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Abstract

Introduction: Adaptation of bone to different loads has received much attention. This paper examines the consequences of differences in size on
bones from the same animal species.
Methods: The study was conducted on 32 canine radii. Their geometry, densitometry and mechanical properties were determined and one-way
ANOVAwas used to analyze their distribution by sex. Bending failure was observed during the mechanical test. The bones were then likened to
thin beams and the mechanical parameters of interest were appraised via beam theory. A multiple linear regression model with stepwise analyses
was employed to determine which parameters rule the mechanical characteristics. The relationships between the bone mass and the parameters
investigated were analyzed by means of a model II regression in order to state how the scaling of the bone characteristics act on its mechanical
behavior.
Results: The linear regression model demonstrated that an animal's mass, its sex and the mineral content and the geometrical properties of its
bones almost entirely predict their mechanical behavior. A close fit was found between the experimentally determined and the theoretical slopes of
the log regressed allometric equations. The work to failure was found to scale almost linearly with the animal and bone mass and the
macroscopical bone material properties were found to be mass invariant. The allometric equations showed that as the animal mass increases,
employing proportionally the same amount of tissue, bones get proportionally shorter and proportionally distribute their tissue further from the
cross-sectional centroid.
Conclusions: Our results suggest that dimensional analysis on the assumption of geometrical self-similarity and mechanical testing according to
classic elastic solutions are reasonable in bones tested in accordance to our set up. The bone geometry is the parameter able to curb the energy
effects of an animal mass increase. The allometric scaling of the bone length and the cross-sectional layout, without an increase in the amount of
material proportionally employed, preserves linear with the animal mass the amount of energy necessary to fracture a bone and restrain the rise of
stresses and strains in the cross-section.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

The relationship of body size to the anatomical, physiolo-
gical, behavioral and ecological characteristics of living
organisms has long been extensively investigated in biology
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[3,4,6,14–18,24,25,27,31,33,35,40–42,44–47,51,53,54,62–
64]. Early in the twentieth century, the great biologists, D'
Arcy Thompson, Cecil Murray and Julian Huxley produced
influential works [33,46,55] on scaling. They considered a
wide range of size-related phenomena and tried to explain
them in terms of physical principles of mechanics and
geometric relationships. In interpreting scaling relationships
as optimal solutions to problems of mechanical design, these
early studies laid the foundation of the modern discipline of
biomechanics [19].
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The principle underlying all the theoretical and quantitative
studies on scaling is that changes in the size of a physical or
biological system require adjustment of the relations between
its components and processes to enable it to continue to
function. The physical principles that rule the development and
behavior of the components and processes are universal, but
the biological consequences depend on the size of the organism
[20]. West et al. proposed [63] these regulating principles as
the rates at which energy and materials can be distributed
between surfaces where they are exchanged and tissue where
they are used, assuming invariant the terminal units in their
distribution networks. The consequences of an organism size
increase are basically related to the trend of the surface to
volume ratio and to the associated production and wasting of
energy.

Three principles govern the design of a biological system:
interrelated exponents, invariant quantities and symmorphosis
[62]. The interrelated exponents are those which fit the
allometric equations that state the relations between two
parameters of interest. A typical allometric equation has the
form Y=Y0M

b, where Y is some dependent variable, Y0 is a
normalization constant, M is the body mass and b is the scaling
exponent. The invariant quantities are the characteristics that
vary as M0. Examples across mammals are the radius of the
capillaries and velocity and pressure in both the aorta and
capillaries [36,37]. Symmorphosis is the observed tendency of
biological structures to develop so as to meet, but not exceed the
maximal demand [62]. These scaling relations reflect solutions
whose sole purpose is to meet the maximum requirements.

