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ABSTRACT 
 
 An analysis to understand and quantify the phenomenon of nano-friction and stick-slip observed during 
sliding of adjacent shells in multiwalled carbon nanotubes is presented. The contact force and shear stress are 
found to be strongly non-uniform along the contact length, as a consequence of boundary edge effects. In this 
context, the theoretically predicted superlubricity state seems to be unrealistic for finite-sized objects.  We 
demonstrate that such boundary effects dominate sliding at nanoscale for finite-sized object, making it more 
similar to a fracture phenomenon than to classical friction. The relationship between contact-force and 
contact-length is found to be asymptotic, explaining the difference in the observations on nanotube sliding 
reported in the literature. The pull-out force is quantified and found to asymptotically approach a constant 
value, rather than to be proportional to the contact surface area, as frequently assumed. The analysis is finally 
applied to predict the strength and toughness of nanotube-based composites and nanotube-bundles. 
 
 

1. INTRODUCTION 
 
 Carbon nanotubes are fascinating low dimensional systems for nano-electronic and nano-mechanical 
applications. Nanotube devices such as diode, bucky shuttle, or multiple terminal logic circuits have been 
proposed in nano-electronics /1-3/, as well as nano-pistons, nano-syringes and nano-rotors in nano-mechanics 
/4-6/. Nano-electromechanical systems (NEMS) have been presented as the new R&D horizon for 
electromechanical components /7/. Nanotube-based NEMS reported in the literature include nanotweezers, 
nonvolatile random access memory (RAM) devices, nanorelays, and rotational actuators /8-12/. In contrast, 
there has been less experimental study on nanotube tribology /13-16/. As recently emphasized, nanofriction 
remains a not fully understood phenomenon /17/.   
 Nano-friction and stick-slip behaviours in multi-walled carbon nanotubes have been experimentally 
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observed, during relative motion of adjacent shells /15/. Such phenomena were described by using a 
maximum value for the static and dynamic shear stress acting at the contact surface, as suggested by the 
decrease of the contact force with decreasing contact length. However, this description corresponds 
implicitly to assuming a maximum tangential contact force proportional to the contact surface length or, 
equivalently, an approximately constant contact shear stress distribution. On the other hand, further 
experimental results /16/ suggested a maximum tangential contact force independent from, rather than 
proportional to, the contact surface length. The observations reported in /15, 16/ differ both qualitatively 
and quantitatively, showing a discrepancy in the magnitude of the contact shear stress causing sliding of 
one order of magnitude.  
 We present a physical interpretation of the phenomenon, explaining the observed differences. Two 
different theoretical explanations, based on stress and energy, are presented. According to our results the 
so-called “nano-friction” between shells of multi-walled nanotubes seems to be more connected to 
elasticity and fracture mechanics thus to adhesion than to a classical friction phenomenon. The contact 
shear stress distribution is found to be strongly variable along the contact length with strong end peak 
concentrations. As an example, we quantify such an end effect for one of the experimental cases 
investigated in /16/. From an energy balance approach (similar to Griffith’s approach for fracture but 
including the sliding term) a simple formula to predict the pull-out force of a group of shells is presented, 
which includes a stick-slip coefficient. It is shown that the analysis can explain the discrepancy observed 
in the experiments. Such a strong influence of the nanotube ends is consistent with the end peak shear 
stress concentrations, showing that the end(s) of the internal shells govern the sliding process. From 
atomistic numerical simulations /17/ we quantified reference values for the stick-slip coefficient for both 
capped and fractured nanotube ends. Theoretical and experimental observations /15, 16/ are then 
compared. 
 It is then shown that the approach could be useful in the future design of linear (or rotational) nanotube 
based nano-actuators. The analysis is also applied to predict the strength and toughness of nanotube-based 
composites and bundles, showing that, unfortunately, increasing the nanotube embedded length (also 
indefinitely) is perhaps not sufficient to reach a pull-out stress as large as the ideal nanotube strength. On the 
other hand, the phenomenon of the pull-out is demonstrated to be important, perhaps exceptionally so, for 
increasing the toughness of nanocomposites.  
 
