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- Closed form solution for non tubular bonded joints
with tapered adherends under torsion
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Department of Structural Engineering
Politecnico di Torino
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Abstract

The object of the present paper is the study of an adhesive bonded non tubular joint with
tapered adherends subjected to torsion. The joint considered consists of two rectangular
section beams bonded together along a side surface.

The work emphasized how the stress field developed in the adhesive at the bond area between
the two beams is heavily dependent on joint geometry: the maximum stresses for a joint

centerline if the adherends are tapered.

“without tapered adherends are reached at the ends of the adhesive Whilé they appear along its

The analytical equations which govern torsional moment section by section in the joint,
stresses and strains in the adhesive and the joint's elastic sirain (rotation between the two
beams) are obtained as power series with coefficients given in closed recursive form.

1 Introduction

As the literature indicates, studies on adhesive
bonded joints have hitherto concentrated on
the effects of tension or compression, flexure
and shear. In certain situations, however, such
joints are also subject to torsion. Research in
this area is restricted to tubular structures,
and only recently non-tubular bonded joints
have been studied. [15-18].

Since the two pioneer papers of Goland and
Reissner [7] and Lubkin and Reissner [12]
tubular joints subject to torsion have been
studied from many different points of view.
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Theoretical approaches have been validated
experimentally and numerically;  Fracture
Mechanics has been used to solve the problem
of the joint’s strength in the case of brittle
collapse with static or fatigue loading; the
non-linear - and  viscoelastic  adhesive’s
behaviour has been considered and recently
also the dynamic analysis have been carried
out. Specifically in the works of Hipol [9]
and Chen and Cheng [5] it is emphasized the
positive influence of tapering at the
adherends’ end on the stress peaks in the
adhesive layer respectively from a numerical
and a theoretical point of view: if the
adherends are partially-tapered the stress
peaks become lower.

The lack of work on non-tubular joints
indicated by this bibliography motivated the
investigation presented in the work developed
by Pugno [16] and Pugno, Surace [17].
Pugno and Surace [17] have studied a non
tubular joint subjected to torsion from a
theoretical point of view validated numerically
by a three dimensional finite element analysis.
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Fig. 1 Rectangular tapered adherends in a non-tubular bonded joint under torsion

In Pugno’s paper [16] the non tubular joint is
optimized for uniform torsional strength:
starting from a non tapered joint the
optimization was achieved by chamfering the
edges, which are in any case not involved in
the stress flow induced by the tensile loading
for which the joint should be designed. The
_ Tesulting optimized joint is thus both lighter
and stronger. The same results for tubular
joints is presented in the work of Pugno and
Surace [18], where the joint is optimized for
uniform torsional strength.

The present paper wants to extend to the
study of a non tubular joint subjected to
torsion in the case of tapered adherends.

2 Mathematical model

It is assumed that the materials making up the
joint (Figure 1) are governed by a linear
elastic law (in particular the materials are
assumed isotropic). While this is intuitively
obvious for the beams (which are typically
metal), this is not the case for the adhesive,
which is more likely to show a typically non-
linear elastic behaviour.

Under torsion, however, the stress state in the
adhesive relative to a non-tubular bonded
joint is basically normal. As it is well known
that adhesive can withstand tangential stresses
which are an order of magnitude higher than
the ultimate normal stresses, it follows that
the normal stresses occurring in the adhesive
during service must be limited. It is precisely
because of these modest stresses that we can
assume that the adhesive is also governed by a
linear elastic law and that it is verify also the

geometrical linearity. The adherends can be
studied with the Technical Theory of Beams.
Assuming linear elastic laws and using
equilibriuin and compatibility equations to
solve the torsional problem [16,17], the
function which governs transmission of the
torsional moment along the overlap, or in
other words, how the torsional moment
progresses section by section along the top
beam, can be found by solving the following
differential equation:

M) K1, )+ 1, (x)
a G I,(x), (x)

N K'M, {M(x =—c)=M,
GI, (x) M(x=c)=0

M(x):
. (D

where x is the longitudinal coordinate of the
joint (Figure 1).
The torsional moment on the top beam found
section by section in the thin adhesive layer is
designated as M, while K is the adhesive
specific (per unit length) stiffness, & is the
shear elastic modulus of the two beams and 7,
is their factor of torsional rigidity.
The adhesive specific stiffness
expressed as:
3
__l-v)e, B

L
K m)ia) r B

can be

. @

where v_,E, are the Poisson’s ratio and
Young’s modulus respectively of the
adhesive, 4 is its thickness, & is the base of the
beam’s cross section (Figure 1), while
I.=b*/12, E, indicate respectively a specific
morment of inertia and the adhesive’s fictitious
Young modulus.

20
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Fig. 2 Predominant elastic strain Ey in a joint's cross section due to the relative rotation between the two beams

In the case of rectangular tapered section here
considered, the factor of torsional ngidity can
be expressed by the following equation:

1, (x)=B(%J[%[[1¢-§m ,_
p(om)-3

where a is the height of the beam’s cross
section (Figure 1).