Scaling of the musculoskeletal design of terrestrial animals
and its adaptation to mechanical constraints of size have also
been investigated in intraspecific [22,60] interorder [26,49,
50,52] and mostly in interspecific studies [2,5,9,10,11,
13,23,28,29,30,34,40,43,56,58]. Due to the different scaling
of surface and volume as the body size increases, the energy to
be controlled by the bearing framework during physiological
activities scales faster than parameters favorable to the
avoidance of fractures. Investigation of the extent to which
the geometrical [7], the densitometric and the mechanical
properties of bone scale with increases in the size of an animal
in a given species gives an idea of the strategies adopted by its
tissue to adjust its structure and function to compensate for the
geometrical, physical and biological consequences of differ-
ences in size.

This study assesses the bone material and structural
characteristics and mechanical behavior of different sized
canine radii in an illustration of the relations between the size
of a bone, its morphology and mechanical behavior in terms of
the parameters that are the rulers of the mechanical function.

Materials and methods

Experimental model

Thirty-two pairs of radius and ulna were obtained from fully grown dogs
(age 9.7±4.7 years, 18 F, 14 M, body mass 14.6±12.2 kg: 1.6–45 kg) that died
naturally or euthanized due to causes unaffecting bone integrity. There were no
histories of fractures, angular deformities or forelimb lameness. 12.5% of the
dogs included in the study were mixed breed, the remaining were dogs of pure
breed ranging from Minipoodle to Rottweiller.

Determination of the body and of the bone mass

Body mass was determined on a standard balance with a precision of 0.5 kg.
The forearms were then harvested and soft tissues were removed. The left radii
were released from the ulnae by cutting the interosseous membrane, the
ligamentous and the capsular tissues and radial bone mass was determined with
a balance with a precision of 0.01 g. Bones were then wrapped in saline-soaked
towels and frozen at −20 °C until further measurements were taken. They
defrosted at room temperature (23 °C) and wrapped in saline-soaked gauze
during each evaluation.

Computed tomography (CT)

The right radii and ulnae, anatomically attached, were examined by CT using
standard software. The machine (GE lightspeed plus, Wisconsin, USA) was
calibrated in accordance with the manufacturer's instructions. Its settings were
140 kV, 40 mA, with time set at 1.4 s. Slice thickness was set to 1.25 mm and
interscan thickness to 1.25 mm. Each forearm was positioned with the
mechanical axis of the radius parallel to the direction of the scan and
perpendicular to the rays. The mechanical axis was defined as the line
connecting the center of the loading surface in the proximal and distal
articulation. It passes through the center of the radial head and the middle of the
interfossa ridge, between the interfossa and the lunatae fossae on the distal radial
surface [32]. Image matrix size was 512×512 pixels and the field of view was
12.0×12.0 cm. Images were saved in DICOM format.

Calculation of the radial geometrical properties

Radius slices were converted into the IGES extension with the Mimics
(Materialise's Interactive Medical Control System) 6.3 software (Materialise
NV 1999). The Rhinoceros 2.0 software (Robert McNeel and Associates,
Seattle, WA) was employed to create a surface for each slice and a 3Dmodel was
created for each radius by lofting the surfaces. The mechanical axis of the bone
was drawn for each 3D model. The geometrical properties of interest were: the
radial length (mm), the total volume of the bone (cm3) and the cortical and
spongy volume percentages. The slice located at 50% of the distoproximal radial
length (the 50% slice) of each radius was chosen to enter a simplified beam
model and their cross-sectional properties were determined in order to
qualitatively appraise their surface stresses. The cross-sectional geometrical
properties of interest were: B.Di(m–l), the bone diameter (mm) in medial–lateral
direction; B.Di(a–p), the bone diameter (mm) in anterior–posterior direction; Ps.
Ar, the outer area (defined as the area bounded by the periosteum); Me.Ar, the
area of medullary cavity; CSA, the cross-sectional area (mm2); the moment of
inertia (mm4) with respect to a mediolateral axis (Iap) and an anteroposterior axis
(Iml) passing through the centroid; the polar moment (Ip) of inertia (mm4) with
respect to the centroid; the width (mm) of the four cortices (Ct.Wiant, Ct.Wipost,
Ct.Wimed, Ct.Wilat) along this axes; Ct.Wimean, the mean cortical thickness (mm)
and the distance (mm) between the 50% slice's centroid and the mechanical axis.
The surface (mm2) of the radial head and the distal radial articular surface (mm2)
were also calculated. All measurements were performed with Rhinoceros 2.0 on
a Pentium 4.2, 8 GHz, computer by the same operator.