 

2. CONTACT FORCE AND SHEAR STRESS 
 
 We refer to the analysis reported in /18/ (and related references). Let us consider a multi-walled nanotube 
and assume that a sliding process takes place between two adjacent shells at a given radius i eR R R< < , 

where iR  and eR  are the internal and external nanotube radii. Assume that the interaction zone is defined by 
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2 2l z l− < < + , with length l and surface area 2 Rlπ : thus R is the radius at which the sliding occurs; z is 

the axial coordinate with origin at the middle of the interaction zone, thus migrating during sliding. Note that 
here l represents the geometric contact length plus the additional distance along which there is a non-
vanishing van der Waals interaction between the nested shells. To study nano-friction we assume fixed 
internal shells (with radii smaller than R) and apply a tensile axial force F to the external shells (with radii 
larger than R) to produce a relative “pull-out”, see Figure 1.  
 

 

F z 

l/2 -l/2 

 
 

Fig. 1:  Pull-out of nanotube external shell: schematic view for the model and reference system. 
 
 Under these conditions, the axial equilibrium gives a relationship between the contact shear stress τ(z) 
and the variation along the contact length of the axial force F(z) transmitted by a given section z of the 

external shells, as: ( ) ( )d1
2 d

F z
z

R z
τ

π
= −  (equilibrium equation). Note that ( ) FF z l 2= − = , 

( ) 0F z l 2= + = , and for the internal shells the force transmitted in the section z is F – ( )F z . Since the 

system is analysed as at equilibrium, the potential energy related to the van der Waals contact interactions 
can be expanded around the equilibrium position up to the second order; this corresponds to assuming a 

linear relationship between the shear stress τ  and strain γ, i.e., 
( )vdW

kτ γ=  (constitutive equation), where 

( )vdWk  describes the van der Waals interaction. This is assumed to describe the stress-strain relationship in 

the interaction zone between inner and outer shells. We assume the “thickness” t of the contact, in analogy to 
a virtual adhesive, to be infinitesimal. In addition, the longitudinal relative displacement w between internal 
and external shells at the contact must be compatible with the shear strain in the contact zone, that is: 

( ) ( ) ( ) ( )2 2 2 2

F1 d d const
i e

F z F z
w z z z t z

E R R R R
Δ γ

π

⎧ ⎫
−⎪ ⎪= + + =⎨ ⎬
− −⎪ ⎪

⎩ ⎭
∫ ∫  (compatibility equation), where E is the 

Young’s modulus of the nanotube shells, see /18, 19/. By derivation of the compatibility equation, coupling it 
with the constitutive and equilibrium equations, we find the differential equation governing the longitudinal 
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transmission of the nano-friction force F(z):   

 
( ) ( )

( ) ( )
( ) ( )

( )

( )
*2 *22

2 2
2 *2 *2 *2

2d 2 F0 , ,
d 1 1 1

vdW vdWe i

e i i

k R RF z kF z
z tER R R ER R

π
α β α β

−
− + = = =

− − −
, (1) 

 
in which we have introduced the dimensionless radii *

e eR R R=  and *
i iR R R= . Solving eq. (1) with the 

related boundary conditions ( ( ) FF z l 2= − = , ( ) 0F z l 2= + = ), gives: 

 
 ( ) ( )1 2F z zF z C e C eα α λ−= + + , 

 
( )

( )
*2

*2 *2

1e

e i

R

R R
λ

−
=

−
,  

( ) / 2 / 2

1
1 l l

l l

e e
C

e e

α α

α α

λ λ−

−

− +
=

−
,  ( )2 1C C α α= → − . (2)  

 
 Since the friction force is quantified, we can try to make a prediction on its critical value that corresponds 
to the starting of the pull-out or sliding. First, we assume the contact as quantized, that is, the sliding 
advances by finite amounts a, a characteristic length for the sliding process. We further assume a quantized 
version shear stress Qτ  /20/ rather than a continuous shear stress τ: 

