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A B S T R A C T This paper describes a simple Griffith fracture energy criterion to predict the brittle
failure load for tubular or non-tubular bonded joints subjected to torsion. The
theoretical solution generalizes to non-tubular bonded joints an analogous result already
presented in the literature and experimentally validated for particular tubular bonded
joints. The stability of brittle crack propagation and the size effects on mechanical
collapse behaviour, as well as the ductile–brittle transition, are analysed. Experimental
measurements of failure loads under torsion for non-tubular bonded joints agree
satisfactorily with the theoretical predictions.
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non-tubular and tubular joint as streamlined for uniform
I N T R O D U C T I O N

torsional strength (uts): starting from a non-tapered joint,
the optimization was achieved by chamfering the edges,With the development of high-strength adhesive mate-

rials and with the progress in techniques of adhesive which are in any case not involved in the stress flow
induced by the load for which the joint should bebonding, various kinds of adhesive-bonded joints are

now being used in the manufacturing of light structures. designed. The resulting optimized joint shape is thus
both lighter and stronger.As stress concentration often occurs in the edge zones

of the adhesive layer of a joint a detailed analysis of the In the present paper a simple study to predict the
brittle failure load for a tubular or non-tubular bondedstress distribution around the joint region, especially in

the adhesive layer of these joints, as well as of the brittle joint under torsion is presented. It is assumed that all
three of the materials making up the joint (beams andbehaviour of the joint, is needed for application and

research. adhesive) are governed by a linear elastic law (isotropic).
Although this is intuitively obvious for beams (whichSince the pioneering papers by Goland and Reissner,1

Lubkin and Reissner2 and more recently by Adams and typically are metallic), this is not the case for the
adhesive, which is more likely to show a non-linearPeppiatt,3 several theoretical, numerical and experimen-

tal analysis on tubular bonded joints have been behaviour. However, if the adhesive film is considered
to be under torsion (tubular joint) and not subject toperformed.

It is only recently that non-tubular structures have tension, the statistical theory of the rubber8 shows how
its behaviour can be considered to be substantially linearbeen investigated. Pugno and Surace4 studied a non-

tubular joint subjected to torsion from a theoretical elastic. On the contrary, in the case of a non-tubular
joint, the stress state in the adhesive is basically normal.point of view and validated it numerically by a three-

dimensional finite element analysis. An extension con- As is well known, the adhesive can withstand shear
stresses which are an order of magnitude higher thansidering tapered adherends has been also presented.5

Pugno6 and Pugno and Surace7 have considered the the ultimate normal stresses, so that we can also assume
a linear elastic law for the adhesive of a non-tubular joint.

A very general formula has been obtained by meansCorrespondence: Nicola Pugno, Department of Structural
of the Griffith9 energy balance and applying linear elasticEngineering, Politecnico di Torino, Corso Duca degli Abruzzi 24,
fracture mechanics.10–16 It is supposed that the crack10129 Torino, Italy.

E-mail: pugno@polito.it propagation at the interface between the two adherends
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takes place in the adhesive at the point of highest stress
N O N - T U B U L A R B O N D E D J O I N T

concentration in Mode I.8 An energy balance is formu-
lated for a small growth of the debonding: changes in The nontubular bonded joint (Fig. 1), consisting of two

elements and the interposed adhesive, is considered tothe strain energy of the joint and in the potential energy
of the loading device are equated to the characteristic be subject to a torsional moment Mt . The theoretical

analysis4,6 permits the calculation of the torsionalenergy needed for debonding. As a consequence a general
formula to predict the brittle failure load for a tubular moment M absorbed by each beam in each section of

the overlap and the predominant normal strain ey andor non-tubular bonded joint with or without tapered
adherends can be obtained. This formula generalizes an normal stress sy fields (equivalent to the applied torsional

moment) in the adhesive:analogous formula already presented in the literature8

and experimentally validated for tubular bonded joints.
The greater sensitivity to brittle collapse is emphasized

Mi(x)=Mt fi(x); f1(x)+ f2(x)=1;

G f1(x=−c)=1

f1(x=+c)=0
; i=1, 2

(6)for the non-tubular geometry if it is compared with the
tubular one (especially in the case of tapered adherends).