The same cross-sectional geometrical properties of other three sections of
the distal radius were retrieved from our previous paper [7] and entered in the
linear regression model once validated with the measurements obtained with
Rhinoceros 2.0.

Dual-energy X-ray absortiometry

Cranial–caudal scans of the left radii were made with a Hologic QDR-
4500A and the LowDensity Spine software (Hologic Inc., Waltham,MA 02154,
U.S.A.). The machine was calibrated according to the manufacturer's
instructions. Its settings were 140/100 kVp, 2.5 mA. Scan length was
20.362 cm, width of scan was 11.357 cm, line spacing was 0.1008 cm and
point resolution was 0.0901 cm. Each radius was positioned in pronation with



Fig. 2. The beam model of the sample shown in Fig. 1. Stresses on the cross-
section located at the 50% of the distoproximal radial length were calculated in
two conditions: (a) the radius is bearing the animal's whole weight, (b) the radius
is at the ultimate load and ultimate displacement detected during the
biomechanical test. The effects of the compressive load and the bending moment
were calculated as (a) static stress and (b) failure stress (σmax). CO=static lever
arm; C′O′=failure lever arm; AB=mechanical axis.
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the mechanical axis parallel to the direction of scan and normal to the rays. The
scans were performed distal-proximally in a plexiglass box. Simulation of soft
tissues was obtained by placing the bones in 5 cm of water according to the
manufacturer's instruction. Repeatability was evaluated by taking three
consecutive measurements of three samples with repositioning of both the
sample and the laser beam; the coefficient of variation (CV) was calculated. The
same operator positioned all the samples. The entire bone mineral content
(BMC) was calculated.

Mechanical testing

The failure properties of these right radii were tested in axial compression
with a Schenck machine (Schenck Trebel RSA 100, 50 Hz, 100 kN, Ulm,
Germany) calibrated according to the manufacturer's instructions.

Bones were manually positioned upside down by the same operator with the
mechanical axis at right angles to the ground (Fig. 1). The radius is thought to
function as a thin beam restrained distally and proximally with a hinge. To
partially avoid shear stresses due to the end effect created by machining the
bones, thin custom hard rubber jigs were used to spread the load evenly over the
proximal and distal joint surfaces. They held the bones in position and restrained
the joint surface for mediolateral and anteroposterior translations without
preventing torsion of the entire bone and rotation of the epiphysis around a
mediolateral axis passing through the articular plane. The rubber jigs leaned on
sandpapers glued on the plates. The machine was programmed in three steps. In
the first, the plates were moved closer at 50 mm/min until a 19 N load was
reached. The second step now brought them closer at a constant 400 mm/min
until failure. This displacement rate was set in order to dump the viscous effects,
restrain as physiologically as possible and prevent any mechanical adaptation of
bone (creep, relaxation and hysteresis) during the test. The behavior, restraint and
position of the samples were followed during the test.When the load cell detected
a load below 5 N, the third step returned the plates to their starting position. A
load cell continuously recorded the reaction force produced by the sample as the
average of four values per millisecond (acquisition rate 4 MHz). A load–
displacement curve was plotted for each sample. Samples unsuccessfully tested
because of bad restrain fracture or uncompleted data acquisitions were discarded.