 ( ) ( ) ( ) ( )1 d
2z

z a

Q
F z F z a

z z z
a Ra

τ τ
π

+ − +
= =∫ . (3) 

    

that must reach a maximum value ( )
max
vdWτ , characteristic of the van der Waals interaction. From the condition 

( )
max max

vdW
Qτ τ=  the force that initiates sliding, maxF , can be derived if a value for a is specified. On the 

other hand, in the limit case of 0aα → , we obtain the “continuum” approach as ( )
max max

vdWτ τ= . According 

to our analysis the maximum shear stresses τ  are reached at the ends of the contact and the higher stress peak 
appears at the end of the group of shells (inner or outer) with larger cross-section area. The shear stress is 
typically assumed to be nearly constant, and thus evaluated as the force divided by the contact surface; 
according to our analysis this is incorrect. There is a strong difference between mean and maximum 

quantized shear stress; the maximum value is ( )*
max 2Q Q z lτ τ= =  where *l l= −  for 10

2
λ< < , or 

*l l= +  for 1 1
2

λ≤ <  (i.e., it is reached at the end of the stiffer group of shells), whereas the mean value is 

( )
/ 2

/ 2

1 Fd
2

l

Q

l

z z
l Rl

τ τ τ
π

+

−

= = =∫ . 

 Very importantly, for lα →∞  the maximum quantized shear stress tends asymptotically to a value 
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different from zero, i.e., ( ) ( )
maxmax

F 1
lim

2

a
asy

QQ l

e

Ra

α

α

λ
τ τ

π→∞

−
= = . For a continuum ( ) ( )

max max0

Flim
2

asy asy
Qa Rα

λατ τ
π→

= = . 

This means that in this asymptotic region (large contact lengths), the nano-friction maximum force is finite 

and equal to ( )
( )

( )
asy max

max
2

F
1

vdW

a

Ra

eα
π τ

λ
=

−
, and thus it should be observed as independent of contact length and not 

proportional to it, as would be found if an essentially uniform stress distribution is assumed. As a 
consequence, making very long nanotubes will not increase indefinitely the corresponding pull-out forces. 
We can also rigorously define the asymptotic region: in particular, assuming αa → 0: 
 

 
( ) * *
max
asy 2 2

max 2 1

1 2 1 2F

F l lC e C eα α

λ
ϑ

−

+ −
= =

−
 (4) 

  
from which we estimate the asymptotic region, e.g., 0.99ϑ > , starting from values of lα  larger than ∼6. 

 
 

3. ENERGY BALANCE DURING STICK-SLIP SLIDING 
 
 According to the contact quantization previously introduced, the energy balance has to be written not 
considering the differentials (as usually done) but rather considering the finite differences /20/. During 
sliding by a finite quantity a, the finite variation of the sum between the free-energy W of the system, the 
kinetic energy T and the energy Ω  spent to create the new free surface must be zero, thus: 
 
 ( ) 0W T ΩΔ + + = . (5) 

 
 From this equation an additional prediction for maxF  can be derived. The finite variation of the free-

energy of the system during stick-slip sliding must be: 
 

 ( ) 1F F F F F
2

W L w a w w a L aΔ Δ Δ η Δ Δ η Δ η⎛ ⎞= − + = − − = − −⎜ ⎟
⎝ ⎠

, (6) 

 
where LΔ  denotes the variation in the elastic strain energy of the nanotube (evaluated by virtue of 
Clapeyron’s theorem); wΔ  represents the elastic displacement of external force, whereas a is its rigid 
component, that is the sliding motion. For pure sticking 0η = , whereas for pure sliding 1η = : thus in 
general during stick-slip we expect 0 1η≤ ≤ . We define this parameter as a stick-slip coefficient. We note 
that the case of 0η =  corresponds to a fully fracture-mechanics-based interpretation /18/, according to the 
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Griffith’s energy balance. Evidently: 
 

 ( )2 vdW
CΩ RaG caΔ π= = , (7) 

