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Abstract

Researchers are claiming that the feasibility of space elevator cable is now realistic, thanks to carbon nanotube technology, proposing
its realization within a decade. However, the current view of basing the design of the megacable on the theoretical strength of a single
carbon nanotube is naı̈ve, as has recently been emphasized. In this paper the role of thermodynamically unavoidable atomistic defects
with different size and shape is quantified on brittle fracture, fatigue and elasticity, for nanotubes and nanotube bundles. Nonasymptotic
regimes, elastic plasticity, rough cracks, finite domains and size effects are also discussed. The results are compared with atomistic sim-
ulations and nanotensile tests of carbon nanotubes. Key simple formulas for the design of a flaw-tolerant space elevator megacable are
reported, suggesting that it would need a taper ratio (for uniform stress) of about two orders of magnitude larger than currently
proposed.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A space elevator basically consists of a cable attached to
the Earth’s surface for carrying payloads into space [1]. If
the cable is long enough, i.e. around 150 Mm (a value that
can be reduced by a counterweight), the centrifugal forces
exceed the gravity of the cable that will work under tension
[2]. The elevator would stay fixed geosynchronously; once
sent far enough, climbers would be accelerated by the
Earth’s rotational energy. A space elevator would revolu-
tionize the methodology for carrying payloads into space
at low cost, but its design is very challenging. The most crit-
ical component in the space elevator design is undoubtedly
the cable [3], which requires a material with very high
strength and low density.

If we consider a cable with constant cross-section and a
vanishing tension at the planet surface, the maximum
stress–density ratio for the Earth, reached at the geosyn-
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chronous orbit, is 63 GPa/(1300 kg m�3), corresponding
to 63 GPa if low carbon density is assumed for the cable.
It is only recently, after the discovery of carbon nanotubes
[4], that such large failure stresses have been measured
experimentally, during tensile tests on ropes composed of
single-walled [5] or multiwalled [6–8] carbon nanotubes,
both of which were expected to have an ideal strength of
�100 GPa. Note that for steel (density 7900 kg m�3, max-
imum strength 5 GPa) the maximum stress expected in the
cable would be 383 GPa, whereas for Kevlar (density
1440 kg m�3, strength 3.6 GPa) it would be 70 GPa, both
much higher than their respective strengths [3].

However, an optimized cable design must consider a
uniform tensile stress profile rather than a constant cross-
sectional area [2]. Accordingly, the cable could be built
from any material simply by using a sufficiently large taper
ratio, i.e., the ratio of the maximum (at the geosynchro-
nous orbit) to the minimum (at the Earth’s surface)
cross-sectional area. For example, for steel and Kevlar
huge and unrealistic taper ratios of 1033 and 2.6 · 108,
respectively, would be required, whereas for carbon
rights reserved.
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nanotubes the taper ratio would theoretically be only 1.9
[9]. Thus, the feasibility of the space elevator seems to
become currently plausible [9,10] thanks to the discovery
of carbon nanotubes. The cable would represent the largest
engineering structure, hierarchically designed from the
nanoscale (single nanotube with length of the order of a
hundred nanometers) to the megascale (space elevator
cable with length of the order of a hundred megameters).
But basing the design of the megacable on the theoretical
strength of a single carbon nanotube, as in the current
view, is in the author’s opinion naı̈ve [3] (see also the
related news@nature, 22 May 2006, ‘‘The space elevator:
going down?’’ by J. Palmer).

In this paper the asymptotic analysis on the role of
defects for the megacable strength, based on new theoreti-
cal deterministic and statistical approaches of quantized
fracture mechanics proposed by the author [11–14], is
extended to nonasymptotic regimes, elastic plasticity,
rough cracks and finite domains. The role of thermody-
namically unavoidable atomistic defects with different size
and shape is quantified on brittle fracture, fatigue and elas-
ticity, for nanotubes and nanotube bundles. The results are
compared with atomistic simulations and nanotensile tests
of carbon nanotubes. Key simple formulas for the design of
a flaw-tolerant space elevator megacable are reported, sug-
gesting that it would need a taper ratio (for uniform stress)
of about two orders of magnitude larger than currently
proposed.

The paper is organized in ten short sections, as follows.
After this introduction, we begin by demonstrating that
defects are thermodynamically unavoidable, evaluating
their vacancy fraction in Section 2. In Section 3 the
strength reduction of a single nanotube and of a nanotube
bundle containing defects with given size and shape is cal-
culated; the taper ratio for a flaw-tolerant space elevator
cable is accordingly derived. In Section 4 elastic–plastic
(or hyperelastic) materials, rough cracks and finite domains
are discussed. In Section 5 the fatigue lifetime is evaluated
for a single nanotube and for a nanotube bundle. In Sec-
tion 6 the related Young’s modulus degradations are quan-
tified. In Sections 7 and 8 the results on strength and
elasticity are compared with atomistic simulations and ten-
sile tests of carbon nanotubes. In Section 9 size effects are
discussed. The last section presents some concluding
remarks.

2. Thermodynamically unavoidable defects

Defects are statistically expected, especially in such huge
a bundle. In particular, the entropy increment S due to the
formation of n monovacancies in a nanotube (bundle or
crystal) composed of N atoms is, according to Boltzmann,
given by S = kBln N!/[(N � n)!n!] (kB is Boltzmann’s con-
stant); thus, the free-energy variation is F = nE1 � TS,
where T is the absolute temperature and E1 is the energy
required to extract one atom from the nanotube. At the
thermal equilibrium, oF/on = 0, and consequently the
vacancy fraction is estimated (for constant volume, neglect-
ing the variation of the strain energy and assuming n� N)
as [15]

v ¼ n
N
� e

� E1
kBT ð1Þ

For the megacable, having a carbon weigh of �5000 Kg,
N � 5 · 106/12 Æ NA � 2.5 · 1029 (NA is Avogadro’s num-
ber) and E1 � 7 eV; considering the temperature at which
the carbon is assembled, typically in the range between
2000 and 4000 K [16], gives a huge number of equilibrium
defects, in the range from 0.6 · 1012 to 3.9 · 1020, in agree-
ment with recent discussions [16] and observations [17].
Thus, defects are unavoidable, even if small vacancy frac-
tions (v � 2.4 · 10�18 to 1.6 · 10�9) can be achieved. Note
that in Ref. [16] it is stated that there is no carbon tube
which can match the strength of iron beyond a scale of
2 mm; even if this claim is questionable, it is clearly in
agreement with our doubts.

3. Brittle fracture

By considering quantized fracture mechanics (QFM;
[11–14]), the failure stress rN for a nanotube having atomic
size q (the ‘‘fracture quantum’’) and containing an elliptical
hole of half-axes a, perpendicular to the applied load (or
nanotube axis), and b can be determined, including in the
asymptotic solution [12] the contribution of the far-field
stress. We accordingly derive

rNða; bÞ
rðtheoÞ

N

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a=qð1þ 2a=bÞ�2

1þ 2a=q

s
; rðtheoÞ

N ¼ KICffiffiffiffiffiffiffiffiffiffi
qp=2

p ð2Þ

where rðtheoÞ
N is the theoretical (defect-free) nanotube

strength (�100 GPa, see Table 1) and KIC is the material
fracture toughness. The self-interaction between the tips
has been here neglected (i.e. a� pR, with R nanotube ra-
dius) and would further reduce the failure stress. For atom-
istic defects (having a characteristic length of a few
ångströms) in nanotubes (having a characteristic diameter
of several nanometers) this hypothesis is fully verified.
However, QFM can also easily treat the self-tip interaction
starting from the corresponding value of the stress-inten-
sity factor (reported in the related handbooks). The validity
of QFM has been recently confirmed by atomistic simula-
tions [3,12,13,18], but also at larger size-scales [12,13,19]
and for fatigue crack growth [14,20,21].

