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Abstract

In this paper we derive a general scaling law for nanoindentation, considering different sizes and shapes of the indenter. The law
matches as limit cases all the well-known hardness scaling laws proposed in the literature. But our findings, based only on the sur-
face-to-volume ratio of the domain in which the energy flux occurs, can also explain the deviations experimentally observed at the nano-
scale. Finally, a general spatial–temporal scaling law is formulated and examples of applications in different fields, such as materials
science and biology, are provided.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Hardness is defined as the load divided by the projected
area of the indentation, thus it is the mean pressure that a
material will support under load. This parameter is only
‘‘nominally’’ a constant and is experimentally dependent
on penetration depth and size and shape of the indenter.
A variation in hardness versus penetration depth is usually
defined, perhaps not properly, as the indentation size-effect,
whereas we refer, in this paper, to the variation of hardness
by varying the size or shape of the indenter as the true size-
or shape-effect, respectively.

Much of the early work on indentation has been
reviewed by Mott [1]. Ashby [2] proposed that geometri-
cally necessary dislocations [3] would lead to an increase
in hardness measured by a flat punch. The problem of a
conical indenter has recently been investigated [4], showing
a consistent agreement with micro-indentation experi-
ments. However, recent results that cover a greater range
of depths show only partial [5,6] or no agreement [7] with
this model [4]. Thus, Swadener et al. [6] extended this work
in a very interesting way, to treat indenters of different sizes
and shapes; the results were compared with micro-indenta-
tion experiments, but limitations for small depths of pyra-
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midal indenters or sizes of spherical indenters were
observed, as pointed out by the same authors.

The aim of this paper is the development of a new model
capable of matching as limit cases the discussed indenta-
tion laws, simultaneously capturing the deviation observed
towards the nanoscale. Moreover, a general spatial–tempo-
ral scaling law is formulated, that could reveal interesting
applications in different fields, e.g., for complex and chaotic
biosystems.

2. A general shape/size-effect law for nanoindentation

Consider an indenter with a given geometry h ¼ hðr; #Þ,
with r and # being polar coordinates. Previous models [4,6]
assume that plastic deformation of the surface is accompa-
nied by the generation of geometrically necessary disloca-
tion loops, in the treatment of length l(h), below the
surface; the deformation volume is assumed to be a hemi-
spherical zone below the (projected) contact area A with
radius a ¼

ffiffiffiffiffiffiffiffiffi
A=p

p
or volume (Fig. 1)

V ¼ 2p=3ðA=pÞ3=2
: ð1Þ

Thus, the total length L of the geometrically necessary
dislocation loops can be evaluated by summating the num-
ber of steps on the staircase-like indented surface (see
Fig. 1)
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Fig. 1. Geometrical necessary dislocations during indentation: h is the
indentation depth, a is the radius of the projected contact area A, X is the
contact surface and V is the dissipation domain (proportional to a3). Note
that the indented surface at the nanoscale appears in discrete steps due to
the formation of dislocation loops, i.e., of quantized plasticity. In our
model the scaling law is predicted to be a function only of S=V , where
S ¼ X� A.
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where X is the total lateral surface area of the indented
zone and b is the (modulus of the) Burger’s vector. X is
the sum of the ‘‘vertical’’ surfaces, S, and of the ‘‘horizon-
tal’’ surfaces, A (Fig. 1). Thus, the surface S can be inter-
preted as the total one along with the energy flux arising,
positive if outgoing (X) and negative if incoming (A), in
the indenter. Note the generality of the result in Eq. (2),
that does not need specification of the form of h, as is usu-
ally required.

Accordingly, the average geometrically necessary dislo-
cation density is

qG ¼
L
V
¼ S

bV
: ð3Þ

The actual number of dislocations that must be gener-
ated to accommodate plastic deformation, that we could
call geometrically ‘‘sufficient’’ dislocations, is greater than
the number of geometrically necessary dislocations [8] by
the so-called Nye factor �r (�2 [6]); thus, the total dislocation
density is usually assumed to be qT ¼ �rqG þ qS, where qS is
the statistically stored dislocation density [4]. However, we
note here that, according to this common formulation,
qTðV =ðbSÞ ! 0Þ ! 1, i.e., the total dislocation density at
the nanoscale diverges, whereas it must physically present
a finite upper bound, that we call qðnanoÞ

T . The existence of
such an upper bound has very recently been confirmed [9].

