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Space elevator: 
out of order?

Classical theories of the strength of solids, such as fracture mechanics 
or those based on the maximum stress, assume a continuum. Even if 
such a continuum hypothesis can be shown to work at the nanoscale 
for elastic calculations, it has to be revised for computing the strength 
of nanostructures or nanostructured materials. Accordingly, quantized 
strength theories have recently been developed and validated by 
atomistic and quantum-mechanical calculations or nanotensile tests. 
As an example, the implications for the predicted strength, today 
erroneously formulated, of a carbon-nanotube-based space elevator 
megacable are discussed. In particular, the first ab initio statistical 
prediction for megacable strength is derived here. Our findings suggest 
that a megacable would have a strength lower than ~45 GPa.
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A space elevator1 consists of a cable attached to a planet surface 

for carrying payloads into space. If the cable is long enough, 

centrifugal forces exceed gravitational forces and the cable will 

work under tension; for the Earth this critical length2 is of the 

order of 150 Mm. 

Fig. 1 shows artistic representations of the space elevator cable 

and concept. The cable would be anchored to a base station that 

could be mobile or fixed. Mobile platforms could be controlled to 

avoid high winds, storms, and space debris, but fixed base stations 

would be cheaper. For planar ribbon cables, climbers (with pairs of 

rollers to hold the cable with friction or smart gecko robots3) would 

carry the payloads into space. Laser power beaming could also be 

adopted to sustain and control the energy required by the climber. 

However, the climber itself would be naturally accelerated after 

reaching the geosynchronous orbit and could thus accumulate energy 

or exchange it with a different climber. The elevator would stay fixed 

geosynchronously. Thus, a space elevator could revolutionize the 

carrying of payloads into space, but its design is very challenging. 

The most critical component in the space elevator design is 

undoubtedly the megacable, which requires a material with very 

high strength-density ratio2. Carbon nanotubes (CNTs)4 are ideal 

candidates to build such a megacable5,6 because of their low density 

and huge strength, recently measured by nanotensile tests7,8. But 

basing the design of the space-elevator cable on the theoretical 

strength of a single CNT5,6 is naive9–11. Accordingly, we present 

here the first ab initio derivation of the statistical prediction for 
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megacable strength, and a corresponding flaw-tolerant design is 

proposed. 

For a cable with constant cross section and a vanishing tension 

at the planet surface, the maximum stress-density ratio for the Earth 

(reached at the geosynchronous orbit) is 63 GPa/(1300 kg/m3). This 

corresponds to 63 GPa, if the low density of carbon is assumed for the 

cable. Such a large failure stress has been measured experimentally7,8 

during tensile tests of ropes composed of single- or multiwalled CNTs, 

both expected to have an ideal strength of ~100 GPa. Note that for 

steel (density 7900 kg/m3, maximum strength 5 GPa), the maximum 

stress expected in such a cable would be 383 GPa, whereas for kevlar 

(density 1440 kg/m3, strength 3.6 GPa) it would be 70 GPa. Both 

values are much higher than their strengths9. 

However, an optimized cable design would have a uniform tensile 

stress profile rather than a constant cross-sectional area2. Accordingly, 

the cable could be built of any material by using a large enough 

taper ratio, i.e. the ratio between maximum (at geosynchronous orbit) 

and minimum (at the Earth’s surface) cross-sectional areas. A giant 

and unrealistic taper ratio would be required for steel or kevlar (1033 

or 2.6 × 108, respectively), whereas for CNTs, it is theoretically6 only 

1.9. Thus, the feasibility of the space elevator seems to become only 

plausible5,6 thanks to the discovery of CNTs. The cable would represent 

the largest engineering structure ever created, ~20 times longer than 

the Great Wall of China, with a hierarchical design from the nano- 

(single CNT) to the megascale (cable of a hundred megameters). 

Strength of nanotubes or bundles
Local theories have to be rejected in order to compute the strength 

of a structure properly, since they are unable to predict size effects 

because of the lack of a characteristic internal length (for details, see 

supplementary material and references12–15). For example, computing 

the tensile failure of a linear elastic infinite plate containing a hole 

using a maximum-stress local approach will always give one third of 

the defect-free strength, because a local theory cannot distinguish 

between a ‘small’ or ‘large’ (with respect to what?) hole. In contrast, 

quantized fracture mechanics (QFM)16–18 is derived from classical 

linear elastic fracture mechanics (LEFM)19 by removing the hypothesis 

of the continuous crack growth and thus naturally introducing an 

internal characteristic length, namely the fracture quantum. Discrete 

crack advancement is a material/structural property and is expected to 

increase with the size scale16–18. However, atomistic simulations reveal 

that the fracture quantum in CNTs is close to the distance between 

two broken adjacent chemical bonds16–18. QFM can treat different 

defect sizes and shapes in a simple analytical way and not only the 

‘long’ sharp cracks of LEFM. 