With regard to the defect shape, for a sharp crack per-
pendicular to the applied load, a/q = const and b/q! 0,
so r�NrðtheoÞ

N =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a=q

p
, and for a/q� 1, i.e. large cracks,

rN � KIC=
ffiffiffiffiffiffi
pa
p

, in agreement with linear elastic fracture
mechanics (LEFM). Note that LEFM (i) can only treat
sharp cracks and (ii) unreasonably predicts an infinite
defect-free strength. On the other hand, for a crack parallel
to the applied load, b/q = const and a/q! 0, and so

rN ¼ rðtheoÞ
N , as it should be. In addition, with regard to

the defect size, for self-similar and small holes, a/b = const



Table 1
Atomistic simulations [29–32] vs. QFM [11–14] strength predictions, for nanocracks of size n or nanoholes of size m

Nanotube type Nanocrack (n) and
nanohole (m) sizes

Strength (GPa) by QM (MTB-G2), MM (PM3; M)
and QM/MM atomistic or QFM calculations

[5,5] Defect-free 105 (MTB-G2); 135 (PM3)
[5,5] n = 1 (sym. + H) 85 (MTB-G2), 79 (QFM); 106 (PM3), 101 (QFM)
[5,5] n = 1 (Asym. + H) 71 (MTB-G2), 79 (QFM); 99 (PM3), 101 (QFM)
[5,5] n = 1 (Asym.) 70 (MTB-G2), 79 (QFM); 100 (PM3), 101 (QFM)
[5,5] n = 2 (Sym.) 71 (MTB-G2), 63 (QFM); 105 (PM3), 81 (QFM)
[5,5] n = 2 (Asym.) 73 (MTB-G2), 63 (QFM); 111 (PM3), 81 (QFM)
[5,5] m = 1 (+H) 70 (MTB-G2), 68 for long tube, 79 (QFM);

101 (PM3), 101 (QFM)
[5,5] m = 2 (+H) 53 (MTB-G2), 50 for long tube, 67 (QFM);

78 (PM3), 86 (QFM)

[10,10] Defect-free 88 (MTB-G2); 124 (PM3)
[10,10] n = 1 (sym. + H) 65 (MTB-G2), 66 (QFM)
[10,10] n = 1 (Asym. + H) 68 (MTB-G2), 66 (QFM)
[10,10] n = 1 (Sym.) 65 (MTB-G2), 66 (QFM); 101 (PM3), 93 (QFM)
[10,10] n = 2 (Sym.) 64 (MTB-G2), 53 (QFM); 107 (PM3), 74 (QFM)
[10,10] n = 2 (Asym.) 65 (MTB-G2), 53 (QFM); 92 (PM3), 74 (QFM)
[10,10] m = 1 (+H) 56 (MTB-G2), 52 for long tube, 66 (QFM); 89 (PM3), 93 (QFM)
[10,10] m = 2 (+H) 42 (MTB-G2), 36 for long tube, 56 (QFM); 67 (PM3), 79 (QFM)

[50,0] Defect-free 89 (MTB-G2)
[50,0] m = 1 (+H) 58 (MTB-G2); 67 (QFM)
[50,0] m = 2 (+H) 46 (MTB-G2); 57 (QFM)
[50,0] m = 3 (+H) 40 (MTB-G2); 44 (QFM)
[50,0] m = 4 (+H) 36 (MTB-G2); 41 (QFM)
[50,0] m = 5 (+H) 33 (MTB-G2); 39 (QFM)
[50,0] m = 6 (+H) 31 (MTB-G2); 37 (QFM)

[100,0] Defect-free 89 (MTB-G2)
[100,0] m = 1 (+H) 58 (MTB-G2); 67 (QFM)
[100,0] m = 2 (+H) 47 (MTB-G2); 57 (QFM)
[100,0] m = 3 (+H) 42 (MTB-G2); 44 (QFM)
[100,0] m = 4 (+H) 39 (MTB-G2); 41 (QFM)
[100,0] m = 5 (+H) 37 (MTB-G2); 39 (QFM)
[100,0] m = 6 (+H) 35 (MTB-G2); 37 (QFM)

[29,29] Defect-free 101 (MTB-G2)
[29,29] m = 1 (+H) 77 (MTB-G2); 76 (QFM)
[29,29] m = 2 (+H) 62 (MTB-G2); 65 (QFM)
[29,29] m = 3 (+H) 54 (MTB-G2); 50 (QFM)
[29,29] m = 4 (+H) 48 (MTB-G2); 46 (QFM)
[29,29] m = 5 (+H) 45 (MTB-G2); 44 (QFM)
[29,29] m = 6 (+H) 42 (MTB-G2); 42 (QFM)

[47,5] Defect-free 89 (MTB-G2)
[47,5] m = 1 (+H) 57 (MTB-G2); 67 (QFM)

[44,10] Defect-free 89 (MTB-G2)
[44,10] m = 1 (+H) 58 (MTB-G2); 67 (QFM)

[40,16] Defect-free 92 (MTB-G2)
[40,16] m = 1 (+H) 59 (MTB-G2); 69 (QFM)

[36,21] Defect-free 96 (MTB-G2)
[36,21] m = 1 (+H) 63 (MTB-G2); 72 (QFM)

[33,24] Defect-free 99 (MTB-G2)
[33,24] m = 1 (+H) 67 (MTB-G2); 74 (QFM)

[80,0] Defect-free 93 (M)
[80,0] n = 2 64 (M); 56 (QFM)
[80,0] n = 4 50 (M); 43 (QFM)
[80,0] n = 6 42 (M); 35 (QFM)
[80,0] n = 8 37 (M); 32 (QFM)

[40,0] (nested by a [32,0]) Defect-free 99 (M)
[40,0] (nested by a [32,0]) n = 2 73 (M); 69 (QFM + vdW interaction �10 GPa)

(continued on next page)
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Table 1 (continued)

Nanotube type Nanocrack (n) and
nanohole (m) sizes

Strength (GPa) by QM (MTB-G2), MM (PM3; M)
and QM/MM atomistic or QFM calculations

[40,0] (nested by a [32,0]) n = 4 57 (M); 56 (QFM + vdW interaction �10 GPa)
[40,0] (nested by a [32,0]) n = 6 50 (M); 48 (QFM + vdW interaction �10 GPa)
[40,0] (nested by a [32,0]) n = 8 44 (M); 44 (QFM + vdW interaction �10 GPa)

[100,0] Defect-free 89 (MTB-G2)
[100,0] n = 4 50 (M); 41 (QFM)

[10,0] Defect-free 124 (QM); 88 (MM);
[10,0] n = 1 101 (QM) 95 (QM/MM) 93 (QFM); 65 (MM) 66 (QFM)

