to study the nano-sub-
harmonics generated in the dynamics of different 
small contacts [19].  
 
3. In-silicon nano-experiments  
For the sake of simplicity we here assume a large 
gap G if compared to the maximum nanowire 
deflection { } max

,X so that the capacitance C 
becomes independent from { }X  and the van der 
Waals energy negligible [6]. For such a case we 
found a distributed electrostatic force per unit 
length elecf  plus a concentrated force elecF acting at 
the nanowire tip (if cantilever) in the following form: 
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where 21212
0 mNC1085.8 −−−×=ε  is the vacuum 

 

experiments [15] n≥2), and according to Fourier 
analysis, we can write { }X  formally as { }V  in eq. 
(3) if the substitution V X→  is made (here n≠1). 
Introducing this time-dependent ( ){ }tX  into the 
crack function ( ){ }XF  and developing according 
to Fourier analysis yields again the same 
expansion of eq. (3) if V F→ , where { }CSF ,  are 

known functions of the constants { }CSX , .  

By introducing such expressions for V, X, F into 
eq. (1) and balancing the harmonics with the same 
angular frequency, would formally solve the 
problem, correlating load and displacement. 
Accordingly, a algebraic system of Q+1 nonlinear 
equations is derived in the form of:  
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where ( )A j⎡ ⎤⎣ ⎦  is a known matrix (see [14,16,17] 
for details).  

The force vector { }V  acting on the nano-system is 
the sum of the mechanical { }mechV ,  electrostatic 

{ }elecV  and van der Waals { }vdWV  loads. The 
Pauli’s repulsion can also be similarly introduced 
in the model, but it would play a role if and only if 
nanowire and substrate are in contact. While the 
mechanical load directly acts on the nano-system 
(e.g., as in mass nano-sensors), the electric and 
van der Waals loads can be derived from the 
related energies elec,vdWE  as:  

{ } { } { } { }vdWelecmech VVVV ++= ,  

{ } { }X
E
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where C is the NEMS electrical capacitance, 2,1Ω  
are the two domains between which we are 
calculating the van der Waals forces (e.g., 
nanowire and substrate), having atomic densities  
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performed and are summarized in Figures 2-5. In 
Figure 2 the high-harmonics and the offset are 
shown as a function of the crack-depth: a 
continuous growth is clearly observed, suggesting 
that such components can help in detecting weak 
damage [14]. In contrast, in Figure 3 the growth of 
the sub-harmonics and thus of the system complexity 
is shown to be extremely discontinuous [16, 17]. A 
threshold appearance is clearly observed (compare 
with the offset growth, also reported in Fig. 3); for 
our system, the complexity abruptly arises at a 
relative crack-depth of ( ) %60≈complexityHc , thus 
nano-sub-harmonics can help in detecting strong 
damage in NEMS. In Figure 4 the correlation 
between the crack-depth and the failure 
forewarning (i.e., T((c/H)complexity)/T(0)) is depicted 
 
 

permittivity and α  is the charge tip concentration 
fraction (roughly 1≈α  for singly-clamped or 

0≈α  for doubly-clamped NEMS [7,8]). 
Moreover, by integrating eq. (6), we derive the 
following simplified solution (exact for the 
Griffith’s case): 
                                                                 

             
 
 

 
             
       
 
where ( )N c H  represents the number of cycles 
needed to reach the fatigue failure of a nano-
system containing a nano-crack of relative 
depth .c H  Thus ( )0N  is the fatigue life for the 
undamaged system, whereas ( ) ( )0T c H T  
represents the relative time to failure of the 
damaged NEMS (T=NP). Note the correction 
imposed by the quantization, whereas the classical 
Paris’ law would correspond to 0q H =  (large 
systems), giving trivially ( ) ( ) ,00 c HN c H N δ= . 

A cantilever nanowire having size of B=H=10nm, 
G=100nm and L=1000nm, with a crack at the 
middle position of length equal to 0 (undamaged 
case), 3, 6 or 9nm is considered. Assume 
V=47.5volts (lower than the pull-in voltage), 
corresponding to a force at the tip of ∼1nN (but we 
note that our model is linear with respect to the 
force and since we are going to show 
dimensionless results the applied voltage is here 
arbitrary), with a frequency P−1=20MHz (∼½ of 
the nanowire fundamental frequency). The 
Young’s modulus be 1TPa and the density equal 
to 1300kg/m3 (carbon). We have assumed a modal 
damping of 10−2 and a discretization in 20 finite 
elements. We compute the amplitudes of the 
harmonics j/n in the tip displacement, normalized 
to that of the linear component (j/n=1). We have 
found that values of n=4 and Q=16 give a good 
approximation, that is, for larger values of n and 
Q, substantially coincident solutions are obtained. 
Thus, 1 offset (j/n=0), 1 linear component (j/n=1), 
3 high-harmonics (j/n=2,3,4) and 12 sub-
harmonics (j/n different from an integer number) 
are sufficient to describe the dynamics of our 
nano-system. In-silicon nano-experiments were 
 
 

Nano-high-harmonics and nano-offset
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Figure 2. The continuous growth of the nano-high-
harmonics by increasing the NEMS damage. 

Nano-sub-harmonics 
and nano-offset
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Figure 3. The discontinuous growth of the nano-sub-
harmonics by increasing the NEMS damage. 
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4. CONCLUSION 
Our findings clearly suggest that nanocomplexity 
abruptly precedes the fatigue collapse of a NEMS 
and can thus be used as a simple binary innovative 
tool for monitoring the NEMS integrity.  
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(considering m=3, usually m>2) as a function of 
q/H, showing that the forewarning is size-
dependent. In particular for ( ) %60≈complexityHc  

we have T((c/H)complexity)/T(0)  of 1%, 3% or 11% 
for qH  equal respectively to 1000, 100 or 10. 
Smaller systems are thus more sensitive to the 
proposed monitoring technique. In Figure 5 
(considering qH =100, plausibly for our system 
assuming q∼0.1nm), the failure forewarning as a 
function of the crack-depth is depicted by varying 
the Paris’ exponent m: smaller values would help 
the monitoring. 
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Figure 4. The failure forewarning by varying the 
NEMS size: it increases by decreasing the system size 
(m=3).  
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Figure 5. The failure forewarning by varying the Paris’ 
exponent: it increases by decreasing m (H/q=100).  