Note that qT is related to the shear strength sp by
Taylor’s hardening model [10], i.e.,

sp ¼ alb
ffiffiffiffiffi
qT

p ð4Þ
where l is the shear modulus and the geometrical constant
a is usually in the range 0.3–0.6 for fcc metals [11]. Thus,
the upper-bound qðnanoÞ

T is related to the existence of a finite
nanoscale material strength sðnanoÞ

p , that is only expected to
be of the order of magnitude of the theoretical material
strength at the true atomic scale.

Accordingly, the upper bound qðnanoÞ
T is straightfor-

wardly introduced in our model through the following
asymptotic matching:
1

qT

¼ 1

�rqG þ qS

þ 1

qðnanoÞ
T

: ð5Þ

Note that at the atomic scale, as a consequence of the
quantized nature of matter, qðnanoÞ

T must be (at least theoret-
ically) of the order of b�2, as for a pure single dislocation.
This is also reflected in the fact that b ¼ 1=ðb2qðnanoÞ

T Þ ¼
ðal=sðnanoÞ

p Þ2 is of the order of the unity, since al is of the
same order of magnitude as the theoretical material
strength. Note the analogy with quantized fracture
mechanics [12], that quantizing the crack advancement,
as must (particularly) be at the nanoscale, predicts a finite
theoretical material strength, in contrast to the result of
continuum-based linear elastic fracture mechanics [13].

The flow stress is related to the shear strength by von
Mises’ rule, i.e., rp ¼

ffiffiffi
3
p

sp, and the hardness to flow stress
by a Tabor’s factor [14] of 3 [4,6], i.e., H ¼ 3rp; thus
H ¼ 3

ffiffiffi
3
p

sp. Introducing into the previous equation the
shear strength given by Eq. (4), after having substituted
the total and geometrical necessary dislocation densities
according to Eqs. (5) and (3), respectively, we derive

H ¼ 3
ffiffiffi
3
p

albfð�rS=ðbV Þ þ qSÞ
�1 þ ðqðnanoÞ

T Þ�1g�1=2
:

Finally, rearranging such a finding and introducing
dimensionless parameters, we deduce the following hard-
ness scaling:

HðS=V Þ
Hnano

¼ d2 � 1

‘S=V þ 1
þ 1

� ��1=2

;

HðS=V Þ
Hmacro

¼ d2 � 1

d2V =ð‘SÞ þ 1
þ 1

 !1=2

; d ¼ H nano

H macro

ð6Þ

with

Hnano � Hð‘S=V !1Þ ¼ 3
ffiffiffiffiffiffiffiffi
3=b

p
al;

Hmacro � Hð‘S=V ! 0Þ ¼ 3
ffiffiffi
3
p

albffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1

S þ bb2
q and ‘ ¼ �r

qSb
;

i.e., a characteristic length governing the transition from
the nano- to the macro-scale. From a physical point of
view, note that ‘S=V ¼ �rqG=qS, i.e., it is equal to the ratio
of the geometrically ‘‘sufficient’’ and statistical stored dislo-

cation densities, whereas d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qðnanoÞ

T =qS

q
. The two

equivalent expressions in Eq. (6) correspond to a bottom-
up or a top-down view, even if the bottom-up law is per-
haps more physical. Eq. (6) is a general shape/size-effect
law for nanoindentation, that provides the hardness as a
function only of the ratio between the net surface through-
out which the energy flux propagates and the volume where
the energy is dissipated; or, simply stated, as a function of
the surface-to-volume ratio of the domain in which the en-
ergy dissipation occurs.

As in the previously mentioned references [4,6], our
model is mainly based on three rather strong, even if rea-
sonable, assumptions: (i) the plastically deformed volume
is proportional to the contact area to the power 3/2;
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(ii) classical Taylor’s hardening (describing the situation
underneath the indenter) is valid; and (iii) the density of
statistically stored dislocations does not depend on the
indentation depth. We note that the law of Eq. (6) is for-
mally not affected by assumption (i), that will, however,
impose the methodology of calculating the volume V, mod-
ifying Eq. (1). In particular, the power 3/2 allows us to con-
sider V/S as a characteristic length of the indentation
process (indentation depth, indenter size or their combina-
tion with the physical dimension of a length; see the cases
of the conical, parabolic or flat indenter, respectively, con-
sidered in the following section), whereas a power different
from 3/2, let say 3=2þ e1, would imply considering V/S as
the characteristic length raised to the power 1þ 2e1. Thus,
the trend predicted by the law of Eq. (6) would remain
valid, but with a slightly different transition from the nano-
to the macro-scale. A critical inversion would be expected
in the trend only for unreasonable values of e1 < �1=2:
Assumption (ii), i.e., sp / q1=2