The QFM predictions are here obtained simply considering in Eq. (2) 2a/q = n, 2b/q = 1 for cracks of size n or a=q ¼ b=q ¼ ð2m� 1Þ=
ffiffiffi
3
p

for holes of size
m (differently from the asymptotic treatment reported in [3]). Quantum mechanics (QM) semi-empirical calculations (PM3 method), molecular mechanics
(MM) calculations (modified Tersoff–Brenner potential of second generation (MTB-G2), modified Morse potential (M)) and coupled QM/MM calcu-
lations. The symbol (+H) means that the defect was saturated with hydrogen. Symmetric and asymmetric bond reconstructions were also considered; the
tubes are ‘‘short’’ if not otherwise specified. We have roughly ignored in the QFM predictions the difference between symmetric and asymmetric bond
reconstruction, hydrogen saturation and length effect (for shorter tubes an increment in the strength is always observed, as an intrinsic size effect), noting
that the main differences in the atomistic simulations are attributable to the potential used. For nested nanotubes a strength increment of �10 GPa is here
assumed to roughly take into account the van der Walls (vdW) interaction between the walls.
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and a/q! 0 and coherently rN ¼ rðtheoÞ
N ; furthermore, for

self-similar and large holes, a/b = const and a/q!1 and

we deduce rN � rðtheoÞ
N =ð1þ 2a=bÞ, in agreement with the

stress concentration posed by elasticity; but elasticity
(coupled with a maximum stress criterion) unreasonably
predicts a strength (iii) independent of the hole size and
(iv) tending to zero for cracks. Note the extreme consis-
tency of Eq. (2), that removing all the limitations (i)–(iv)
represents the first law capable of describing in a unified
manner all the size and shape effects for the elliptical holes,
including cracks as a limiting case. In other words, Eq. (2)
shows that the two classical strength predictions based on
stress intensifications (LEFM) or stress concentrations
(Elasticity) are only reasonable for ‘‘large’’ defects; Eq.
(2) unifies their results and extends its validity to ‘‘small’’
defects (‘‘large’’ and ‘‘small’’ are here with respect to the
fracture quantum). Eq. (2) shows that even a small defect
can dramatically reduce the mechanical strength.

An upper bound for the cable strength can be derived
assuming the simultaneous failure of all the defective nano-
tubes present in the bundle. Accordingly, imposing the crit-
ical force equilibrium (mean-field approach) for a cable
composed by nanotubes in numerical fractions fab contain-
ing holes of half-axes a and b, we find the cable strength rC

(ideal if rðtheoÞ
C ) in the following form:

rC

rðtheoÞ
C

¼
X
a;b

fab
rNða; bÞ
rðtheoÞ

N

ð3Þ

The summation is extended to all the different holes; the
numerical fraction f00 of nanotubes is defect-free andP

a;bfab ¼ 1. If all the defective nanotubes in the bundle
contain identical holes, then fab = f = 1 � f00, and the fol-
lowing simple relation between the strength reductions
holds: 1� rC=r

ðtheoÞ
C ¼ f ð1� rN=r

ðtheoÞ
N Þ.

Thus, the taper ratio k needed to have a uniform stress
in the cable [2], under the centrifugal and gravitational
forces, must be larger than its theoretical value to design
a flaw-tolerant megacable. In fact, according to our analy-
sis, we deduce (k ¼ e const�qC=rC P kðtheoÞ � 1:9 for carbon
nanotubes; qC denotes the material density) that

k

kðtheoÞ ¼ kðtheoÞ

r
ðtheoÞ
C
rC

�1

� �
ð4Þ

Eq. (4) shows that a small defect can dramatically increase
the taper ratio required for a flaw-tolerant megacable.
4. Elastic plasticity, fractal cracks and finite domains

The previous equations are based on linear elasticity,
i.e., on a linear relationship r � e between stress r and
strain e. In contrast, let us assume r � ej, where j > 1
denotes hyperelasticity and j < 1 elastic plasticity. The
power of the stress singularity will accordingly be modified
[22] from the classical value 1/2 to a = j/(j + 1). Thus, the
problem is mathematically equivalent to that of a re-
entrant corner [23], and consequently we predict

rNða; b; aÞ
r theoð Þ

N

¼ rNða; bÞ
rðtheoÞ

N

 !2a

; a ¼ j
jþ 1

ð5Þ

A crack with a self-similar roughness, mathematically de-
scribed by a fractal with noninteger dimension D

(1 < D < 2), would similarly modify the stress singularity,
according to [24,25] a = (2 � D)/2; thus, with Eq. (5), we
can also estimate the role of the crack roughness. Both
plasticity and roughness reduce the severity of the defect,
whereas hyperelasticity enlarges its effect. For example,
for a crack composed by n adjacent vacancies, we found
that rN=r

ðtheoÞ
N � ð1þ nÞ�a.

However, note that among these three effects only elastic
plasticity may have a significant role in carbon nanotubes;
in spite of this, fractal cracks could play an important role
in nanotube bundles as a consequence of their larger size-
scale, which would allow the development of a crack



N.M. Pugno / Acta Materialia 55 (2007) 5269–5279 5273
surface roughness. Hyperelasticity is not expected to be rel-
evant in this context.

According to LEFM and assuming the classical hypoth-
esis of self-similarity (amax � L) [25], i.e., the largest crack
size is proportional to the characteristic structural size L,
we expect a size effect on the strength in the form of the
power law rC � L�a. For linear elastic materials, a = 1/2,
as classically considered; but for elastic–plastic materials
or fractal cracks 0 6 a 6 1/2 [25].

Eq. (2) does not consider the defect–boundary interac-
tion. The finite width 2W, can be treated by applying
QFM starting from the related expression of the stress-
intensity factor (reported in handbooks). However, to have
an idea of the defect–boundary interaction, we apply an
approximate method [26], deriving the following correc-
tion: rN(a,b,W) � C(W)rN(a,b), CðW Þ � ð1� a=W Þ=
rNða; bÞjq!W�a=r

ðtheoÞ
N

� �
. (Note that such a correction is

valid also for W � a, whereas for W� a, it becomes
C(W� a) � 1 � a/W.) Similarly, the role of the defect ori-
entation b could be treated by QFM considering the related
stress-intensity factor; roughly, one could use the self-
consistent approximation rN(a, b, b) � rN(a, b) cos2 b +
rN(b,a) sin2b.

5. Fatigue fracture

The space elevator cable will be cyclically loaded, e.g.,
by the climbers carrying the payloads, thus fatigue could
play a role in its design. By integrating the quantized Paris
law, i.e., an extension of the classical Paris law recently
proposed especially for nanostructure or nanomaterial
applications [14,20,21], we derive the following number of
cycles to failure (or lifetime):

CNðaÞ
CðtheoÞ

N

¼ ð1þ q=W Þ1�m=2 � ða=W þ q=W Þ1�m=2

ð1þ q=W Þ1�m=2 � ðq=W Þ1�m=2
; m 6¼ 2

ð6aÞ
CNðaÞ
CðtheoÞ

N

¼ lnfð1þ q=W Þ=ða=W þ q=W Þg
lnfð1þ q=W Þ=ðq=W Þg ; m ¼ 2 ð6bÞ

where m > 0 is the material Paris exponent. Note that,
according to Wöhler, CðtheoÞ

N ¼ KDr�k, where K and k are
material constants and Dr is the amplitude of the stress range
during the oscillations. Even if fatigue experiments in nano-
tubes are still to be performed, their behaviour is expected to
be intermediate between those of Wöhler and Paris, as dis-
played by all the known materials, and the quantized Paris
law basically represents their asymptotic matching (as quan-
tized fracture mechanics basically represents the asymptotic
matching between the strength and toughness approaches).