The stability of brittle crack propagation and the size
effects on mechanical collapse behaviour, as well as the
ductile-brittle transition are emphasized. Some exper-

sy(x, z)=−
Mt

I*x
z

df1(x)
dx
=E*a ey(x, z);

E*a=
1−na

(1+na)(1−2na)
Ea ; I*x=

b3

12

(7)imental results obtained with non-tubular joints agree
satisfactorily with the theory herein presented.

where f are known functions, I*x is a moment of inertia
P R I N C I P L E O F E N E R G Y C O N S E R V A T I O N

per unit length and Ea, na are the Young’s modulus and
By virtue of the Principle of Conservation of Energy, the Poisson’s ratio of the adhesive. The predominant
the following balance between the variation in the poten- stress field sy(x, z) in the adhesive is linear along the
tial energy and the virtual fracture energy must hold: z-axis and its maximum positive value is achieved at z=

b/2. It is supposed that the initial separation at the
G dA+dW=0 (1) interface between the two adherends takes place in the

adhesive in z=b/2, the zone of highest stress concen-where G is the strain energy release rate and dA
tration, with a crack of length Dz for all the length 2c ofrepresents the incremental fracture area.
the overlap (Fig. 2).Considering an imposed torsional loading, the

We can suppose that the fictitious cross length of thevariation in the potential energy is equal to:
joint becomes b−Dz. This is the simplest hypothesis:
the stiffness of the joint is linear in Dz. If the crackdW=dL−Mt dq=d A12 MtqB−Mt dq=−dL (2)
length is zero it will coincide with the stiffness of the
integral joint and if the crack length is equal to b it will

where dL denotes the variation in elastic strain energy be equal to zero. By this hypothesis good predictions of
(evaluated by virtue of Clapeyron’s Theorem). The strain the failure loads of the joint can be obtained.
energy release rate can be rewritten as: The elastic strain energy of the overlap zone of the

joint is the sum of three quantities, i.e. the elastic strain
G=−

dW
dA
=

dL
dA

(3)

Brittle crack propagation really occurs when G reaches
its critical value Ga , characteristic for the adhesive:

G=
dL
dA
=Ga (4)

Fig. 1 Non-tubular bonded joint.
and such propagation will be stable, metastable or
unstable depending on the sign of the second order
derivative of total potential energy:

−
d2W
dA2 =

dG
dA
=

d2L
dA2 G<0 stable

=0 metastable

>0 unstable

(5)

Fig. 2 Debonding in the adhesive of a non-tubular joint.
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energy absorbed by the two beams (subscript 1, 2) and Aeff
a

Aa
=1−

Dz
b

(13)by the adhesive (subscript 3):

L=L1+L2+L3 (8) and depends on the technological process of bonding. If
the process is perfect it equals one. From Eq. (12) we canIf we consider a beam with tapered adherends along the
obtain the torsional moment causing the brittle collapseoverlap zone of a cracked joint, the fictitious factor of
of the joint.torsional rigidity I f

i (x) can be written as a function of
the profile a3

i (x)=a3
i hi(x), where ai , Ii are the height and

the factor of torsional rigidity of the considered beam T U B U L A R B O N D E D J O I N T
out of the overlap zone:

The same considerations can be rewritten taking into
I f

i (x)=1/3a3
i (x)(b−Dz)=Iihi(x)(1−Dz/b) (9) account a tubular bonded joint.7 In this case the predomi-

nant stress and strain fields [Eq. (7)] become:
The elastic strain energy absorbed by the beam along
the overlap zone of the cracked joint is equal to:

t(x)=−
Mt

2pR2
df1(x)

dx
=Gac(x) (14)

Li= P+c

−c

M2
i (x)

2GiI
f
i (x)

dx=
M2

i

2GiIi

1
1−Dz/b P+c

−c

f 2
i (x)

hi(x)
dx

where R is the radius of the bonded surface and Ga is
the shear elastic modulus of the adhesive.

=
M2

t

2GiIi
ai(Dz); i=1, 2 (10) It is well-known that the predominant shearing stress

field in the adhesive (equivalent to the applied torsional
moment) has its maximum positive value at the end ofwhere ai are integrals of known functions.4

the stiffer beam (here called 1). The initial separation atThe elastic strain energy absorbed by the adhesive
the interface between the two adherends is supposed toof the cracked joint can be written as a function of
take place at this point: the debond is a crown-crack ofthe fictitious moment of inertia per unit length,
length Dx (Fig. 3). The elastic strain energy of theI*f

x =(b−Dz)3/12, considering the reduction of the load-
cracked (eventually tapered) joint along the overlap canbearing area of the adhesive in the stress fields [Eq. (7)]:
be calculated, noting how the portions of the joint are
loaded (Fig. 3):L3= P+c