T , could be released assuming
sp / q1=2þe2

T ; accordingly, the corresponding powers of 1/2
appearing in the bottom-up and top-down equivalent laws
of Eq. (6) would become 1=2þ e2, modifying the maximum
slope of the scaling. Releasing the third hypothesis (iii)
(qS / ðV =SÞ0), i.e., assuming qS / ðV =SÞe3 (for V/S describ-
ing the indentation depth, e.g., as for the conical indenter
considered in the following section), would mean that Eq.
(6) would have to be modified according to lS=V /
ðS=V Þ1þe3 (similarly to the removal of assumption (i), for
2e1 ¼ e3) and Hmacro ¼ H nano � 3

ffiffiffiffiffiffiffiffi
3=b

p
al for e3 > 0 (no

size-/shape-effects), or H macro ¼ 0 for e3 < 0 (vanishing
macro-hardness).

Thus, our law could present modifications; however, we
note that small values of e1, 2, 3 are not easily observable.
Furthermore, experiments as well as intuition seem to sug-
gest us that e3 = 0, whereas from a practical point of view
e1 and e2 can be considered negligible, at least until further
experimental work demonstrates otherwise.

The law of Eq. (6) can be applied in a very simple way to
treat any interesting indenter geometry. However, to make
a comparison it is necessary to focus on the axially symmet-
ric profiles, i.e., h ¼ hðrÞ, previously investigated [6].
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Fig. 2. Comparison for the conical indenter between the two different
expressions of h�ðuÞ=‘ resulting from the two different calculation
procedures for S described by Eq. (2): S directly computed as X� A,
(dashed line) or S computed by integration (solid line). Only a moderate
and non-essential discrepancy is observed.
3. Different size and shape of the indenters

3.1. Conical indenter

Consider a conical indenter with corner angle u; hðrÞ ¼
tanððp� uÞ=2Þr; by integration (Eq. (2)) we found

S=V ¼ 3 tan2ððp� /Þ=2Þ
2h

;

that introduced into Eq. (6) gives

H coneðh;uÞ ¼ H macro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2 � 1

d2h=h�ðuÞ þ 1

s
;

h�ðuÞ ¼ 3=2‘ tan2ððp� uÞ=2Þ: ð7Þ
For h=h� ! 0 or u! 0;H cone ! H nano, whereas for
h=h� ! 1 or u! p;H cone ! Hmacro; only for the case of
d!1;H cone ¼ Hmacro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�=h

p
as derived in [4] (with

the identical expression for h�ðuÞÞ. Note that such a scaling
law was previously proposed by Carpinteri [15] for material
strength (with h structural size). The comparison here,
however, is not very significant, since the ‘‘h-size effect’’ is
not a true size effect.

We have here derived S by integration (of l), according
to Eq. (2) and for consistency with Ref. [6]. A more direct
calculation considers the difference between the lateral (X)
and base (A) surface areas (see Eq. (2)), leading to a slightly
different value of h* ðh�ðuÞ ¼ 3=2‘ tan2ððp� uÞ=2Þ
ð1= sinððp� uÞ=2Þ�1= tanððp� uÞ=2ÞÞÞ with respect to
the previously calculated value ðh�ðuÞ ¼ 3=2‘
tan2ððp� uÞ=2ÞÞ. The ratios h�ðuÞ=‘ evaluated with the
two different procedures are compared in Fig. 2 for the
conical indenter: the related difference is moderate and
unessential in this context, thus we conclude that both
the methodologies can be applied to fit experiments.

3.2. Parabolic (spherical) indenter

Consider the case of a parabolic indenter with radius at
tip R, i.e., h ¼ r2=ð2RÞ, that for not too large an indenta-
tion depth corresponds also to the case of a spherical
indenter; by integration we found S=V ¼ 1=R, that intro-
duced into Eq. (6) gives

HparabolaðRÞ ¼ Hmacro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2 � 1

d2R=R� þ 1

s
; R� ¼ ‘: ð8Þ

Thus, the hardness is here not a function of the indentation
depth h. For R=R� ! 0; Hparabola ¼ Hnano, whereas for
R=R� ! 1; H parabola ¼ H macro; only for the case of
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d!1; H parabola ¼ H macro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R�=R

p
, as derived in Ref. [6]

(with the identical expression for R*). This law describes a
true size effect and agrees with Carpinteri’s law [15].