Only defects remaining self-similar during fatigue
growth have to be considered, so only a crack (of half-
length a) is of interest in this context. By means of Eq.
(6) the time to failure reduction can be estimated, similarly
to the brittle fracture treated by Eq. (2). For a bundle, con-
sidering a mean-field approach (similarly to Eq. (3)) yields
CC

CðtheoÞ
C

¼
X

a

fa
CNðaÞ
CðtheoÞ

N

ð7Þ

Better predictions could be derived integrating the quan-
tized Paris law for a finite width strip. However, we note
that the role of the finite width is already included in Eq.
(6), even if these are rigorously valid in the limit of W tend-
ing to infinity.

6. Elasticity

Consider a nanotube of lateral surface A under tension
and containing a transversal crack of half-length a. Inter-
preting the incremental compliance, due to the presence
of the crack, as a Young’s modulus (here denoted by E)
degradation we find EðaÞ

EðtheoÞ ¼ 1� 2p a2

A [27]. Thus, recursively,
considering Q cracks (in the megacable 1012–1020 defects
are expected; see Section 2) having sizes ai or, equivalently,
M different cracks with multiplicity QiðQ ¼

PM
i¼1QiÞ, not-

ing that ni ¼ 2ai
q represents the number of adjacent vacan-

cies in a crack of half-length ai, with q atomic size, and
vi ¼ Qini

A=q2 its related numerical (or volumetric) vacancy frac-
tion, we find [27]

E

EðtheoÞ ¼
YQ

i¼1

EðaiÞ
EðtheoÞ � 1� n

XM

i¼1

vini ð8Þ

with n P p/2, where the equality holds for isolated cracks.
Eq. (8) can be applied to nanotubes or nanotube bundles
containing defects in volumetric percentages vi.

Forcing the interpretation of our formalism, we note
that ni = 1 would describe a single vacancy, i.e., a small
hole. Thus, as a first approximation, different defect geom-
etries, from cracks to circular holes, e.g., elliptical holes,
could in principle be treated by Eq. (8); we have to interpret
ni as the ratio between the transversal and longitudinal
(parallel to the load) defect sizes (ni = ai/bi). Introducing
the ith defect eccentricity ei as the ratio between the lengths
of the longer and shorter axes, as a first approximation
ni(bi) � ei cos2bi + 1/ei sin2bi, where bi is the defect orienta-
tion. For a single defect typology E

EðtheoÞ � 1� nvn, in con-

trast to the common assumption E
EðtheoÞ � 1� v, rigorously

valid only for the cable density, for which qC

qðtheoÞ
C

� 1� v.

Note that the failure strain for a defective nanotube or
nanotube bundle can also be predicted, by eN;C=e

ðtheoÞ
N;C ¼

ðrN;C=r
ðtheoÞ
N;C Þ=ðE=EðtheoÞÞ.

In contrast to what happens for the strength, large
defectiveness is required to have a considerable elastic deg-
radation, even if we have shown that sharp transversal
defects could have a role. For example, space elevator
cables that are too soft would become dynamically unsta-
ble [28].

7. Atomistic simulations

Let us study the influence of nanocracks and circular
nanoholes on the strength. We assume that n adjacent
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atomic vacancies perpendicular to the load correspond to a
blunt nanocrack of length 2a � nq and thickness 2b � q (or
2a � nq with a tip radius of b2/a � q/2). Similarly, nano-
holes of size m can be considered: the index m = 1 corre-
sponds to the removal of an entire hexagonal ring, m = 2
to the additional removal of the six hexagons around the
former one (i.e., the adjacent perimeter of 18 atoms),
m = 3 to the additional removal of the neighbouring 12
hexagonal rings (next adjacent perimeter), and so on (thus
a ¼ b � qð2m� 1Þ=

ffiffiffi
3
p
Þ. Quantum mechanics (QM), semi-

empirical (PM3 method), molecular mechanics (MM; with
a modified Tersoff–Brenner potential of second generation
(MTB-G2) or a modified Morse potential (M)) and cou-
pled QM/MM calculations [29–32] are reported and exten-
sively compared in Table 1 with the QFM nonasymptotic
predictions of Eq. (2) (differently from the asymptotic com-
parison reported in Refs. [3,12]). The comparison shows a
relevant agreement, confirming and demonstrating that
just a few vacancies can dramatically reduce the strength
of a single nanotube, or of a nanotube bundle as described
by Eq. (3) that predicts for f � 1, rC=r

ðtheoÞ
C � rN=r

ðtheoÞ
N .

Assuming large holes (m!1) and applying QFM to a
defective bundle (f � 1), we predict 1� rC=r

ðtheoÞ
C �

1� rN=r
ðtheoÞ
N � 67%; but nanocracks surely would be even

more critical, especially if interacting with each other or
with the boundary. Thus, the expectation for the megaca-
ble of a strength larger than �33 GPa is unrealistic.

Note that an elastic (j � 1) nearly perfectly plastic
(j � 0) behaviour, with a flow stress at �30–35 GPa for
strains larger than �3–5%, has been recently observed in
tensile tests of carbon nanotubes [8], globally suggesting
j � 0.6 � 0.7; similarly, numerically computed stress–
strain curves [33] reveal for an armchair (5, 5) carbon nano-
tube j � 0.8, whereas for a zigzag (9, 0) nanotube j � 0.7,
suggesting that the plastic correction reported in Section 4
could have a role.

Regarding elasticity, we note that Eq. (8) can be viewed
as a generalization of the approach proposed in Ref. [34],
being able to quantify the constants ki fitted by atomistic
y = 2.7179x - 9.3

R2 = 0.9326

y = 2.1871x - 7.0504

R2 = 0.8774
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Fig. 1. Nanoscale Weibull statistics [35], straight lines, applied to the new na
[5–7], already treated with NWS [3,12], are also reported for comparison.
simulations for three different types of defect [27]. In partic-
ular, rearranging Eq. (8) and in the limit of three small
cracks, we deduce Eth

E � 1þ k1c1 þ k2c2 þ k3c3, identical to
their law (their Eq. (15)), in which ci = Qi/L is the linear
defect concentration in a nanotube of length L and radius

R and ki ¼ ncin2
i q2

p2R . These authors consider 1, 2 and 3 atoms

missing, with and without reconstructed bonds; for nonre-
constructed bonds two alternative defect orientations were
investigated for 2 and 3 atoms missing. Even if their defect
geometries are much more complex than the nanocracks
that we here consider, the comparison between our
approach and their atomistic simulations, which does not
involve best-fit parameters, shows a good agreement [27].
8. Nanotensile tests

The tremendous defect sensitivity, described by Eq. (2),
is confirmed by a statistical analysis based on nanoscale
Weibull statistics (NWS, [35]) applied to the nanotensile
tests. According to this treatment, the probability of failure
P for a nearly defect-free nanotube under a tensile stress rN

is independent of its volume (or surface), in contrast to
classical Weibull statistics [36], namely:

P ¼ 1� exp�NN

rN

r0

� �w

ð9Þ

where w is the nanoscale Weibull modulus, r0 is the nom-
inal failure stress (i.e., corresponding to a probability of
failure of 63%) and NN ” 1. In classical Weibull statistics
NN ” V/V0 for volume-dominating defects (or NN = A/A0

for surface-dominating defects), i.e., NN is the ratio be-
tween the volume (or surface) of the structure and a refer-
ence volume (or surface). The experimental data [5,6] were
treated [35] according to nanoscale and classical Weibull
statistics: the coefficients of correlation were found to be
much higher for the nanoscale statistics than for the classi-
cal statistics (0.93 against 0.67, w � 2.7 and r0 � 31–
34 GPa). The data set on MWCNT tensile experiments
546

y = 2.6527x - 9.3402

R2 = 0.9388

y = 1.7682x - 8.2951

R2 = 0.9715

4.5 5 5.5 6

ln(σN /GPa)

Yu et al., 2000b
Yu et al., 2000a
Barber et al., 2005
Ding et al., 2006

notensile experiments on carbon nanotubes [8]. The other three data sets
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[7] has already been statistically treated [3]. The very large
highest measured strengths denote interactions between the
external and internal walls, as pointed out by the same
Table 2
Experiments [5–8] vs. QFM [11–14] predictions; strength reduction rNða; bÞ=r
rN=r

ðtheoÞ
N 2b/q

2a/q 0 1 2 3 4 5

0 1.00* 1.00* 1.00* 1.00* 1.00* 1.00
1 0.71* 0.75 0.79 0.82 0.85 0.87
2 0.58 0.60* 0.64* 0.68 0.71* 0.73
3 0.50 0.52 0.54* 0.58 0.61 0.64
4 0.45 0.46 0.48 0.51* 0.54* 0.56
5 0.41 0.42 0.44* 0.46 0.48 0.51
6 0.38 0.38 0.40 0.42 0.44* 0.47
7 0.35 0.36 0.37 0.39 0.41 0.43

8 0.33 0.34 0.35 0.37 0.38 0.40
9 0.32 0.32 0.33 0.34 0.36 0.38

10 0.30* 0.30* 0.31 0.33 0.34 0.36
11 0.29 0.29 0.30* 0.31 0.32 0.34

12 0.28 0.28 0.29 0.30* 0.31 0.32

13 0.27 0.27 0.28 0.29 0.30* 0.31
14 0.26 0.26 0.27 0.27 0.29 0.30
15 0.25 0.25 0.26 0.27 0.27 0.29

16 0.24* 0.24* 0.25 0.26 0.27 0.28

17 0.24* 0.24* 0.24* 0.25 0.26 0.27
18 0.23 0.23 0.24* 0.24* 0.25 0.26

19 0.22* 0.22* 0.23 0.23 0.24* 0.25

20 0.22* 0.22* 0.22* 0.23 0.24* 0.24

21 0.21 0.21 0.22* 0.22* 0.23 0.24

22 0.21 0.21 0.21 0.22* 0.22* 0.23

23 0.20 0.21 0.21 0.21 0.22* 0.23

24 0.20 0.20 0.20 0.21 0.21 0.22

25 0.20 0.20 0.20 0.20 0.21 0.22

26 0.19 0.19 0.20 0.20 0.20 0.21

27 0.19 0.19 0.19 0.20 0.20 0.21

28 0.19 0.19 0.19 0.19 0.20 0.20

29 0.18 0.18 0.19 0.19 0.19 0.20

30 0.18 0.18 0.18 0.19 0.19 0.19

31 0.18 0.18 0.18 0.18 0.19 0.19

32 0.17* 0.17* 0.18 0.18 0.18 0.19

33 0.17* 0.17* 0.17* 0.18 0.18 0.19

34 0.17* 0.17* 0.17* 0.17* 0.18 0.18

35 0.17* 0.17* 0.17* 0.17* 0.17* 0.18

36 0.16 0.16 0.17* 0.17* 0.17* 0.18

37 0.16 0.16 0.16 0.17* 0.17* 0.17

38 0.16 0.16 0.16 0.16 0.17* 0.17

39 0.16 0.16 0.16 0.16 0.17* 0.17

40 0.16 0.16 0.16 0.16 0.16 0.17

41 0.15 0.15 0.16 0.16 0.16 0.16

42 0.15 0.15 0.15 0.16 0.16 0.16

43 0.15 0.15 0.15 0.15 0.16 0.16

44 0.15 0.15 0.15 0.15 0.16 0.16

45 0.15 0.15 0.15 0.15 0.15 0.16

46 0.15 0.15 0.15 0.15 0.15 0.15

47 0.14 0.14 0.15 0.15 0.15 0.15

48 0.14 0.14 0.14 0.15 0.15 0.15

49 0.14 0.14 0.14 0.14 0.15 0.15

50 0.14 0.14 0.14 0.14 0.15 0.15

1 0.00 0.00 0.00 0.00 0.00 0.00

In bold type are represented the 15 different nanostrengths measured on single-
19 nanostrengths measured on multiwalled carbon nanotubes [6], and in underl
the exception of the five smallest values of 0.08, 0.10 [8], 0.11 [6], 0.12 [6,8] and 0
in number n = 2a/q = 138–176, 90–109, 75–89, 64–74 and 55–63, respectively. T
two interacting walls for 100 < rðexpÞ

N 6 200 GPa (thus rN ¼ rðexpÞ
N =2Þ or 3 int

ments are referred to rðtheoÞ
N ¼ 100 GPa (q � 0 25 nm). If all the nanotubes in
authors [7] and recently quantified [14]. Thus, the measured
strengths cannot be considered plausible for describing the
strength of a SWCNT. Such experiments were best-fitted
ðtheoÞ
N derived according to Eq. (2)

6 7 8 9 10 1
* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00
* 0.88* 0.90 0.91 0.91 0.92 1.00

0.76 0.78* 0.79 0.81 0.82 1.00
* 0.66* 0.68 0.70* 0.72 0.74 1.00

0.59 0.61 0.63 0.65 0.67 1.00
* 0.53* 0.55* 0.58 0.59 0.61 1.00

0.49* 0.51* 0.53* 0.55* 0.57 1.00
0.45 0.47 0.49* 0.51* 0.53* 1.00
0.42 0.44* 0.46 0.48 0.49* 1.00
0.40 0.41 0.43 0.45 0.46 1.00
0.37 0.39 0.41 0.42 0.44* 1.00
0.35 0.37 0.39 0.40 0.42 1.00
0.34 0.35 0.37 0.38 0.40 1.00
0.32 0.34 0.35 0.36 0.38 1.00

* 0.31 0.32 0.34 0.35 0.36 1.00
0.30* 0.31 0.32 0.34 0.35 1.00
0.29 0.30* 0.31 0.32 0.33 1.00
0.28 0.29 0.30* 0.31 0.32 1.00
0.27 0.28 0.29 0.30* 0.31 1.00
0.26 0.27 0.28 0.29 0.30* 1.00