 

 where ( )vdW
CG  is (twice) the energy spent to create the unit surface area under van der Waals interactions 

(and ( )2 vdW
Cc RGπ= ). We assume quasi-static conditions, i.e., 0TΔ ≈ , since we are interested in the 

incipient sliding force.  
 According to the previous tensional analysis the sliding will start at the zone where the quantized shear 
stresses are higher, thus at the end of the group (inner or outer) shells with larger global cross-section area. 
When a quantized sliding a occurs, the inner and outer shells present an additional length a in tension under F 
and the contact length is reduced from l to l–a; accordingly the elastic strain energy can be written as /18/: 
 

 ( )
( )( )

( )
( )

( ) ( ) ( )
2 2 2 2/ 2 2

2 *2 *2 *2 *2
/ 2 2

F F F1 d
2 1 1 1 1

l a

i e i e
l a

F z F z a a
L a z

ER R R R Rπ

−

− +

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟= + + +⎨ ⎬⎜ ⎟⎜ ⎟− − − −⎪ ⎪⎝ ⎠⎩ ⎭

∫ , (8) 

 
that are integrals of known functions. Thus, 
 

 ( ) ( )
2F0

2
L L a L a a

K
Δ = − → = , (9) 

 

where K kϑ=  is a known constant. Thus, eq. (5) can be rewritten as 
2F F 0

2
c

K
η+ − = , from which: 

 

 ( )
max maxF F asyϑ= ,   

 ( ) 2 2
maxF 2asy k k ckη η= − + + ,   0 1η≤ ≤ ,  

 2k R Eπ
ξ

= ,   
( ) ( ) ( )*2 *2 *2 *2

1 1 1

1 1e i e iR R R R
ξ = + −

− − −
,   ( )2 vdW

Cc RGπ= . (10) 

 
 The parameter ϑ  describing the transition towards the asymptotic region is defined by the integrals in 

eq. (8); however, it can also be estimated by eq. (4). The force becomes rapidly and basically independent 
from the contact length; thus, the motion is metastable: the quantum and continuum approaches become 

here coincident, as shown by the independence of ( )
maxF asy  from a; consequently, it could be confused with a 

classical friction phenomenon, occurring at the nanoscale. However, a friction coefficient cannot be 
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defined, since the (tangential) contact force is observed also under zero normal force and especially such a 
force is independent of the contact length. Note that if K →∞  (nanotube infinitely rigid) and pure sliding 

is considered ( 1η = ) F c= , that represents the surface tension force of the van der Waals interactions 
/15/. Moreover, for full sticking 0η = , the force is similar to the prediction reported in /18/: only a slight 
difference in the parameter ξ  is observed, a consequence of the reversibility of the van der Waals sliding, 

that in classical fracture does not exist.     
 
 

4. COMPARISON BETWEEN TENSIONAL AND ENERGY APPROACHES 
 
 Let us assume an harmonic sliding interaction of periodicity a in the form of: 
 

 
( ) 2sin
2

vdWk a t
t a

πτ γ
π

≈ . (11) 

 
so that, for small relative displacements w tΔ γ= , we obtain the previously introduced relationship of 

( )vdWkτ γ= . From this equation, it follows that ( ) ( )
max 2

vdW
vdW k a

t
τ

π
≈ , and ( ) ( )

max
vdW vdW

CG C aτ≈ , where C must 

be a dimensionless constant. To compare the two approaches (Sections 2,3) let us assume 
; , 0l aα α η→∞ → . Introducing the previous relationships in the stress-based approach (Section 2) we 

obtain the same prediction for ( )
maxF asy  as given by the energy based approach (Section 3), as well as the 

expression of the constant C. For example, for * 1eR ≈  and * 0iR ≈  (e.g., pull-out of the external shell of a 

large multi-walled nanotube) 1C ≈ . Thus, even if the two approaches are different and some simplifying 

assumptions have been made, their results are consistent. On the other hand, in general, in the stress-based 
approach the values of a and t remain unspecified. Thus, we prefer to focus on the energy-based approach, in 

which we are more confident, assuming ( )vdW
CG  identical to the cohesive energy for graphite (thus twice the 

surface energy), thus: ( ) 10.22 NmvdW
CG −≈  /21/ and using η  as a numerically (or experimentally) computed 

parameter. We prefer this rather than using 0η =  or 1η =  and ( )vdW
CG  as a best fit parameter, since the 

parameter η  in our approach has well defined limits and physical meaning. 