3.3. Flat indenter

Consider the case of a flat indenter of radius a, i.e.,
h ¼ dðr � aÞ; geometrically, we found

S=V ¼ 2pah
2=3pa3

;

that introduced into Eq. (6) gives

H flatða; hÞ ¼ Hmacro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2 � 1

d2a2=ð3h‘Þ þ 1

s
: ð9Þ

For a=‘! 0;H flat ! Hnano, whereas for a=‘!1;
H flat ! H macro; interestingly, for h=‘! 0; H flat ! H macro,
whereas for h=‘!1; H flat ! Hnano, showing an inverse
h-size effect, in agreement with the discussion by Swadener
et al. [6] and with intuition (the contact area does not
change when the penetration load or depth increases), see
Ref. [2]. This suggests a new and intriguing methodology
for the derivation of the nanoscale hardness of materials
by a macroscopic experiment, using large flat punches,
even if the finite curvature at the corners is expected to af-
fect the results. This case was only discussed in Ref. [6] due
to the complexity in their formalism for treating such a
cuspidal geometry. Note that for h / a and d!1, the
size-effect law again coincides with that of Carpinteri [15].
log( R / m)
1 2 3 4

Fig. 3. Comparison between ‘‘micro-models’’ [4,6] and the present ‘‘nano-
model’’ fitted to experiments on spherical indentation [6]. Two different
sets of parameters are considered: (a) Hmacro � 0:9 GPa, R� � 250 lm
(dotted line) that, introduced into the nano-model (solid line) with
Hnano � 3 GPa, result in a closer agreement with experiment (points);
(b) the same, but for Hmacro � 0:6 GPa; R� � 750 lm (dotted line), or, in
addition, H nano � 5 GPa (solid line). Note the difference in the model
predictions at the smaller size scales.
3.4. Experimental assessment

Swadener et al. [6] compared their model with experi-
ments in annealed iridium, using spherical indenters of dif-
ferent radii (R � 14; 69; 122; 318; 1600 lm). Data were
analyzed using the method of Oliver and Pharr [16]. These
authors [6] treated the spherical indentation with their law
for parabolic indenters, since the experiments were per-
formed at a small value of penetration (a=R � 0:05). A
hardness overestimation for R < 80 lm was experimentally
observed. This deviation is in agreement with the predic-
tion of Eq. (6). In particular, Swadener et al. [6] considered
two plausible sets of parameters for describing their exper-
iments (see Ref. [6] for details): (a) H macro � 0:9 GPa,
R� � 250 lm or (b) H macro � 0:6 GPa, R� � 750 lm. Intro-
ducing such values into our model with, in addition, (a)
Hnano � 3 GPa or (b) Hnano � 5 GPa results in a closer
agreement between theory and experiment, as shown in
Fig. 3a and b, respectively. Similar results with the same
sets of parameters were observed for a pyramidal indenter
(Berkovich, treated as a conic; from its geometry
R�=h� � 5:2, [6]) on the same material, by varying the
indentation depth. Annealed oxygen-free copper tested
with spherical, Berkovich and Vickers (pyramidal,
R�=h� � 5:2) indenters resulted in Hmacro � 0:1 GPa and
R� � 200 lm, but with the expected deviation at the smaller
size-scales as predicted by our model, and fitted with
Hnano � 2 GPa. The same material, but in a cold-worked
state, was similarly investigated, giving H macro � 0:9 GPa
and R� � 3:6 lm, with a deviation described by our model
considering the finite value Hnano � 2 GPa.

Furthermore, we note that at the true atomic scale we
expect even higher values for Hnano than deducible from
larger-scale experiments, i.e., as anticipated, the hardness
upper bound would become the theoretical material value
H theo. This behaviour would be described by Eq. (6) consid-
ering the formal substitution Hnano ! H theo; thus, a nano-
scaling could take place. Such a nanoscaling has been
experimentally observed in the indentation hardness of sur-
face Si(11 1) films with an indentation depth as small as
1 nm [17]. The hardness for an indentation depth of
2.5 nm was 16.6 GPa and dropped to 11.7 GPa at a depth
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of 7 nm, from which we deduce a slope of �0.34, thus sug-
gesting H theo � 16:6 GPa.