* 0.25 0.26 0.27 0.28 0.29 1.00
* 0.25 0.25 0.26 0.27 0.28 1.00

0.24* 0.25 0.26 0.27 0.28 1.00
0.23 0.24* 0.25 0.26 0.27 1.00

* 0.23 0.24* 0.24* 0.25 0.26 1.00
* 0.22* 0.23 0.24* 0.25 0.26 1.00

0.22* 0.22* 0.23 0.24* 0.25 1.00
0.21 0.22* 0.23 0.24* 0.24* 1.00
0.21 0.22* 0.22* 0.23 0.24* 1.00
0.20 0.21 0.22* 0.23 0.23 1.00
0.20 0.21 0.21 0.22* 0.23 1.00
0.20 0.20 0.21 0.22* 0.22* 1.00
0.19 0.20 0.21 0.21 0.22* 1.00
0.19 0.20 0.20 0.21 0.21 1.00
0.19 0.19 0.20 0.20 0.21 1.00
0.18 0.19 0.19 0.20 0.21 1.00
0.18 0.19 0.19 0.20 0.20 1.00

* 0.18 0.18 0.19 0.19 0.20 1.00
* 0.18 0.18 0.19 0.19 0.20 1.00
* 0.17* 0.18 0.18 0.19 0.19 1.00
* 0.17* 0.18 0.18 0.19 0.19 1.00

0.17* 0.17* 0.18 0.18 0.19 1.00
0.17* 0.17* 0.18 0.18 0.19 1.00
0.16 0.17* 0.17* 0.18 0.18 1.00
0.16 0.17* 0.17* 0.18 0.18 1.00
0.16 0.16 0.17* 0.17* 0.18 1.00
0.16 0.16 0.17* 0.17* 0.18 1.00
0.16 0.16 0.16 0.17* 0.17* 1.00
0.15 0.16 0.16 0.17* 0.17* 1.00
0.15 0.16 0.16 0.16 0.17* 1.00
0.15 0.15 0.16 0.16 0.17* 1.00
0.00 0.00 0.00 0.00 0.00 (1+2a/b)�1

walled carbon nanotubes in bundle [5]; whereas in italic type we report the
ined type the most recent 18 observations [8]. All the data are reported with
.13 [5], for which we would need for example adjacent vacancies (2b/q � 1)
he 26 strengths measured in [7] are also treated (asterisks), simply assuming
eracting walls for 200 < rðexpÞ

N 6 300 GPa ðrN ¼ rðexpÞ
N =3Þ. All the experi-

the cable contain identical holes, rC=r
ðtheoÞ
C ¼ rN=r

ðtheoÞ
N .
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with r0 � 108 GPa (but not significant for the strength of a
single nanotube) and w � 1.8 (coefficient of correlation
0.94). In Fig. 1, the new data set [8] is treated by applying
Table 3
Defect sizes and shapes identification (a,b) and related flaw-tolerant taper ratio

k 2b/q

2a/q 0 1 2 3 4 5

0 1.90* 1.90* 1.90* 1.90* 1.90* 1.90
1 2.48* 2.37 2.25 2.18 2.13 2.09
2 3.04 2.91* 2.73* 2.59 2.48* 2.40
3 3.61 3.48 3.25* 3.04 2.87 2.74
4 4.20 4.06 3.79 3.53* 3.30* 3.12
5 4.82 4.67 4.36* 4.04 3.76 3.53
6 5.46 5.31 4.97 4.60 4.26* 3.97
7 6.14 5.98 5.60 5.18 4.78 4.44

8 6.86 6.68 6.28 5.80 5.34 4.94
9 7.61 7.43 6.99 6.46 5.94 5.47

10 8.40* 8.21* 7.74 7.16 6.57 6.04
11 9.24 9.03 8.53* 7.89 7.25 6.65

12 10.12 9.90 9.36 8.67* 7.96 7.29

13 11.04 10.81 10.23 9.49 8.71* 7.97
14 12.01 11.77 11.16 10.35 9.50 8.69
15 13.03 12.78 12.13 11.26 10.34 9.45

16 14.10* 13.84* 13.15 12.22 11.23 10.26

17 15.23* 14.95* 14.22* 13.23 12.16 11.11
18 16.41 16.11 15.34* 14.29* 13.14 12.00

19 17.65* 17.33* 16.52 15.41 14.17* 12.94

20 18.94* 18.62* 17.76* 16.57 15.25* 13.93

21 20.30 19.96 19.05* 17.80* 16.39 14.97

22 21.72 21.36 20.41 19.08* 17.58* 16.06

23 23.21 22.83 21.83 20.43 18.84* 17.21

24 24.76 24.37 23.32 21.84 20.15 18.42

25 26.39 25.98 24.88 23.32 21.52 19.68

26 28.08 27.66 26.50 24.86 22.96 21.00

27 29.86 29.41 28.20 26.47 24.47 22.38

28 31.71 31.24 29.97 28.16 26.04 23.83

29 33.64 33.15 31.83 29.92 27.68 25.35

30 35.65 35.14 33.76 31.75 29.40 26.93

31 37.75 37.22 35.77 33.67 31.20 28.59

32 39.93* 39.38* 37.87 35.67 33.07 30.32

33 42.21* 41.63* 40.06* 37.75 35.02 32.12

34 44.58* 43.98* 42.34* 39.92* 37.06 34.00

35 47.05* 46.42* 44.71* 42.19* 39.18* 35.97

36 49.61 48.97 47.18* 44.54* 41.39* 38.01

37 52.28 51.61 49.75 46.99* 43.69* 40.14

38 55.06 54.36 52.42 49.54 46.09* 42.36

39 57.94 57.21 55.19 52.20 48.58* 44.68

40 60.94 60.18 58.08 54.96 51.18 47.08

41 64.05 63.27 61.08 57.82 53.87 49.59

42 67.28 66.47 64.19 60.80 56.68 52.19

43 70.64 69.79 67.43 63.89 59.59 54.90

44 74.12 73.24 70.79 67.11 62.62 57.71

45 77.73 76.82 74.27 70.44 65.76 60.64

46 81.48 80.53 77.88 73.90 69.03 63.68

47 85.36 84.38 81.63 77.49 72.41 66.83

48 89.39 88.37 85.52 81.22 75.93 70.10

49 93.56 92.51 89.55 85.08 79.57 73.50

50 97.88 96.79 93.72 89.08 83.35 77.02

1 1 1 1 1 1 1
In bold type are treated the 15 different tensile tests on single-walled carbon
nanotubes [6], whereas in underlined type the 18 new observations [8]. All the d
0.11, 0.12 and 0.13 for which we would need related flaw-tolerant taper ratios o
are also treated (asterisks), simply assuming two interacting walls for 1
200 < rðexpÞ

N 6 300 GPa ðrN ¼ rðexpÞ
N =3Þ. All the experiments are referred to rðN
NWS (NN ” 1, w � 2.2, r0 � 25 GPa) and compared with
the other nanoscale statistics [3,35] for the other data sets
[5–7]. Note that volume- or surface-based Weibull statistics
s k(a,b) according to the present analysis applied to nanotensile tests [5–8]

6 7 8 9 10 1
* 1.90* 1.90* 1.90* 1.90* 1.90* 1.90
* 2.07* 2.05 2.03 2.02 2.01 1.90