The beam model

Each bone was likened to a thin beam in view of the consistency of their
length:diameter ratio and of their behavior observed during the test. The
models were built for each bone starting from its radial geometrical properties
and linked with their mechanical characteristics. Although the loading pattern
Fig. 1. The first step of the axial compressive test and the last frame before the
failure point. The radius is thought to function as a thin beam restrained distally
and proximally with a hinge. Thin custom hard rubber jigs were used to spread
the load evenly over the proximal and distal joint surfaces. They held the bones
in position and restrained the joint surface for mediolateral and anteroposterior
translations without preventing torsion of the entire bone and rotation. The
compliance of the rubber jigs was ascertained and their individual effect on the
displacement was taken into account for each sample.
of a long bone is very complex, in view of the behavior observed during the
test and of previous studies [12,28,48] relevant loading patterns were assumed
to be axial compression and bending. The 50% slice was assumed to lie at
right angles to the mechanical axis during the bone strain. The surface stresses
on this slice were calculated from the compressive force and the bending
moment in two conditions (Fig. 2). Condition (a): the bone is loaded with the
entire weight of the animal and assumed to be unstrained with respect to the
condition acquired with the CT scans. The maximum stress on the surface of
the 50% slice was defined as the static stress. Condition (b): the bone is
loaded with the ultimate load and strained as determined by means of the
mechanical test. The highest stress on the surface of the 50% slice at the
ultimate load was called the ultimate stress and defined as σ maxima (σmax).
This same tension was assumed to be bearable by the tissue and, called σ
admissible (σadm), considered as a macroscopical bone material property.
Under the artificial assumption of bone as an isotropic homogeneous material,
the strains of the tissue located on the surface of the 50% slice can be
extrapolated from those estimated stresses and the elastic modulus. The
compressive force and bending moment were derived from the data collected
in our test and measurements.

Data analysis

The mean bone mineral density (BMD) (g/cm3) was calculated for each
sample as the DXA-detected BMC and the 3D reconstruction total volume
ratio. The slope of the elastic region, ultimate load (N), failure load (N) and
ultimate displacement (mm) were recorded and the work to failure (J) and the
normalized axial strain (%), were calculated from the load–displacement curve
values (Fig. 3). The compliance of the rubber jigs was ascertained and their
individual effect on the displacement was taken into account for each sample.
The work to failure was calculated as the integral under the load–displacement
curve until the failure load [57]. Normalized axial strain was calculated as the
percentage ratio between the displacement at failure, less the rubber jigs effect,
and the length of each bone. The amount of Newtons per unit of bone weight
necessary to fracture was calculated as the ratio between the ultimate load (N)
and the weight of the bone (N) and called as bone weights. The ratio between
the ultimate stress and the static stress derived from the model was calculated as
a safety index.



Table 1
Results of ANOVAwith mean and standard deviations for the mechanical bone
properties, the cortical volume percentage, the bone mineral density (BMD) and
the bone mineral content (BMC) as distributed according to sex

Female (18) Males (14) p

Ultimate load (N) 1185.27±727.22 2066.5±1470.86 NS
σmax (MPa) 455±103.21 584.1±135.65 0.015
Work to failure (J) 7.8±5.2 14.1±9.8 0.047
Cortical volume percentage (%) 0.625±0.037 0.592±0.045 0.037
BMD (g/cm3) 1.08±0.31 1.24±0.51 NS
BMC (g) 8.7±7.02 11.22±9.58 NS

Fig. 3. The load–deformation curve relative to the sample examined and the
parameters inferred: the slope of the elastic region (N/mm), ultimate load (N),
failure load (N) and displacement (mm) were recorded and the work to failure (J)
and the normalized axial strain (%) were calculated from the load–displacement
curve values.

Table 2
A multiple linear regression analysis with stepwise analyses performed to
determine which parameters rule each bone mechanical feature

Standardized beta T p

Dependent variable: ultimate load (R2 0.98)
Ip 40% 1.53 7.47 0.000

Dependent variable: failure load (R2 0.98)
Ip 30% 1.17 12.15 0.000
CSA 20% −0.60 −3.72 0.002

Dependent variable: slope (R2 0.93)
Ip 40% 0.96 14.47 0.000

Dependent variable: work to failure (R21.000)
Iap 40% 0.55 9.881 0.000
Cpost 50% −0.16 −9.360 0.000
Ct.Wimean 50% 0.360 6.037 0.000
Animal mass 0.23 6.869 0.000
B.Di(a–p) 50% −0.642 −6.884 0.000
Sex 0.036 4.609 0.001
Age 0.023 3.632 0.003