 Future experiments on nanotubes may reveal the existence of superlubricity state /22/ in the sliding 
between neighboring shells. Such a phenomenon is expected when two atomically flat incommensurate 
surfaces slide relative to each other under zero sliding force. However, our analysis suggests that such a state 
should be more likely for an infinite sized structure than a finite one, as a consequence of the dissipations of 
the edges. In addition, rolling rather than sliding, implying a negligible surface generation, would be closer to 
such a non-dissipative state, as experimentally observed /13, 14/.  
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5. EXPERIMENTAL COMPARISON 
 
 We refer to the atomistic numerical simulations /17/ on sliding in multi-walled nanotubes with both 
capped and fractured ends, Figure 2. From such simulations we obtain estimations for the stick-slip 

coefficient: their results are well fitted (fixing ( ) 10.22 NmvdW
CG −≈ ) with 0.1η ≈  for fractured ends, and 

with 0.8η ≈  for capped ends. Since the values are in the range (0,1), our analysis seems to be consistent. 

Note that the authors did not simulate nanotubes of the same size as the (larger) experimentally investigated 
nanotubes. The differences observed in the atomistic simulations on pull-out forces for capped and fractured 
nanotubes suggested the presence of end effects (in contrast to a classical frictional phenomenon), as 
emphasized by our analysis. In addition, numerical simulations performed considering an external pressure, 
revealed basically a negligible influence on the pull-out force for nanotubes with capped ends, whereas for 
fractured ends only a small linear increase of the pull-out force was observed /17/. 

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 2: Pull-out of nanotube external shell with fractured and capped ends as investigated by atomistic 
simulations in /16/. 

 
 We now consider the experimental investigations reported in /15/, in which the sliding, after (sword-in-
sheath) fracture of the outer shell /23/, was investigated by gripping multi-walled carbon nanotubes by 
opposing atomic force microscope (cantilever) tips. We consider also the experimental results presented in 
/16/, for “not fractured” (and capped) nested nanotubes. The effective contact length l is equal to the 
geometric contact length 0l  plus the gap length g corresponding to a finite van der Waals interaction, i.e., 

0l l g= + . The pull-out of the external shell of a carbon nanotube of diameter equal to 36nm has been 
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measured by varying the contact length 0l  in the range 0 7.5 μm− . The observed maximum force 

maxF 219 nN≈  was assumed in /17/ to be related to fracture ends. Considering 0.1η ≈ , 1 TPaE ≈ , 
( ) 10.22 NmvdW
CG −≈ , 18 nmeR ≈ , 0iR ≈ , 2eR R s≈ − , where 0.34 nms ≈ is the spacing between 

neighbouring shells, and 0l l≈  we find ( )
maxF 232 nNasy ≈ . The comparison between theory and experiments is 

shown in Figure 3 (for experimental details see /15/), from which we deduce 5 13.5 10 mα −≈ ⋅  and thus 
( ) 6 14μmasyl α≈ ≈  as the extension of the non-asymptotic region. Similar results were obtained by the 

same authors for a nanotube of diameter equal to 30nm by varying the contact length in the range 