Using QFM, the ratio between the failure stress, σN, of a defective 

nanotube and its defect-free strength, σN
(theo), (i.e. theoretical strength 

as computed, for example, by stretching pristine nanotubes using 

ab initio simulations based on density functional theory) can be 

calculated. This is done by equating the mean value along the fracture 

quantum of the energy release rate with the fracture energy per unit 

area of carbon. For a nanotube having a fracture quantum q (the 

‘atomic size’) and containing an elliptical hole of half-axes a and b (a is 

perpendicular to the applied load or nanotube axis), we find (Fig. 2): 
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For transverse cracks having length m (in fracture quanta units), 

σN(m)/σN
(theo) ≈ (1 + m)–½ (b ≈ 0, m ≈ 2a/q). We have neglected 

tip-tip and tip-boundary interactions here, which would further reduce 

the failure stress. Better predictions could be derived by considering the 

energy release rate20 at the tip of a crack in a finite-radius cylinder. 

 Imposing the force equilibrium for a cable composed of defective 

nanotubes allows derivation of the cable strength σC (where the 

defect-free strength is σC
(theo)): 
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Fig. 1 The space elevator concept. Artistic representations (a) from the Earth 
and (b) from space. (Courtesy of StudioAta, Torino, Italy.)

(b)(a)

Fig. 2 Ratio between failure stress and ideal strength (σN/σN
(theo)) as a 

function of length and width of the elliptical defect in units of fracture quanta, 
q. The curve obtained for vanishing defect width and large defect length 
corresponds to the classical Griffith’s theory of fracture, while predictions for 
large defect length and width are identical to the inverse of the classical stress 
concentrations for elasticity. Nanotensile tests on nanotubes give 
σN/σN

(theo) ≈ 0.1–0.7, thus the related horizontal planes identify plausible 
solutions for defect sizes and shapes (Table 1, supplementary material). 
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The summation is extended to all holes, where fab is the numerical 

fraction of CNTs containing an elliptical hole of half-axes a and b (f00 

is the numerical fraction of defect-free nanotubes and ∑
a,b

  fab= 1). 

If all the defective nanotubes in the bundle contain identical holes, 

fab = f = 1 – f00, and the following simple relation holds: 1 – σC/σC
(theo) 

= f(1 – σN/σN
(theo)).

Thus, a taper ratio2, λ, larger than its theoretical value would be 

required for a megacable to be flaw tolerant10 against the propagation 

of an elliptical hole. The flaw-tolerant taper ratio is (Fig. 3):
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Thus, designing a megacable with the theoretical taper ratio as 

currently proposed would surely lead to its failure. 

By applying our treatment to results of nanotensile tests on 

CNTs7,8,21, we can identify plausible sizes and shapes for the 

most critical defect causing nanotube fracture (Fig. 2 and Table 1, 

supplementary material). Assuming these plausible defects occur in the 

CNTs in the megacable, we deduce flaw-tolerant taper ratios orders 

of magnitude larger than the theoretical value (Fig. 3). Defects are 

expected in the bundle, simply for thermodynamic10 and statistical22 

reasons, but also as a result of space debris impacts9 and other forms 

of damage accumulation.  

Fatigue of nanotubes or bundles
The space elevator cable would be cyclically loaded, e.g. by climbers 

carrying payloads, thus fatigue could play a role in its design. By 

integrating the quantized Paris law18,23,24 (an extension of the 

classical Paris law25 that has recently been proposed especially for 

nanostructure or nanomaterial applications), we derive the following 

number of cycles CN(a) to failure (where the defect-free number of 

cycles is CN
(theo)), assuming a pre-existing crack of half-length a:

( )
( )

( ) ( )

( ) ( ) 2121

2121

1

1
pp

pp

theo
N

N

WqWq

WqWaWq

C

aC
−−

−−

−+

+−+
= ,   2≠p   (4)

( )
( )

( ) ( ){ }

( ) ( ){ }WqWq

WqWaWq

C

aC
theo

N

N

/1ln

/1ln

+

++
= ,   2=p   (5)

where p > 0 is the Paris exponent of the material and W is the strip 

width. Note that according to Wöhler26 CN
(theo) = KΔσ –k, where K and 

k are material constants and Δσ is the amplitude of the stress range 

during oscillations. Even though fatigue experiments in nanotubes are 

still to be performed, their behavior is expected to be intermediate 

between those of Wöhler and Paris (as displayed by all known 

materials). The quantized Paris law basically represents their asymptotic 

matching (as QFM basically represents the asymptotic matching 

between strength and energy/toughness approaches). 

Only defects remaining self-similar during fatigue growth have to 

be considered, thus only a crack (of half-length a) is of interest in this 

context. Using eqs 4 and 5, the time to failure of a nanotube can be 

estimated, in a similar way to the brittle fracture of eq 1. 

For a CNT bundle, a mean-field approach (similar to eq 2) yields the 

number of cycles to failure CC (where the defect-free number of cycles 

is CC
(theo)) of a cable containing nanotubes with pre-existing cracks of 

half-length a in vacancy fractions fa:
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Eq 6 allows us to calculate the life-time reduction (1 – CC/CC
(theo)) 

of a CNT bundle by the presence of a given crack-size distribution in 

the nanotubes. Better predictions could be derived by integrating the 

quantized Paris law for a finite-width strip. However, we note that the 

role of finite width is already included in eqs 4–6, even if these are 

rigorously valid in the limit of W tending to infinity. 