Dependent variable: bone weights (R20.87)
Bone mass −4.033 −9.095 0.000
Cortical bone volume 3.198 7.849 0.000
Ct.Wiant 50% 0.614 4.859 0.000
Sex 0.296 3.128 0.006

Dependent variable: σmax (R
20.60)

Sex 0.479 3.220 0.005

Sequential Bonferroni post hoc adjustment of the p-values was used reducing
the significance cut-off of the p-value to p<0.00625. See nomenclature on
Materials and methods.
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Allometric equations

Scaling of the bone mass with the body mass and that of the geometrical,
densitometric and the mechanical properties of the radius with the bone mass
was investigated. A typical power function Y=Y0M

b was chosen to determine
how a hierarchical tissue organizes itself when facing two orders of magnitude.
The theoretical exponents were determined by dimensional analysis assuming
self-similarity of the geometry, and the mechanical tests according to classic
elastic solutions: ultimate and failure loads proportional to a moment of inertia
over the square of a length (of the bone); displacement proportional to a length;
slope of the elastic region proportional to load over displacement; work to failure
proportional to load times displacement; strain as percentage; safety index
proportional to load over mass; stress (σ) proportional to strain.

Statistical analysis

Statistics were calculated with the SPSS 12.0 and p<0.05 as the significance
cut-off. One-way ANOVA was used to analyze the gender distribution of
geometrical, densitometric and mechanical bone features. Fracture distribution
between the sexes was analyzed with the χ2 test. A multiple linear regression
analysis with stepwise analyses was performed to determine which parameters
rule a bone's mechanical function. Sequential Bonferroni post hoc adjustment of
the p-values was used. The effects of the animal mass on the mean BMD and on
the σmax were determined by means of a linear regression analysis. The
relationships between the bone mass and the parameters investigated were
analyzed by means of a model II regression in order to state how the scaling of
the bone characteristics acts on its mechanical behavior. The log-transformed
variables were regressed against log bone mass using the reduced major axis
(RMA) technique and 95% confidence intervals on their empirical estimates
were calculated. The null hypothesis, that dimensional analysis on the
assumption of geometrical self-similarity and mechanical testing according to
classic elastic solutions are not reasonable in bones, was rejected when the
expected theoretical values fell within the 95% confidence intervals.

Results

The DXA measurement CV was 0.4%. Bones were observed
to fail in bending and samples successfully tested had diaphyseal
or proximal metaphyseal fracture. 71.4% of the fractures were
single, 28.6% were multiple with various configurations
generally located closer to the radial head. Single fractures
were diaphyseal or proximal metaphyseal, all transverse or short
oblique. The fracture distribution was not significantly influ-
enced by mass or sex. The profiles of the load–displacement
curves were consistent with the test and their pattern was always
similar.

The one-way ANOVA revealed a significant gender
difference in the mechanical bone features with no differences
in BMD. The female bones had a higher cortical bone volume
percentage. The male bones required more energy to fracture
and our model shows that their tissue fails at a greater tension
(σmax) (Table 1). The σmax was influenced by the percentage of
cortical vs. spongy bone (0.002). The sequential Bonferroni
adjusted linear regression model demonstrated that the para-
meters representative of the bone mechanical behavior are well



Table 4
The log transformed geometrical variables of the cross-section located at the
50% of the distoproximal radial length regressed against log bone mass using the
reduced major axis (RMA) technique and 95% confidence intervals on their
empirical estimates

M=bone mass

Cross-sectional properties 50%

Variable Intercept s (exper) s⁎ (theor) R 95%confidence
limits

B.Di(m–l) 1.710 0.366 1/3 0.960 0.335 0.390
B.Di(a–p) 1.620 0.417 1/3 0.960 0.380 0.456
Ct.Wimed 1.050 0.298 1/3 0.550 0.224 0.369
Ct.Wilat 0.889 0.235 1/3 0.530 0.184 0.286
Ct.Wiant 0.836 0.263 1/3 0.570 0.190 0.333
Ct.Wipost 0.808 0.254 1/3 0.624 0.177 0.317
Ct.Wimean 0.829 0.260 1/3 0.778 0.205 0.314
Ps.Ar 3.222 0.779 2/3 0.970 0.717 0.837
Me.Ar 3.993 1.700 2/3 0.903 1.406 1.994
CSA 2.894 0.645 2/3 0.948 0.582 0.717
Iml 5.156 1.566 4/3 0.965 1.432 1.700
Iap 5.325 1.460 4/3 0.967 1.341 1.570
Ip 5.534 1.490 4/3 0.968 1.366 1.603