0 2.2 μm− . Considering the previous parameters but 15 nmeR ≈ , we find ( )
maxF 193 nNasy ≈ . This asymptotic 

value was not experimentally measured as a consequence of the short investigated contact length. The 
comparison with the experimental results is reported in Figure 4, from which we estimate 5 17 10 mα −≈ ⋅ , 

thus ( ) 9μmasyl ≈ . From Figures 3 and 4 the “residual” van der Waals force for negligible geometric contact 

length 0l  are estimated for the investigated nanotubes to be ∼20 and ∼70nN, vanishing at separation 

distances g of ∼0.5 and ∼1 microns, respectively. Assuming such “van der Waals” contact lengths of 
physically separated but still aligned nanotube segments as negligible, implies that the comparisons with 
experiment become significant for values of l not too small (Figures 3 and 4). 
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Fig. 3: Nano-friction force maxF  (causing the sliding) vs. contact length l, as theoretically estimated (line) 

and experimentally measured (dots), for the 36nm diameter nanotube with fractured ends.  
 

 An experimental analysis is reported in /16/ for a capped end nanotube ∼5nm in diameter, for contact 
lengths in the range 0–700 nm. The constant measured force was ∼4.1nN. Considering the same previous 
parameters but 0.8η ≈  and 2.5 nmeR ≈  we find ( )

maxF 4 nNasy ≈ . Note that if fractured ends are assumed 
( 0.1η ≈ ) a value larger by approximately one order of magnitude is found, i.e., ( )

maxF 30 nNasy ≈ . The 
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comparison is reported in Figure 5. The force remains basically constant until a vanishing contact length is 
reached and then it goes to zero in ∼200nm. Thus, we assume ( ) 200nmasyl ≈  and 7 12.5 10 mα −≈ ⋅ . Note 
the strong difference in the forces with respect to the fractured nanotubes. For the fractured nanotubes the 
sliding is reduced (lower value of η ), and this could be due not only to the difference in the ends (fractured 
and capped) as postulated in /16/ but more likely to the damage of the external shell after fracture, e.g., as due 
to “plastic” ribbon formations /24/. The nanotubes in fact were broken only on their external shells and thus 
there is not any reason to expect fractured ends for the internal shells. This implies that the larger sticking 
described by the lower value of η  could be more likely due to the anchorage of the damaged external shell 
“zones” on the inner shell.  
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Fig. 4: Nano-friction force maxF  (causing the sliding) vs. contact length l, as theoretically estimated (line) 

and experimentally measured (dots), for the 30nm diameter nanotube with fractured ends.  
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Fig. 5: Nano-friction force maxF  (causing the sliding) vs. contact length l, as theoretically estimated (line) 

and experimentally measured (dots), for the 5nm diameter nanotube with capped ends. 
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 To have an idea of the transmission for the nano-friction force and of the shear stress along the contact, 
let us focus as an example on the first discussed nanotube ( 18 nmeR ≈ ), considering the initial case of 

0 7.5 μml l≈ =  and assuming a force of F 232 Nn≈ . The theoretical predictions of the corresponding nano-

friction force transmission and of the contact shear stress are reported in Figures 6 and 7. Note that the 
contact stress presents an end concentration ∼2.6 times larger than its mean value, which is close to 0.28 
MPa: thus the assumption of a constant shear stress along the contact is unjustified. By this assumption we 
would derive a van der Waals shear strength of 0.28 MPa, whereas probably it could be ∼3 times larger. 
Increasing the contact length, the force required to sliding the shell will remain constant, and while the mean 

shear stress will tend to zero its maximum value will approach the non zero value of ( )
max

F 14KPa
2

asy

R
λατ
π

= ≈ . 
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Fig. 6: Nano-friction force transmission ( )F z  vs. position 2z l+ , as theoretically estimated for the 36nm 

diameter nanotube with contact length 7.5μml = . 
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Fig. 7: Contact shear stress ( )zτ  vs. position 2z l+ , as theoretically estimated for the 36nm diameter 

nanotube with contact length 7.5μml = . 