4. A general spatial–temporal scaling law

Our treatment can further be generalized. For a given
nominally constant property P, the generalization of
Eq. (6) is straightforward:

P ðS=V Þ
P nano

¼ ðP nano=P macroÞf � 1

‘S=V þ 1
þ 1

 !�1=f

ð10Þ

in which the parameter f has to be introduced, since a
material property could also, for example, be P ¼ H 2

(for which f ¼ 1, to match Eq. (6)) or P ¼ H�1ðf ¼ �2Þ,
or others. The asymptote at P macro is classical and intrinsic
in considering a nominally constant property, whereas
that at P nano appears as a consequence of the existence
of a nanoscale quantization. The law of Eq. (10) can be
applied for predicting the scaling of a given property,
starting from the surface-to-volume ratio of the domain
in which the energy exchange or flux, not necessarily a
dissipation, occurs.

For a signal (e.g., a wave) propagating at constant
velocity, the size-scale R is connected to the time-scale t

by R / t; in this context Eq. (10) is similarly rewritten as
(S=V / 1=R / 1=t):

P ðtÞ
P fast

¼ ðP fast=P slowÞn � 1

s=t þ 1
þ 1

 !�1=n

ð11Þ

where s is a characteristic time and n is a constant. Eq. (11)
correlates fast and slow dynamics. To combine Eqs. (10)
and (11), two complementary ways can be followed: insert-
ing Eq. (10) into Eq. (11) (i.e., considering P nano and P macro

in Eq. (10) as a function of time and of P nano
fast

, P nano
slow

, P macro
fast

,

P macro
slow

according to Eq. (11)), or vice versa (considering P fast

and P slow in Eq. (11) as a function of the surface-to-volume
ratio and of P fast

nano

; P slow
nano

; P fast
macro

; P slow
macro

according to

Eq.(10)); note that P fast
nano

� P nano
fast

and so on, thus, syntheti-

cally, the condition of symmetry P ab � P ba holds. Following
the two complementary approaches, we find the same result
only if the self-consistent conditions d ¼ P slow

nano

=P slow
macro

¼

P fast
nano

=P fast
macro

are valid, i.e., synthetically, for

P ab=P ac ¼ P db=P dc � P b=P c. Thus, we can formulate a
self-consistent general spatial–temporal scaling law in the
following form:

P ðS=V ; tÞ
P nano

fast

¼ ðP nano=P macroÞf� 1

‘S=V þ 1
þ 1

 !�1=f

� ðP fast=P slowÞn� 1

s=tþ 1
þ 1

 !�1=n

; P ab=P ac ¼ P b=P c:
5. Example of applications

The generality of the formulation suggests to us that the
law of Eq. (6) could have many applications. One example
is in the design of syringes of different diameter D penetrat-
ing a ductile material (such as a biological soft tissue), for
which the force is predicted to be F syringe � pDsHðDÞ, where
D is the syringe diameter and s is its thickness; accordingly,
the maximum length to avoid elastic instability of the syr-

inge will be lmaxðDÞ � p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=F syringeðDÞ

p
� pDffiffi

8
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=HðDÞ

p
,

where E is the Young’s modulus and I is the moment of
inertia of the syringe: thus, the hardness scaling implies a
deviation from linearity (between lmax and D). Considering,
for example, a single-walled carbon nanotube and the fol-
lowing reasonable parameters D ¼ 10 nm, s ¼ 0:34 nm
(interwall carbon spacing), HðDÞ � Hnano ¼ 10 GPa; E ¼
1 TPa, would result in the following plausible estimations
F nano

syringe
� 107 nN and lmax � 111 nm.

An additional example is on the design of bullet-proof
jackets as a function of the projectile diameter D and
kinetic energy K: the work needed to penetrate into the
material for a length l is W ðDÞ ¼

R l
0

Aðh;DÞHðh;DÞdh ¼
lhAðDÞHðDÞi, where AðDÞ ¼ pD2=4 is the cross-section bul-
let projected area; since W must be equal to the bullet
kinetic energy K, its minimum thickness l is predicted to
be lminðDÞ ¼ K=hAðDÞHðDÞi. For example, considering a
bullet mass of 100 g, velocity of 1 km s�1, A ¼ 1 cm2 and
H ¼ 10 GPa, would correspond to a plausible value of
lmin � 5 cm.