2.33 2.28* 2.25 2.21 2.19 1.90
* 2.64* 2.56 2.49* 2.44 2.39 1.90

2.97 2.86 2.76 2.68 2.61 1.90
* 3.34* 3.18* 3.05 2.94 2.85 1.90

3.73* 3.53* 3.36* 3.23* 3.11 1.90
4.15 3.90 3.70* 3.53* 3.39* 1.90
4.59 4.30* 4.06 3.85 3.68* 1.90
5.07 4.73 4.44 4.20 3.99 1.90
5.58 5.19 4.85 4.57 4.33* 1.90
6.12 5.67 5.29 4.96 4.68 1.90
6.70 6.19 5.75 5.38 5.06 1.90
7.31 6.74 6.24 5.82 5.46 1.90

* 7.96 7.32 6.76 6.29 5.88 1.90
8.65* 7.93 7.31 6.78 6.32 1.90
9.37 8.58* 7.90 7.31 6.80 1.90

10.14 9.27 8.51* 7.86 7.29 1.90
10.94 9.99 9.16 8.44* 7.82 1.90
11.79 10.76 9.85 9.06 8.37* 1.90

* 12.69 11.57 10.57 9.71 8.96 1.90
* 13.63 12.41 11.33 10.39 9.57 1.90

14.62* 13.31 12.14 11.11 10.22 1.90
15.66 14.24* 12.98 11.87 10.90 1.90

* 16.76 15.23* 13.86* 12.66 11.61 1.90
* 17.90* 16.26 14.79* 13.49 12.36 1.90

19.10* 17.35* 15.77 14.37* 13.14 1.90
20.36 18.49* 16.79 15.29* 13.97* 1.90
21.68 19.68* 17.87* 16.25 14.83* 1.90
23.06 20.93 18.99* 17.26 15.74 1.90
24.51 22.24 20.17 18.32* 16.68 1.90
26.02 23.60 21.40 19.42* 17.68* 1.90
27.60 25.03 22.69 20.58 18.71* 1.90
29.25 26.53 24.03 21.79 19.80 1.90
30.97 28.09 25.44 23.05 20.93 1.90
32.76 29.72 26.91 24.37 22.12 1.90
34.64 31.42 28.44 25.75 23.36 1.90

* 36.59 33.19 30.04 27.19 24.65 1.90
* 38.62 35.04 31.71 28.69 25.99 1.90
* 40.74* 36.97 33.45 30.26 27.40 1.90
* 42.95* 38.97 35.27 31.89 28.86 1.90

45.25* 41.06* 37.16 33.59 30.39 1.90
47.64* 43.24* 39.12 35.36 31.98 1.90
50.13 45.51* 41.17* 37.21 33.64 1.90
52.72 47.86* 43.31* 39.13 35.36 1.90
55.41 50.31 45.52* 41.13* 37.16 1.90
58.20 52.86 47.83* 43.21* 39.03 1.90
61.10 55.51 50.23 45.37* 40.97* 1.90
64.12 58.26 52.72 47.61* 42.99* 1.90
67.25 61.12 55.31 49.95 45.09* 1.90
70.50 64.08 58.00 52.38 47.27* 1.90
1 1 1 1 1 1.9(1+2a/b)

nanotubes in bundle [5], in italic type the 19 tests on multiwalled carbon
ata are reported with the exception of the five smallest values of 0.08, 0.10,
f 3051, 613, 342, 210, and 139 respectively. The 26 strengths measured in [7]
00 < rðexpÞ

N 6 200 GPa (thus rN ¼ rðexpÞ
N =2Þ or 3 interacting walls for

theoÞ ¼ 100 GPa ðq � 0:25 nmÞ.



Table 4
The new results [8] are here treated with respect to both strength and elasticity, assuming the presence of transversal nanocracks composed by n adjacent
vacancies

MWCNT number and fracture typology Strength (GPa) Young’s modulus (GPa) j n v (%)

1 (Multiple load A) 8 1100 1.01 148 0.07
2 (Clamp failed) 10 840 0.98 100 0.23
3 12 680 1.00 69 0.44
4 (Failure at the clamp) 12 730 0.98 69 0.40
5 (Multiple load B) 14 1150 1.02 51 0.14
6 (Multiple load a) 14 650 0.97 51 0.62
7 15 1200 1.05 44 0.11
8 16 1200 1.02 39 0.13
9 17 960 1.00 34 0.49
10 19 890 0.97 27 0.74
11 (Multiple load b) 21 620 0.99 22 1.51
12 (Multiple load I) 21 1200 0.99 22 0.22
13 (Multiple load II) 23 1250 0.99 18 0.17
14 30 870 1.00 11 1.92
15 (Plasticity observed) 31 1200 0.59 (0.99) 10 0.49
16 (Plasticity observed) 34 680 0.69 (1.02) 8 3.80
17 (Multiple load III) 41 1230 1.03 5 0.69
18 (Failure at the clamp) 66 1100 0.98 2 4.90

The constitutive parameter j has been estimated as j � ln(eN)/ln(rN/E) for all the tests: note the low values for the two nanotubes that revealed plasticity (in
brackets the values calculated up to the incipient plastic flow are also reported). The ideal strength is assumed to be of 100 GPa and the theoretical Young’s
modulus of 1300 GPa; the crack length n is calculated from Eq. (2) and introduced in Eq. (8) to derive the related vacancy fraction v (n = p/2). Fracture in
two cases was observed at the clamp; in one case the clamp itself failed, thus the deduced strength represents a lower bound of the nanotube strength. Three
nanotubes were multiple loaded (in two a, b and A, B or in three I, II, III steps), i.e., after the breaking in two pieces of a nanotube, one of the two pieces was
again tested and fractured at a higher stress. Two nanotubes displayed a plastic flow. A vacancy fraction of the order of few parts per thousand is estimated,
suggesting that such nanotubes are much more defective than as imposed by the thermodynamic equilibrium (see Section 2), even if the defects are small and
isolated. However, note that other interpretations are still possible, e.g., assuming the nanotube is coated by an oxide layer and rationalizing the ratio
between the observed Young’s modulus and its theoretical value as the volumetric fraction (for softer coating layers) of carbon in the composite structure.
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are identical in treating the external wall of the tested nano-
tubes, just an atomic layer thick. We have also found a
poor coefficient of correlation treating this new data set
with classical Weibull statistics, namely 0.51 (against 0.88
for NWS, see Fig. 1).

All these experimental data [5–8] are treated in Table 2,
by applying QFM in the form of Eq. (2): nonlinear multiple
solutions for identifying the defects corresponding to the
measured strength clearly emerge; however, these are quan-
tifiable, showing that a small defect is sufficient to rational-
ize the majority of the observed large strength reductions.
In Table 3 the related taper ratios corresponding to flaw-
tolerant megacables are reported, according to Eq. (3):
taper ratios of about two order of magnitudes higher than
the theoretical value are suggested by our analysis, in con-
trast to the current proposal [9,10], for which the cable fail-
ure is thus predicted.

Finally, the new experimental results [8] are differently
treated in Table 4, with respect to both strength and elas-
ticity, assuming the presence of transversal nanocracks.
The ideal strength is assumed to be 100 GPa and the theo-
retical Young’s modulus 1 TPa; the crack length n is calcu-
lated from Eq. (2) and introduced in Eq. (8) to derive the
related vacancy fraction v (n = p/2).