The same regression performed on cross-sections located at 20, 30 and 40% of
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predicted by BMC, bone cross-sectional and three-dimensional
geometrical properties, sex and body mass (Table 2). The
animal mass was found not to significantly influence the mean
bone mineral density (NS) and σmax (NS).

Results of the reduced major axis regression and 95%
confidence intervals of the log mechanical features and the log
three-dimensional geometry with the log bone mass are
summarized in Table 3. Those expressing the log–log
regression of the geometrical properties of the cross-section
located at 50% of the distoproximal radial length with the bone
mass are summarized in Table 4. Results of the same regressions
performed on the 20, 30 and 40% cross-sections were truly
comparable and are not reported.

Concerning the macroscopic bone material features, the bone
mass was found to scale almost linearly with the animal mass
(s=0.949). The BMC (g) was found to scale almost linearly
with the animal mass (s=1.004) while the mean BMD (g/cm3)
was found to be mass invariant. A close fit was found between
the experimentally determined and the theoretical slopes
(according to classic elastic solutions) concerning the mechan-
ical features. In particular the work to failure was found to scale
Table 3
Results of the reduced major axis (RMA) regression and 95% confidence limits
expressing the scaling of the log inquired features with the log bone mass

M=bone mass

Variable Intercept s (exper) s⁎ (theor) R Confidence
limits

Animal's mass (kg) 2.726 0.949 1 0.915 0.836 1.067
Bone mineral content and mean bone mineral density
Bone mineral

content (g)
2.653 1.004 1 0.931 0.919 1.102

Mean BMD (g/cm3) 0.247 0.112 0 0.334 −0.009 0.492

Mechanical test
Ultimate load (N) 4.498 0.812 2/3 0.963 0.726 0.894
Failure load (N) 4.484 0.862 2/3 0.959 0.754 0.955
Ultimate load/bone

weight
3.291 −0.309 −1/3 −0.705 −0.405 −0.218

Displacement (mm) 1.497 0.278 1/3 0.843 0.217 0.323
Slope elastic region

(N/mm)
3.448 0.645 1/3 0.938 0.543 0.734

Work to failure (J) 2.484 0.926 1 0.940 0.816 1.065
Normalized axial

strain
0.756 −0.068 0 −0.343 −0.149 −0.011

Safety index diffe-
rential scaling

3.354 −0.343 −1/3 0.498 −0.484 −0.220

σmax (MPa) 2.703 0.006 0 0.022 −0.114 0.099

3D—geometry
Bone length (mm) 2.711 0.329 1/3 0.909 0.293 0.374
Bone volume (cm3) 2.461 0.916 1 0.918 0.799 1.034
Cortical volume

(cm3)
2.189 0.885 1 0.922 0.782 0.996

Spongeous volume
(cm3)

2.149 0.971 1 0.906 0.832 1.107

The theoretical slopes (s⁎) have been determined by dimensional analysis on the
assumption of geometrical self-similarity and according to classic elastic
solutions. The fit between the experimentally determined and the theoretical
slopes is close. Most of the expected theoretical values fell within the 95%
confidence intervals. Dimensional analyses on these assumptions are then
reasonable in bones tested in accordance to our set up.

the distoproximal radial length demonstrated truly comparable results and is not
reported. The theoretical slopes (s⁎) have been determined by dimensional
analysis on the assumption of geometrical self-similarity. See nomenclature on
Materials and methods. The area of the medullary cavity (Me.Ar) was found to
scale faster than (Ps.Ar) the outer area so that the cross-sectional area (CSA) was
found to scale as expected with mass2/3. Moments of inertia (Iml, Iap, Ip) were
found to scale slightly faster than the expected mass4/3.
almost linearly with the bone mass (s=0.926). The estimated
admissible tension (and thus the admissible strain) and
normalized axial strain were found to be mass invariant
(s=0.006, s=0.068). The safety index was found to decrease
with the increase of bone mass (s=−0.343). The bone length
(mm) was found to increase much less than proportionally with
increasing mass (s=0.329) while the total bone volume and the
volume dedicated to cortical and spongy bone were found to
scale almost linearly with the bone mass (s=0.916, s=0.885,
s=0.971).

