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In this letter a Velcro® nonlinear mechanics is presented. In particular, a calculation of the “elastic
strength” of hooks with friction is derived. The author quantifies, as the intuition and Velcro®
material suggest, that hooks (and loops) allow reversible strong attachment, finding elastic plastic or
hyperelastic nonlinear behaviors, as a function of the competition between friction and finite
displacements. Thus, the author presents here a Velcro® nonlinear mechanics to design and optimize
hooked systems. © 2007 American Institute of Physics. [DOI: 10.1063/1.2715478]

Burdock plants [Fig. 1(a)] inspired in 1941 the Swiss
engineer de Mestral during a daily walk in the Alps; ten
years later Velcro® was patented.] Velcro® mechanics has
recently been observed in wood” and is expected to play a
fundamental role in many hooked systems, e.g., in the grip of
evarcha arcuata spiders” [Fig. 1(b)]. The aim of this letter is
thus the development of a basic, even if by force nonlinear,
Velcro® mechanics to design and optimize hooked systems.

Consider an elastic movable hook with friction, see Fig.
2(a). The hook has a radius of curvature R, moment of inertia
I and Young’s modulus E. The hook center is chosen as the
origin of the reference system x=R cos 9, y=R sin 9, and
thus the generic position along the hook is described by the
angle . The contact between hook and substrate takes place
at a point designed by 9, where a vertical (along y) force F
is imposed. Accordingly, the bending moment along the hook
is M(9)=-FR(cos O—cos I¢) for 3< I, and M(9)=0 for
U= . As a first approximation the elastic transversal dis-
placement u must satisfy the classical elastic line equation
d*ulds®*~-M/(EI)*, where s=R® denotes the curvilinear
coordinate. For our circular geometry d’u/d9*=
—M(9)R?/(EI). Imposing the boundary conditions u(%=0)
=du/d¥(9=0)=0 we find the hook elastic rotation and dis-
placement for J <3 in the following forms:

(ﬁ)~F—R3( 9, ” 1‘}+1) (1a)

u 7\ 008 D = cos , a
du(9) FR? ,

a(d) = TR, (= cos I +sin B). (1b)

The hook portion described by U= U, undergoes only a
rigid rotation-translation with respect to the movable clamp.

The contact angle ¥, for a rigid hook can be derived
imposing d-=/2* ¢, where ¢ is the friction angle be-
tween hook and substrate and the different signs correspond
to the two different relative moving directions. However, we
must impose the nonlinear condition taking into account the
hook compliance in order to derive the hook elastic strength.
Accordingly

Ve=72 F ¢+ a(V¢). (2)

The hook elastic strength can be estimated imposing the
critical condition of detachment .= in Eq. (2) [Fig. 2(b)],
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corresponding to a(d-=m)=m/2+¢; thus, from Eq. (1b),
we derive the maximum attachment force as

(7/2 + @)EI
Fp=—"75—.
TR

3)

If a number of (active) hooks per unit area p,=m/(m(2R)?) is
present, corresponding to an equivalent number m of hooks
per clamp, the corresponding nominal strength will be

m(m/2 + @)EI B m(m/2+ @)E
4R 16m(RIN*

where r is the radius of an equivalent circular cross section,
defined imposing I=mr*/4. For example, considering
m=10, ¢=0, E=10 GPa, and R/r=10 corresponds to oy,
~(.3 MPa, incidentally (the main contribute to spider adhe-
sion is due to van der Walls forces) comparable to the adhe-
sive strength of evarcha arcuata spiders.3 To have an idea
about such a value, note that we are under an atmospheric
pressure of ~0.1 MPa, that thus would represent the strength
of a (ideal) suction cup.

To attach the hook, a hauling angle 0> /2 is required,
since ¥=1r/2 represents a bifurcation point. The maximum
force for hooking is derived imposing the critical condi-
tion do=m/2% in Eq. (2) [Fig. 2(c)], corresponding to
a(Yec=m/2)=—¢; thus, from Eq. (1b), we derive

(4)

oy = ppFy =

== (5)

FIG. 1. Hooks of a Burdock plant (a) (adapted from the web) and those
observed in the Evarcha Arcuata spiders (b) (adapted from Ref. 3).