−c P+(b−Dz)/2

−(b−Dz)/2

1
2

Eae
2
y (x, z)h dz dx

L1= P+c−Dx

−c

M2
1 (x)

2G1I1(x)
dx=

M2
t

2G1I1 P+c−Dx

−c

f 2
1 (x)

h1(x)
dx

=
2−6na+3n2a+2n3a

n2a Ea

6hM2
t

b3

=
M2

t

2G1I1
a1(Dx) (15)

×
1

(1−Dz/b)3 P+c

−c Adf1(x)
dx B2 dx

L2= P+c−Dx

−c

M2
2 (x)

2G2I2(x)
dx+ P+c

+c−Dx

M2
t

2G2I2(x)
dx=

M2
t

2Ka
b(Dz) (11)

where h, Ka are, respectively, the height and the stiffness =
M2

t

2G2I2
a2(Dx)+

M2
t

2G2I2
a*2(Dx) (16)

of the adhesive and b is the integral of a known function.4

Applying Eq. (3) we can obtain the strain energy release where ai , a*2 , Ii are, respectively, integrals of known
rate G where dA=2c dDz . Equation (5) shows whether functions7 depending on the crack length Dx and on the
the fracture propagation is stable, metastable or unstable, polar moment of inertia out of the overlap zone for the
for a non-tubular joint. By Eq. (4) we can obtain the considered beam.
condition for brittle propagation: The elastic strain energy absorbed by the adhesive of

the cracked joint is equal to:M2
t b/2
Aa A ȧ1

G1I1
+
ȧ2

G2I2
+
ḃ

KaB=Ga (12)

L3= P+(2c−Dx)/2

−(2c−Dx)/2

1
2

Gac
2(x)2pRh dx

where the dot over the symbol has the meaning of
derivative with respect to the crack length Dz.

=
hM2

t

4pR3Ga P+(2c−Dx)/2

−(2c−Dx)/2 Adf1(x)
dx B2 dxThe derivatives in Eq. (12) depend on the ratio

between the effective load-bearing bonded area Aeff
a of

the adhesive surface and its nominal value Aa=2bc. It =
Mt

2Ka
b(Dx) (17)

can be expressed as a function of the initial crack length:

© 2002 Blackwell Science Ltd. Fatigue Fract Engng Mater Struct 25, 55–62



58 N. P U G N O a n d A . C A R P I N T E R I

Fig. 3 Tubular bonded joint with
debonding in the adhesive.

where b is the integral of a known function7 depending the torsional moment of brittle failure is independent of
the crack length: the propagation will be metastable.on the crack length Dx. Applying Eq. (3) we can obtain

the strain energy release rate G where dA=2pR dDx. Equation (5) has been already presented and verified
experimentally in the work by Gent and Yeoh8 for tubularEquation (5) shows whether the fracture propagation is

stable, metastable or unstable, for a tubular joint. joints in the case of G1I1�2. In that paper a better
estimate of the torsional moment, considering the frictionalBy Eq. (4) the condition for brittle propagation can

be obtained as: contribution to the work of detachment due to the shrink-
ing of a tube subjected to torsion, is also presented. Such a
frictional effect cannot be neglected except in the caseM2

t c
Aa A ȧ1

G1I1
+
ȧ2+ ȧ*2
G2I2

+
ḃ

KaB=Ga (18)
when the external tube is much stiffer than the internal
one, and in any case it vanishes for non-tubular joints.where the dot over the symbol has the meaning of

In the case of tapered adherends of beams withderivative with respect to the crack length Dx, and Aa=
identical stiffness GI, we can consider the following4pRc is the area of the adhesive surface.
approximated profile:

S T A B I L I T Y O F C R A C K P R O P A G A T I O N G1I1(x)=GI
c+x

2c
; G2I2(x)=GI

c−x
2c

(21)
If we suppose that the height h of the adhesive layer is
zero (and as a consequence L3=0), the functions f will This profile is the best from a tension point of view (Uts
assume the physical meaning of coefficients of distri- Joints, i.e. optimized to Uniform Torsional Strength;
bution: Refs [6,7]). In this case Eqs (15) and (16) must be

rewritten taking into account the symmetrical propa-
fi(x)=

GiIi(x)
G1I1(x)+G2I2(x)

; −c<x<c (19) gation by the length Dx/2 of the crack at the end of the
two beams:

Two cases are particularly interesting. In the case of
non-tapered adherends, the functions [Eq. (19)] are con- L1= P+c−Dx/2