Defining the impact strength as the energy was spent
over the removed volume, the last example shows that such
a parameter is for plastic materials of the order of their
hardness, but note, at the investigated size-scale (and
Hnano � Hmacro). A similar result is found for brittle mate-
rials at the macroscale, where the impact strength is of the
order of the material macro-strength [18]: thus, our argu-
ment suggests its validity at all size scales. That is, for plas-
tic materials the impact strength is of the order of their
hardness whereas for brittle materials it is of the order of
their material strength, but at the considered size scale.
This finding, if confirmed, could have interesting applica-
tions also in impact or explosion and tribological studies,
from the nano- to the mega-scale.

For material strength P ¼ r; f ¼ 2 in Eq. (10) (as for H)
and considering self-similar structures, i.e., V =S / R, as the
characteristic structural size (but note that in general
Eq. (10) describes also the shape effects), we deduce

rR ¼ rmacro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘�

Rþ ‘0

r

with ‘� ¼ ð1� d�2Þ‘; ‘0 ¼ d�2‘ and d ¼ rnano=rmacro (smal-
ler is stronger). This is a scaling law taking into account
the quantization of the energy flux and for d!1 agrees
with Carpinteri’s law [15]; such a law has already been
demonstrated to agree with microtorsion [19] and micro-
bending [20] experiments, see Refs. [21,22].



1952 N.M. Pugno / Acta Materialia 55 (2007) 1947–1953
The law of Eq. (10) can also be applied to complex and
chaotic systems, where the multiscale energy flux arises in a
fractal domain of positive dimension D (usually comprised
between 2 and 3, i.e., the fractal surface of the energy flux is
usually comprised between a Euclidean surface and vol-
ume); in this case, S / V D=3 [18,23], no matter if we are con-
sidering fractal fragments or dislocations, thus brittle or
plastic materials. Accordingly, S=V / RD�3 in Eq. (10) with
R structural size. For example, for a hierarchical material
(as for bone, nacre and dentine) we derive D ¼ 3 ln n=
lnðn=uÞ, where n > 1 and 0 < u < 1 are the number and
volumetric fraction content of sub-inclusions in a main
inclusion (the demonstration is left up to the reader). One
example is given by the scaling of the energy density
P ¼ w (nominally a material constant) during fragmenta-
tion of solids, for which f ¼ 1 (since w / r2), in agreement
at intermediate size scales with the mesoscopic scaling
w / S=V / RD�3 [18,23]. Interestingly, such a law is also
extensively applied for describing the scaling of the energy
per unit mass spent by biological systems on growth
[23–25], thus, Eq. (10) straightforwardly extends this bio-
logical scaling law, as well as the large number of allome-
tric biological laws [25] that can be derived from it.

An example of an application of Eq. (11) is on the var-
iability of dynamic strength P ¼ r (n ¼ 2, from dynamic
fracture mechanics) as a function of the time to failure
t. The impact strength (rfast) is observed for the majority
of the systems to be approximately twice the static
strength (rslow); this seems to be related to the existence
of an incubation time (s) for fracture nucleation, of the
order of the time needed to generate a fracture quantum
and thus again related to a quantization [26]. It is evident
that Eq. (11) with rfast � 2rslow captures the related
transition.

For complex and chaotic fractal systems, the result
previously reported (S=V / RD�3) is formally traduced in
Eq. (11) as s / tD�2, where D is here connected to the
fractal dimension of the time distributions.

6. Conclusions

In this paper we have derived a general size/shape-effect
law for nanoindentation, based only on the surface-to-
volume ratio of the domain in which the energy flux occurs,
considering different sizes and shapes of the indenter. The
law matches as limit cases all the well-known hardness scal-
ing laws proposed in the literature, but also explains their
deviations as experimentally observed towards the nano-
scale. Its applicability is demonstrated for conical, spheri-
cal and flat indenters; experimental comparison confirms
the key role played by the peculiarity of this model, i.e.,
the existence of a bounded hardness or total dislocation
density. The limitations of the model have been discussed
in depth. A general spatial–temporal scaling law has also
been formulated and a few simple examples of applications
have been provided in different fields, such as materials sci-
ence and biology.
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