Scaling of the cross-sectional geometrical properties of all
the parameters investigated was found to be similar in all the
four sections analyzed. Cortices width (Ct.Wiant, Ct.Wipost, Ct.
Wimed, Ct.Wilat) and mean cortical thickness (Ct.Wimean) were
found to scale slowly with the bone mass (s ranging: 0.235–
0.298). The area of the medullary cavity (Me.Ar) was found to
scale faster (s range: 1.583–1.700) than (Ps.Ar) the outer area (s
range: 0.759–0.779) so that the cross-sectional area (CSA) was
found to scale as expected with mass2/3. Moments of inertia (Iml,
Iap, Ip) were found to scale slightly faster than the expected
mass4/3.

Discussion

The weights of terrestrial mammals embrace roughly six
orders of magnitude, but are borne by substantially the same
molecular structures hierarchically organized at a supramole-
cular, microstructural and macrostructural level to endure the
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mechanical loads generated by physiological activity [1]. The
purpose of our research was to quantitatively evaluate how bone
tissue arranges itself macroscopically in order to optimally face
appreciable changes in size. This subject was investigated
within a single species, the canine species, to avoid possible
misleading results due to between-species bone tissue and
macroscopic limb posture differences. Domestication of dogs
has been followed by selective breeding to obtain mighty
animals for hunting and toy dogs as pets, with a consequent
weight range of 1.5 to 70 kg and a unique 40-fold difference in
body mass. Examination of bones from a set of breeds with a
common genetic ancestry [61] can thus give an idea of how their
tissue adapted to cope with such a wide range of functional
requirements.

Forelimbs were chosen because they bear most of the static
and dynamic loads and the forearms posture is similar
regardless of the considered breeds. The easiest loading pattern
within these limbs was recognized to be the radial one. In
outline the ulna and the ligamentous and the muscular tissues
between the two bones work in order to enable the radius to be
loaded in axial compression. Controlateral limbs were tested for
different features as previous studies had validated [38,39].

Plotting and inferring its load-deformation curve during
loading under controlled conditions can determine the main
mechanical properties of a bone. As variations in size, shape or
composition are able to drastically change a bone's strength,
stiffness or energy absorption capacity [59], we choose for a
whole bone structural test. In view of the previous anatomical
remarks, the test was set in axial compression. Data derived
from such test were taken in account for the whole features at
once. Matching the biomechanical properties with the material
and structural characteristics of each sample and determining
how they scale with mass has shown which attributes vary in
order to curb the energy effects of an animal mass increase.

The mechanical test showed that the work to failure scales
almost linearly with bone mass. This crucial finding means that
bones of different sizes require a mass invariant amount of
energy per unit of mass to failure. This outcome is reached
through a different structural behavior according to our test. The
difference was not found in the normalized axial strain or in the
strains estimated by means of our model scaling, which were
found to be almost mass invariant, but in the scaling of the
ultimate and failure load and in the slope of the elastic region.