© 2007 American Institute of Physics

Downloaded 23 Mar 2007 to 165.124.165.30. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp


http://dx.doi.org/10.1063/1.2715478
http://dx.doi.org/10.1063/1.2715478

121918-2 Nicola Maria Pugno

i

(b (c)

FIG. 2. Elastic hook and loop in contact with friction. Conditions of inter-
locking (a), ultimate “elastic strength” (b), and hauling (c).

peihoi—, ©
Ifal 7 20
is expected to be very large (u(¢— 0) — ), and thus strong
and “reversible” adhesion is expected in hooked materials, as
observed in Velcro®.

The force carried by one hook scales as F;=F,«r*/R?,
thus the bending, tensile, and nominal stresses in the hook
must scale as oy, r/R, o, (r/R)?, and o,%(r/R), respec-
tively. Accordingly, size effects’ can be predicted. For ex-
ample, splitting up the contact into n subcontacts, ie., R
— R/\n, would result in a force F,=nfF, with B=0 if r
xR but B=2 if r=const. Thus, for >0, subcontacts are
found to be safer, as observed in Natulre,6 even if the hook
will be higher stressed and its mechanical strength will im-
pose a lower bound to the radius of the smallest hook.

The nonlinear vertical displacement-force curve for the
friction elastic hook can also be computed: the contact angle
Ve=0(F) can be obtained introducing Eq. (1b) into Eq. (2)
and solving with respect to J¢; the displacement u=u(F) is
derived introducing such a relationship into Eq. (1a); thus,
the vertical displacement &(F)=u(F)sin(9.(F)) can be
evaluated. Let us consider the asymptotic solution around the
unloaded configuration described, according to Eq. (2), by
Ve=m/2—-¢+e&(F) with £ —0. Following the described pro-
cedure we find:

3 2
o) = o) +hige(F)], o) = —flg), (7a)

. 1( 2
g(¢) =sin ¢ cos @ J\7-e —1]+cos @, (7b)

Appl. Phys. Lett. 90, 121918 (2007)

2
h(p) = cos? <p<1—%(g—go) >+sin<pcos cp(%—cp), (7¢)
f(¢) =cos ¢ —sin @(%T - <P>~ (7d)

Since f(@)>0 (f(¢)>0 for 0<o<m/2; f(¢=0)=1 and
f(e=m/2)=0) the sign of h(¢) denotes elastic plastic (h(¢p)
>0) or hyperelastic (h(¢p)<0) constitutive laws. Accord-
ingly, for <@~ m/39, we find a hyperelastic behavior,
whereas for ¢> ¢, elastic plasticity is observed. For ex-
ample, for ¢=0 we have hyperelasticity described by &(F)
~FR3/(ED[1+(1-*/8)FR?/(EI)]. Evidently, hyperelastic-
ity is activated by the nonlinear behavior imposed by Eq. (2)
also in the absence of friction (for a linear frictionless hook
Oc=m/2), whereas friction tends to increase the nonlinearity
in the opposite way, making the behavior elastic plastic for
©> @c; note that for ¢=¢, the nonlinear hook behaves as
linear.

Finally, the work of adhesion 2y, per unit area, an index
of the adhesive toughness can be computed according to

Fy 1
Z'Yh:th 5(F)dF=<E+K)0'h5(Fh), (8)
0

where k=0 for linear systems. For example, considering «
=0, 0,=0.3 MPa, and &(F),)=R=1 um yields an estimation
of v,~0.3 N/m.

Summarizing, we have presented a basic (according to
the simplest elastic line equation considered), but by force
nonlinear, Velcro® mechanics, that could help in the design
and optimization of hooked adhesive systems, with respect to
their strength, toughness, and constitutive law.
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