9. Size effects

For a megacable, classical Weibull statistics [36] is more
appropriate. For such a case, NN = V/V0, and the charac-
teristic volume V0 is here assumed, for consistency with
NWS [35], as the volume of a single nanotube (V is the vol-
ume of the megacable): thus NN represents the number of
nanotubes contained in the megacable. Accordingly, a size
effect in the (over-)simplified form of a power law, i.e.,
rN ¼ r0N�1=w

N is predicted for the nominal failure stress:
as it is well known, larger is weaker. As discussed in Section
4, LEFM would yield w = 6. Note that Weibull statistics is
also successfully applied to the fatigue strength (or life-
time), which is therefore expected to be reduced in larger
structures.

Researchers [37] have recently been able to build the first
meter-long cable based on carbon nanotubes. For such a
nanostructured macroscopic cable, a strength–density ratio
of rC/qC � 120–144 kPa/(kg m�3) (or for a densified cable
rC/qC � 465 kPa/(kg m�3)) was measured, dividing the
breaking tensile force by the mass per unit length of the
cable, since the cross-sectional geometry was not clearly
identified. The cable density was estimated to be
qC � 1.5 kg m�3, resulting in a cable strength of rC �
200 kg m�3. Thus, we estimate for the single nanotube con-
tained in such a cable rN � 170 MPa (carbon density
1300 kg m�3), much lower than its theoretical or measured
nanoscale strength, in agreement with our discussion.
Assuming the nanotubes investigated at the nanoscale [5–
8] to be one micron long and the cable [37] one meter in
length, we can roughly estimate w � � ln(1/10�6)/ln(31/
0.17) � 2.7 (or w � 3.3 for a densified cable; see Ref. [3]
for details). Noting that the megacable volume is of the
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order of 108 · 10�1 · 10�6 = 10 m3 and a nanotube has a
volume of the order of 10�8 · 10�8 · 10�6 = 10�22 m3, it
follows that NN � 1023 nanotubes are expected, corre-
sponding (according to the previous power-law scaling)
to a negligible megacable strength. However, a deviation
from a power-law is expected [25] according to the pioneer
paper by Carpinteri, suggesting the following nano/mega
scaling [38] as a function of the surface–volume ratio A/V
of the cable:

rCðA=V Þ
rN

¼ ðrN=rMÞ1=a � 1

~qA=V þ 1
þ 1

 !�a

ð10Þ

in which rN denotes the strength of the single nanotube,
i.e., the nanoscale strength ð~qA=V !1Þ, rM the megascale
strength ð~qA=V ! 0Þ and rC(A/V) the strength of a cable
with a given size and shape. The reader can here consider
this equation as an asymptotic matching between the nano-
scale and the megascale strength, with a transition dictated
by the characteristic material length ~q (related to its micro-
structure or fracture quantum; see Ref. [38] for details); a is
the maximum value of the power of the singularity. Note
that for the classical case of a = 1/2 (LEFM), for self-
similar cables (V/A is proportional to the cable length L)
and for rN/rM!1, as in usual material applications,
Eq. (12) becomes identical to the well-known Carpinteri
scaling law [25], that can thus be considered having a ‘‘uni-
versal’’ nature (see our commentary [39]). Note that the
maximum slope a = 1 (in a log–log plot) would represent
a limit, in our context for hyperelastic materials with
j!1 (see Section 4), in agreement with previous and
independent discussions [40,41].

For the megacable, imposing rN � 100 GPa, we have a
preliminary estimate from in-silicon experiments using the
SE3 code of rM � 15 GPa [3]; thus, again, a large strength
reduction is expected at the megascale, if compared with
the nanoscale strength. This is not surprising: in the mega-
cable cross-section �109 filaments will be present, and since
at the thermal equilibrium n � 1012�20, each of them will
contain �103�11 vacancies, sufficient to strongly reduce
the megacable strength. Thus, even if the theoretical nano-
tube strength could be observed in nanoscale experiments,
as perhaps for the WS2 nanotubes experimentally [7,42]
and theoretically [14] investigated, large strength reductions
are unavoidable at the megascale. Multiscale simulations of
a stretched defective megacable composed by millions of
billions nanotubes are in progress with the SE3 code.
10. Conclusions

The strength of a real, thus defective, carbon nanotube
based space elevator megacable is expected to be reduced
by a factor of at least �70% [3] with respect to the theoret-
ical strength of a carbon nanotube, in contrast to claims of
the current design [9,10]. Further studies on the role of
defects are required. Accordingly, in this paper key simple
formulas for the design of a flaw-tolerant space elevator
megacable have been reported, suggesting that it would
need a taper ratio (for uniform stress) of about two orders
of magnitude larger than that currently proposed. A
strength reduction by a factor of �70% would correspond
to a taper ratio of �8.5, perhaps still achievable, but
expected to be strongly larger for a slightly larger strength
reduction, e.g., �613 for a strength reduced to 1/10 of its
theoretical value (as strength reduction observed also at
the nanoscale).

Several new results have been reported in this paper. In
particular, in Section 2 we have demonstrated and quanti-
fied the vacancy fraction at the thermodynamic equilib-
rium. In Section 3 the first self-consistent law for the
strength reduction of a single nanotube or of a nanotube
bundle containing defects with given size and shape is
derived; the taper ratio for a flaw-tolerant space elevator
cable is accordingly obtained. In Section 4 elastic plasticity
(or hyperelasticity), rough cracks and finite domains are
discussed, extending the law presented in Section 2. In Sec-
tion 5 the fatigue lifetime is evaluated for a single nanotube
and for a nanotube bundle. In Section 6 the related
Young’s modulus degradations due to the presence of
defects are quantified. In Sections 7 and 8 the new results
on strength and elasticity are compared with all the main
atomistic simulations and tensile tests on carbon nanotubes
presented in the literature. Finally, in Section 9, size effects
are discussed. We suggest that size effects are statistically
unavoidable and are expected to play a fundamental nega-
tive role in so huge a cable. Thus, the design of the space
elevator cable requires much more caution: a megacable
is not simply a giant defect-free nanotube.
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151. Handlingar: Ingeniörsvetenskapsakademiens; 1939.

[37] Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD,
et al. Strong, transparent, multifunctional, carbon nanotube sheets.
Science 2005;309:1215–9.

[38] Pugno N. A general shape/size-effect law for nanoindentation. Acta
Mater 2007;55:1947–53.

[39] Carpinteri A, Pugno N. Are the scaling laws on strength of solids
related to mechanics or to geometry? Nat Mater 2005;4:421–3.

[40] Carpinteri A, Pugno N. Scale-effects on average and standard
deviation of the mechanical properties of condensed matter:
an energy-based unified approach. Int J Fracture 2004;128:
253–61.

[41] Carpinteri A, Chiaia B, Cornetti P. A scale-invariant cohesive crack
model for quasi-brittle materials. Eng Fract Mech 2002;69:207–17.

[42] Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T,
Seifert G, et al. On the mechanical behavior of WS2 nanotubes under
axial tension and compression. Proceedings of the national academy
of science USA 2006;103:523–8.


	The role of defects in the design of space elevator cable: From nanotube to megatube
	Introduction
	Thermodynamically unavoidable defects
	Brittle fracture
	Elastic plasticity, fractal cracks and finite domains
	Fatigue fracture
	Elasticity
	Atomistic simulations
	Nanotensile tests
	Size effects
	Conclusions
	Acknowledgements
	References