−c+Dx/2

M2
1(x)

2G1I1(x)
dx+ P−c+Dx/2

−c

M2
t

2G1I1(x)
dx

stant along x (x≠±c) and Eqs (12) and (18) can be
rewritten in the following unified manner:

=L2= P+c−Dx/2

−c+Dx/2

M2
2(x)

2G2I2(x)
dx+ P+c

+c−Dx/2

M2
t

2G2I2(x)
dx

(22)

Equation (20) becomes:

Mt=SGa
Aa

c
c(G1I1+G2I2);

Gc=AAeff
a

Aa B2; c∏1; non-tubular, unstable

c=
G2I2

G1I1
; c∏1; tubular, metastable

(20)

Mt=SGa
Aa

c
cGI;

Gc=AAeff
a

Aa B2; c∏1; non-tubular (uts), unstable

c=
Aa+Aeff

a

Aa−Aeff
a

; c�1; tubular (uts), unstable

(23)The stability of crack propagation has been obtained apply-
ing Eq. (5). For non-tubular joints an increase of crack
length causes a reduction in the torsional moment of brittle
failure: the propagation will be unstable. For tubular joints
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For tubular or non-tubular joints with (uts) tapered layer (bh or 2pRh for non-tubular or tubular joints,
respectively).adherends an increase in the crack length causes a

reduction in the torsional moment of brittle failure: the Comparing the ultimate values of the torsional
moment for brittle [Eqs (20) and (23)] and ductilepropagation will be unstable.

According to Eq. (23) it appears very clear that the collapse [Eqs (24) and (25)] the brittleness number s of
the joint may be defined:10,12non-tubular joint is more susceptible to brittle collapse

Mt

Mst
=ms; Gm=2 Aa1

hB3/2 A ha2B3/2

; s=SG1

G2

1−na
1−2na

√GaGa

√htu
; non-tubular

m=√2; s=
√GaGa

√htu
; tubular

m=√2 Aai

hB3/2 h
b

h
c

Aa

Aeff
a

; s=
√GaGi

√htu
, i=1 or 2; non-tubular (uts)

m=
√8
8 SKR4

i

h4−
R4

h4 K Aa+Aeff
a

Aa−Aeff
a

; s=
√GaGi

√htu
, i=1 or 2; tubular (uts)

(26)

Considering different sizes of geometrically similar jointsthan the tubular one.
(m=const.) the brittleness number s shows how brittleThe non-tubular tapered joints are less strong than
collapses tend to occur with a low fracture energy, a lowthe non-tapered ones from a brittle fracture point of
shear elastic modulus, a high ultimate stress and/or largeview. If the full benefits of the uts non-tubular joint
structural sizes. It is not their individual values that aregeometry are to be exploited, it is thus essential for
responsible for the nature of the collapse mechanism,appropriate technological purposes to ensure that the
but rather their continued effect as represented by thejoint collapse does not involve fracture phenomena.
function s.Vice-versa, the tubular tapered joint is stronger than

the non-tapered one against brittle collapse. As a conse-
quence the uts tubular joint is optimized at the same E X P E R I M E N T A L A S S E S S M E N T
time from a ductile and a brittle point of view; this is a

To validate the theory to predict the brittle collapse ofrelevant result for a global optimization design.
bonded joints, some experimental tests have been carried
out by the Fiat Research Centre.17 The typologies

S I Z E E F F E C T S A N D D U C T I L E – B R I T T L E considered are non-tubular, without tapered adherends
T R A N S I T I O N (specimens A) with two different cross sections (A1: b=

37.5 mm, A2: b=25 mm) or with trapezoidal taperedThe critical torsional moment is provided by the lesser
adherends (specimens B with b=37.5 mm, Fig. 4). Threeof the load of brittle crack propagation [Eqs (20) and
tests (displacement controlled with deformation rate(23)] and the load of ductile collapse achieved when the
variable between 2 and 5 mm/min) for each one of themaximum stress in the adhesive equals an ultimate stress
three typologies for a total of nine cases have beensu=tm√34,6,7

considered.
The room temperature and humidity were, respect-

ively, 22 °C and 50% (relative humidity).
The material of the beams is magnesium (E=45 GPa,

Mst =SAac

Ga
l

G2I2

G1I1
(G1I1+G2I2) tu ,

G2I2

G1I1
∏1,

Gl=AAeff
a

Aa B2 1−2na
2−2na

; non-tubular

l=1; tubular

(24) n=0.31), and the adhesive is epoxy CIBA XB 5315
(Ea=2.7 GPa, na=0.4). The experimental set-up is rep-
resented in Fig. 5 and the geometrical values are reported
in Table 1. Table 2 shows the experimental results.