The different behavior could be attributed both to the
material properties and to the geometrical properties. Our
findings, in agreement with previous studies [8,12,28] provide
information on the material properties of the bone within a
species: the almost linear scaling of the BMC and bone mass
reveals that the amount of material “bone tissue” employed is
basically linked with the body mass and that the two-phase ratio
is substantially constant. The independence of the BMD (g/cm3)
and failure stress from the bone mass suggests that under a
single axial load the macroscopical material properties of bones
within a species are the same irrespective of its size. The bricks
used to build a part of the bearing framework of a healthy
individual within species are mass invariant according to our
test and possess macroscopically the same material properties in
bones of different size. Our BMD results are in line with those
observed (g/cm2) in greyhounds [39]. Concerning the geome-
trical properties, interestingly the analysis of the allometric
equations showed that as the animal mass increases bones
proportionally distribute their tissue further from the cross-
sectional centroid achieving an effective increase in the cross-
sectional moments of inertia. This layout is reached employing
an amount of tissue proportional to the animal mass, reducing
proportionally the bone length, maintaining essentially constant
the width of the cortices and acting on the medullary cavity and
the outer area scaling.

Matching the results of the multiple linear regression model
on the biomechanical properties with the scaling of the material
and structural characteristics, this different three-dimensional
arrangement is believed to enable bones of different size to
absorb a proportional amount of energy before failure. In
accordance with our simplified beam model, it leads to the
development of similar stresses and strains on the cross-sections
facing increasing loads. If the molecular structures of the
hierarchically organized bone tissue need macroscopically a
fixed amount of Joule per unit of mass to become disorganized
and fail, the bone structures need to be redesigned in order to
curb the energy effects of the size increase. An efficient and
energetically economic solution is to alter the three-dimensional
layout employing an amount of tissue proportional to the animal
mass. The different arrangement influences the bones behavior
in their pathway to failure. Even though the bone mechanical
competence was found to be mass related, the energy effects of
increased body size can be appreciated in the slightly negative
trend of the scaling of the safety index with mass: large animals
are in spite of everything potentially closer to fracture than
smaller ones. This size effect is due to the higher static stresses.

Gender differences in bone mechanical properties irrespec-
tive of body mass thus evident in the same species are neither
due to a different BMC, nor to cortical cross-sectional
differences. Our results show they are the consequence of
macro architectural dissimilarities in the ratio between the
amounts of tissue invested in cortical and spongy bone. It is
reasonable to presume that gender-assigned bone structures,
composed of different percentage of these tissues, each with its
elastic modulus, have different mechanical features being
nevertheless competent with respect to the animal size.

There is a close fit between the experimentally determined
and the theoretical slopes of the log regressed allometric
equations. Most of the expected theoretical values fell within
the 95% confidence intervals. Dimensional analysis on the
assumption of geometrical self-similarity and mechanical
testing according to classic elastic solutions are then reasonable
in bones tested in accordance to our set up.

The work to failure scaling indicates that energy is dissipated
in a fractal domain, probably related to the hierarchical bone
structure, with dimension ∼2.8 (0.926×3), thus intermediate
between that of a Euclidean surface and a volume [21].

This study has several limitations. The morphology of the
radius and its mechanical properties were assessed outside the
context of the ulna and the surrounding tissues. Their action may
contribute to increase the ability of the forearm to curb the



1641S.Z.M. Brianza et al. / Bone 40 (2007) 1635–1642
energy effect of a size increase reducing the importance of the
allometric changes here highlighted. The bone material proper-
ties were inferred from a macroscopical point of view
determining a mean bone mineral density regardless of the
localization and estimating the stresses and strains on specific
cross-sections through a simplified model. These mostly
qualitative results are necessarily inaccurate but show, however,
a trend that could be further inquired with more accurate models.

In conclusion, this research demonstrates that bone geometry
is the parameter that macroscopically rules the mechanical
function of this tissue. Its allometric changing is the strategy a
bone adopts to adjust its structure and function to compensate
for the physical consequences of differences in size. This
adjustment is efficiently and economically reached redistribut-
ing an amount of tissue proportional to the animal mass so that
the energy per unit of mass necessary to fracture a bone remains
mass invariant. According to a simplified beam model, it leads
to the development of similar stresses and strains on the cross-
sections facing increasing loads. The percentage of bone
volume allocated to the cortical and spongeous portion was
found to be a gender difference responsible for a different
mechanical behavior. These results illustrate how the bone
tissue approaches optimum efficiency linked with the animal
gender and size and the relative energetic and stressing
consequences acting on the morphological features.
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