 
 

6. APPLICATIONS 

Nano-actuators  

 If nano-actuators are considered, eq. (10) would give a simple estimation of the resistance force to 
activate the system and slide a group of shells. This shows that our analysis could help in the future design of 
innovative low friction nanoscale linear actuators. Note that such an analysis can be extended considering a 
torque instead of the axial force, as may be useful for the design of rotational nano-actuators under rolling. 
The stress-analysis would remain basically the same, substituting the axial force with the torque, the Young’s 
modulus with the shear elastic modulus, the displacement with the rotation and the cross-section area with 
the moment of inertia. In general, also different elastic moduli for the shells can be considered, substituting 
for linear actuators the cross section area with its product with the corresponding Young’s modulus, or for 
rotational actuators the moment of inertia with its product with the corresponding shear modulus. For details, 
see /18/ and related references. For rotational actuators, in the energy balance no new surface area would be 
globally created, showing that a condition closer to the superlubricating state could arise in rotational rather 
than in linear nano-actuators. However, linear nano-actuators with a constant contact length during motion 
could also be designed. For such cases, eq. (5) would become ( ) 0W TΔ + =  with TΔ  proportional to the 
atomic heat dissipation. 
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Nanotube-based composites 

 Let us assume multi-walled nanotubes with 0iR ≈  and define a critical pull-out stress for the external 

shell as maxF
2CPO Rs

σ
π

= , with maxF  given by eq. (10); for sufficiently long nanotubes we can assume 

asymptotic behaviour, i.e., 1ϑ ≈ . For example, for the first investigated nanotube, it corresponds to 
∼6GPa. Then, we indicate the intrinsic strength of nanotubes as CNσ  (around ∼100GPa for ideal 

nanotubes; such a value must be divided by a factor of ~3.4 according to /20/, if large holes (defects) are 

present). We define *
, ,

2
CPO CN CPO CN

s
R

σ σ= , that is the mean value of the stress acting on the global cross 

section-area 2Rπ , even if in reality only the external wall is under loading. Then, let us consider a matrix 

having strength CMσ . Assume that in its cross-section are embedded an area fraction Nf  of nanotubes 
that are going to break, a fraction area POf  of nanotubes that are going to be pulled-out from their 
external shells, and a fraction area If  of nanotubes that are going to break at the interface with the matrix 

(be pulled-out from the matrix). According to this last fracture mechanism, we can make a prediction of 
the corresponding required force, simply considering eq. (10) in which eR →∞ , and thus 1ξ → , 0η =  

(no sliding) and substituting ( )vdW
CG  with the fracture energy of the interface CIG . Thus, for pulling-out a 

sufficiently long nanotube ( 1ϑ ≈ ) from a matrix, the force is predicted to be: 

 

 ( )asy
maxF 2 CIR ERGπ=  (12) 

 

 As previously stated, we can define maxF
2CI Rs

σ
π

=  and * 2
CI CI

s
R

σ σ= . As a consequence, the prediction 

for the strength of the composite is:  
 
 ( )* * * 1C N CN PO CPO I CI N PO I CMf f f f f fσ σ σ σ σ≈ + + + − − −  (13) 

 
 The fact that the force is basically length-independent means that pull-out of the nanotube cannot be 
avoided simply by increasing its length. Thus, a minimum radius is required to have a pull-out strength of 
the order of the intrinsic nanotube strength (from CI CNσ σ= ): 
 

 
2 2

min
CN

I
CI

s
R

EG
σ

=  (14a) 

 
 A similar consideration applies for the pull-out from the external shell (the minimum radius min POR  
can be deduced analogously from CPO CNσ σ= ). To give an estimation for min IR , let us assume 

100GPaCNσ ≈ , 1TPaE ≈ , 1N mCIG ≈  ( 0.34 nms ≈ ), from which min 1nmIR ≈ . Thus, for practical 
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purpose, interface resistance can perhaps be comparable with the intrinsic strength of nanotubes.  
 In the same way, a prediction for the toughness of the composite can be obtained. Consider the fracture 
energy CNG  of the nanotube, estimated from the energy of the chemical bonds of the order of 10N/m, see 