Mst =G√3
3 AAeff

a

Aa B2 b2ctu ; non-tubular (uts)

4pR2 Aeff
a

Aa
ctu ; tubular (uts)

(25)

Fig. 4 Trapezoidal execution of non-tubular tapered profile
(continuous line) and uts one (dotted line).where Aac is the cross-section area of the adhesive
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The variability of the results considering the same
joint is a consequence of the difficulty of execution a
bonding with constant properties. For this reason a
discrepancy between the theoretical and experimental
analysis is unavoidable and expected (see Ref. [8]).

The unstable phenomenon appeared experimentally
in a very clear way.

In Fig. 6 the two kinds of joint tested are presented.
A better distribution of adhesive between the two
adherends at the end of the test implies a higher valueFig. 5 Testing set-up for torsion tests.
of Aeff

a /Aa. The mean value of this ratio is experimentally
around 0.7 and can be used to model a real and imper-
fect bonding.

Table 1 Geometrical sizes [mm]
Referring to Fig. 5, the torsional moment applied and

the relative rotation can be calculated as:a b c h d L

3 3.75–25 10 0.3 94 150
Mt=

F
2

d; Dq=2arctg AddB (27)

and it is possible to obtain a relation between these twoTable 2 Experimental results for the loading capacity F (N)
quantities for each test. In Fig. 7, to provide some

A1 118 168 — examples, these curves for specimens B are reported.
A2 84 112 126 The fracture energy of the adhesive epoxy can be
B 115 123 168 estimated around 140 Jm−2.8,18

Considering a perfect or an imperfect bonding

Fig. 6 Bonded joints with and without tapered adherends.

© 2002 Blackwell Science Ltd. Fatigue Fract Engng Mater Struct 25, 55–62



B R I T T L E FA I L U R E O F B O N D E D J O I N T S U N D E R TO R S I O N 61

Table 3 Theoretical predictions with
perfect or imperfect bonding (Aeff

a /Aa=1.0
or 0.7, respectively) and experimental
results for the torsional moment of failure
[Nm]

Theoretical Theoretical
(ideal joint) (real joint) Experimental

Joint Aeff
a /Aa=1 Aeff

a /Aa=0.7 Experimental values average value

A1 11.00 7.70 5.55 7.90 — 6.72
A2 7.82 5.47 3.95 5.27 5.93 5.04
B (#uts profile) 7.29 5.10 5.40 5.78 7.90 6.36

by Eq. (26) is less than one. The comparison is summar-
ized in Table 3; the theoretical (‘real joint’ column) and
the experimental (‘average value’ column) results agree
satisfactorily. As a consequence, the prediction of Eqs
(20) and (23), obtained supposing an imperfect bonding,
can be used as estimate of the torsional moment of
failure of the joint. On the other hand, considering a
perfect bonding (‘ideal joint’ column in Table 3), the
prediction of Eqs (20) and (23) will be an upper-bound
value for the torsional moment of failure concerning a
particular type of joint (‘experimental values’ columns).

C O N C L U S I O N S

In this paper a simple Griffith fracture energy criterion
to predict the brittle failure load for tubular or non-
tubular bonded joints subjected to torsion has been
described [see Eq. (20)].

The tapering of the adherends has also been investi-
gated. It has been shown as the uts profile [Eq. (21)],
optimizing the joint from a tension point of view, also
implies a decrease of the brittleness of the tubular joint
[see Eq. (23)]. As a consequence the uts tubular joint is
optimized at the same time from a ductile and a brittle
point of view; this is a relevant result for a global
optimization design.

The stability of brittle crack propagation and the size
effects on mechanical collapse behaviour, as well as the
ductile-brittle transition, has also been investigated. The
greater sensitivity to brittle collapse is emphasized for
the non-tubular geometry if it is compared with the
tubular one (especially in the case of tapered adherends).

M
t

M
t

M
t

Finally, experimental measurements of failure loads
Fig. 7 Experimental diagrams of torsional moment [Nm] versus under torsion for non-tubular bonded joints have been
relative rotation (rad) for the specimens B. presented; they agree satisfactorily with the theoretical

predictions.
(Aeff

a /Aa=1.0 or 0.7, respectively) and using Eq. (20), we
can predict the critical value of the torsional moment Acknowledgements
for the specimens A1, A2 tested.
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