Superplasticity or hyperelasticity
The equations above are based on linear elasticity, i.e. a linear 

relationship between stress, σ, and strain, ε, where σ ∝ ε. In contrast, a 

nonlinear constitutive law, σ ∝ εκ (κ ≠ 1), is more appropriate to treat 

the superplasticity (κ→0+) or elastic-plasticity (0 < κ < 1) recently 

observed in CNTs21, as well as hyperelastic materials (κ > 1). 

The power to which the stress-singularity at the tip of a crack is 

raised in such a nonlinear material would then be modified27 from the 

classical value of ½ to α = κ/(κ + 1). That is, the asymptotic stress 

field at the crack tip scales with the distance r from the tip as r –α, with 

0 ≤ α ≤ 1. Thus, the problem is mathematically equivalent to that of a 

edge corner defect28, and consequently we predict: 
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Plasticity reduces the severity of the defect, vanishing for 

superplastic materials, whereas hyperelasticity increases its effect. For a 

crack composed of m adjacent vacancies, for example, we find: 

σN/σN
(theo) ≈ (1 + m)–α. Eq 7 can be used to correct predictions for the 

Fig. 3 Taper ratio, λ, as a function of length and width of the elliptical defect in 
units of fracture quanta, q. Taper ratios several orders of magnitude larger than 
the theoretical value would have to be used in a flaw-tolerant cable design. 
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fracture strength of nonlinear materials given by eqs 1 and 2 (and 

eq 3), or fatigue strength by substituting p/2 with p/α in eqs 4–6. 

Maximum achievable strength 
Defects are thermodynamically unavoidable, especially at the 

megascale10. At thermal equilibrium, the vacancy fraction, f = n/N, 

where n is the number of vacancies and N is the total number of 

atoms, is estimated to be:

 aBTkE
ef 1−≈  (8)

where E1 ≈ 7 eV is the energy to remove one carbon atom and Ta is 

the absolute temperature at which the carbon is assembled (typically 

2000–4000 K). Thus, f is in the range ~2.4 x 10–18–1.6 x 10–9. For the 

megacable with a carbon weight of ~5000 kg, the total number of 

atoms is N ≈ 2.5 x 1029. Thus a huge number of equilibrium defects in 

the range n ≈ 0.6 x 1012–3.9 x 1020 are expected, in agreement with 

recent discussions29 and observations30. 

The strength of a cable will be dictated by the largest transverse 

crack in it, according to the weakest link concept. The probability of 

finding a nanocrack of size m in a bundle with vacancy fraction f is 

P(m) = (1 – f)fm. Thus the number M of such nanocracks in a bundle 

composed of N atoms is M(m) = P(m)N. The size of the largest 

nanocrack, which typically occurs once, is found from the solution of 

the equation M(m) ≈ 1, which implies31:

( )[ ] fNfNfm lnlnln1ln −≈−−≈  (9) 

Thus we deduce a size m ≈ 2–4 for the largest thermodynamically 

unavoidable defect in a megacable. Inserting eqs 8 and 9 into eq 1 

for a transverse crack (b ≈ 0 and m ≈ 2a/q), we deduce the statistical 

counterpart of eq 1 and the following thermodynamically maximum 

achievable strength: 
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Inserting eq 10 into eqs 2 and 3, the maximum cable strength and 

minimum taper ratio can be deduced statistically. The maximum 

achievable strength, an unavoidable limit at least at thermodynamic 

equilibrium, is ~45 GPa and the flaw-tolerant taper ratio is ~4.6. 

But the larger taper ratio implies a large cable mass and thus a large 

number N of atoms. Updating N in our statistical calculation yields the 

same, thus self-consistent, predictions. Statistically32, we expect an 

even smaller strength9,10. 

Conclusions
We have presented key formulas for the design of a flaw-tolerant space 

elevator megacable, suggesting that it would have a lower strength, or 

would need a larger taper ratio, than has been previously proposed. The 

thermodynamic maximum achievable strength, which does not involve 

any best-fit parameter, has been derived to calculate the first ab initio 

statistical prediction of the megacable strength. This is expected to 

be <45 GPa. A strength of ~10 GPa (which has been experimentally 

observed in individual CNTs), for example, would dramatically increase 

the taper ratio to ~613. Thus, is the space elevator out of order? 

Our opinion is: at present, yes; but never say never. However, our 

proposed flaw-tolerant concept could be key for a terrestrial space 

elevator design far in the future. Moreover, a lunar space elevator, 

because of the lower gravity, could perhaps be realized with existing 

engineering materials and an opportune flaw-tolerant structural design. 

Tethered space systems, pioneered by Grossi and Colombo in 1972, are 

becoming even more intriguing in the new era of nanomaterials.  
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