/18/, and let us define * 2
CN CN

sG G
R

= . The energy needed to pull-out a nanotube, from the external shell 

or from the matrix, is ( )
max max

0
F d F

l asyl l≈∫ ; the sliding length l can be considered around one half the contact 

length. Accordingly, we define , ,,
0

d
l

CPO CI CPO CICPO CIG l lσ σ= ≈∫  and *
, ,

2
CPO CI CPO CI

sG G
R

= . For 

example, for the first carbon nanotube previously investigated, assuming 1ϑ ≈  and 7.5 / 2μml ≈ , 
123KNmCPOG −≈ , that is three orders of magnitude larger than CNG : thus, the pull-out of the nanotube 

represents a tremendously efficient mechanism to improve the toughness of the matrix (or its fracture 

energy CMG ). The fracture energy CG  of the composite can consequently be obtained as: 

 
 ( ) ( )* * * 1C N CN PO N CPO I CI N PO I CMG f G f f G f G f f f G= + + + + − − −  (15)  

 
 Note the presence of the term Nf  that multiplies *

CPOG . The reason is that the fractured nanotubes will 

also be pulled-out after fracture, from their external shells. 
 In addition, the Young’s modulus of the composite CE  can be estimated from ( )* 1C ME fE f E= + − , 

where * 2sE E
R

=  (E is the Young’s modulus of the nanotube), ME  is the Young’s modulus of the matrix 

and N PO If f f f= + + . 

 

Nanotube bundles 

 For bundles based on nanotubes the same concepts can be applied. We can consider this case as a limit 
case of a nanotube-based composite with negligible matrix and only van der Waals interactions. In this case, 

( )vdW
CI CG G≈  (in eq. (12)) and 0CMσ ≈ , 0CMG ≈  (in eqs. (13) and (15)) and 1N PO If f f f= + + ≠  is 

the fraction area corresponding to the bundle packaging, e.g., that we evaluate as ∼0.9 if hexagonal. Note 
that assuming valid eq. (12) for bundles corresponds to assume moderate value for If  (rigid “matrix”). 

 If we consider a bundle (Fig. 8a) and we assume that 0POf = , the limit case (i) of Nf f=  would 
correspond to complete nanotube fracture (Fig. 8b), (ii) of If f=  to complete nanotube sliding (Fig. 8c), 
whereas in general (iii) the reality will be intermediate ( I POf f f+ = , Fig. 8d). We note that such cases 

are the usually considered mechanisms for failure when evaluating the strength of a polymer crystal 
consisting of highly oriented polymer chains /25/. 
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                                       (a)                          (b)                           (c)                          (d) 
 
Fig. 8: (a).Nanotube-bundle  (b).Nanotube fracture  (c).Nanotube/interface pull-out  (d). Intermediate case  
 

 From eq. (14), assuming ( )vdW
CI CG G≈  and the other values reported in the paper we estimate 

minR ∼5nm, showing that defect-free bundles ( minR R≥ , ( )asyl l≥ ) could be very strong, even if including 

end effects—that is, finite sized nanotubes.  
 
 

7. CONCLUDING REMARKS 
 
 We have shown that, in contrast to the common assumption, the contact force and shear stress are clearly 
not uniform along the contact length, as a consequence of boundary edge effects. Such effects dominate the 
sliding (stick-slip behaviour) at nanoscale, in a way more similar to a fracture phenomenon than to friction. 
We derive the relationship between contact-force and contact-length showing that it is asymptotic; this 
explains the difference in the experimental observations of nanotube sliding reported in literature. The 
analysis shows that different stick-slip motions can result in strongly different sliding forces (by one order of 
magnitude). Thus, the higher forces observed for sliding of the fractured outer shell nanotubes would 
correspond to larger sticking, probably due to the anchorage of the damaged external shell fracture “edge” 
rather than to the presence of an inner fracture end, as described in /16/. Finally, we have applied this analysis 
for predicting the strength and toughness of nanotube-based composites and nanotube-bundles. The pull-out 
phenomenon seems to provide a tremendously efficient mechanism for improving the toughness of the 
matrix, suggesting that nanotubes represent very promising nano-reinforcements. However, note that the 
simplified hypotheses assumed in the present analysis imply associated limitations in our findings.  
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