The equations above indicate that the solution
to the problem (eq. 1) is heavily dependent on
the joint geometry (eq. 3).

At this point, the predominant stress field in
the adhesive (equivalent to the applied
torsional moment) can be determmned by
imposing rotational equilibnum of an
infinitesimal beam element belonging to the
bond area:

&

e
dx

c#,(x,z):— . , (4)

X

where z is the transverse coordinate (Figure
1).  Equation (3) demonsirates that -the
increase in torsional moment occurring at the
ends of the infinitesimal element considered is
balanced by the normal stresses that the
adhesive exerts on the beam.

21

The corresponding predominant stress field
e, (Figure 2) can be written taking into
account the constitutive law as:
cy(x,z)_ dM(x) z

E. & EI°

a

®)

Ey(x,z)=

The compatibility equation permits to
determine the joint’s elastic strain, as relative

rotation between the two beams’ cross
sections:
£6()=6,(0)-,(c) =L PE )
: ! K dx

Following a three dimensional finite element
analysis, for mnon-tubular joints without
tapered adherends, the mathematical approach
was validated by comparing the predominant
stress field given by equation (4} with that
determined numerically, indicating an error on
the stress peak of less than 4% [17].

The problem is bring back to determine
section by section the torsional moment M
solving the second order differential equation
(1) in the case of tapered adherends (eq. (3)).
The predominant stress and strain field in the
adhesive and the joint’s elastic strain can be
obtained from equations (4), (5) and (6).
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Fig. 3 Qualitative curve for f{x) [torsional moments]

The torsional moment AM(x) in the joint
between the two beams can be written as:

M =M, (x)=M,f(x)

M, (x)=M,(1~ f(x))’ ®
since the sum of the moments absorbed by the
two elements must be equivalent to the
applied torsional moment M, for each section.
Function f (x) has as its domain the real range
[-c,+c] and, in order for the boundary
conditions for the torsional moments (eq. (1))
to be satisfied, must be unity at the extreme
left and zero at the extreme right of the
domain. Moreover, as the two beams must be
symmetrical as regards torsional moment and
stress, the following conditions must also
obtain:

df(x)| _ ar(x)]
a | dr |,

1~ f(x)=f(x)

Yx

(8)

o]
2

Introducing the adimensional coordinate

x" =x/c, the equation (1) can be rewritten

LEn GLEE N

6, ()

I, (x)

G
KM

Considering thin adherends (5/a))1) and

putting the equations (3) and (7) in (9), we

obtain the following differential equation:

H(l -3x? 4+3x™ —x¢ )—d;_;“gc) +
~2+6x7))=—(1-3x +3x7 - x7).(10)
_ Ga’b
T 24K°¢?

®

_ 1

The solution of this differential equation must
satisfy (8) and can be found in power series
form:

f(x-‘) _ %_i_ilzn_lx*zn—: ' (11)
=1
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df(x)

Fig. 4 Qualitative curve for — [relative rotations]

‘Throigh the principle of identity of The stress o, acting on the first beam at the
polynomials, introducing this in (10) gives the bonded surface is found from (4):
following solution for the unknowns

Ly =5, +d,, 4k, (€70, di=1): o, (x, z)= _&nr df(x)z _
1, dx (14)
)
1 10H +1 -2
= = M, x
1728 |%7 0w =T 2y @n-1),,., (“J
1’ 18H +1’ € = ¢
dy = A =i
- S Focusi i the pl b/2
, ocusing attention on the plane z=
c, = 210}{1 2_5;2]{ +1 (critical), the mean and maximum value of the
|, _450H® +TRH +1 stresses are:
- 630H> (12) e
3—-%—3(2}7—1)(2}1—2) o =-—1—J¢7 (x)dxzﬂi=éﬁ_4_f_,
_H I 2pd Y I 4¢c b
(Crd)z:m = (Cnd)zn-n + < ¥ . (15)
_ (2n+1)2n) M b
: o, o fe=0)=- 2t
—-3(2n-3)}2n—-4) . 2
= @n+1)2n) ©:dos +
Consequently, a stress concentration factor
.,..(2""_.5)(2"‘_92(3@) . Yh24 can be defined as:
(2n+1)2n) 2
Once the coefficients /; are known as a 1= g, 2 = 1+2§c1"" (16)
function of /; , the latter can be determined B o, oo i d '
using the boundary condition f (x' = 1): 0: L™ 2t
The rotation expressions of the two beams are
1 < reduced to integrals of known fiunctions:
E+Zc2n—l
[ =— (13)

- o]
Zdzm
=1

23
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Fig. 5 Qualitative surface for — J;x

o) =£J‘ L6 g

G 1,0

6,()= %fuﬁ)) dt +6°

()

(17)

The compatibility equation (6) permits to
determine the joint’s elastic strain, as relative
rotation. Fixing the reference system with
g =0, the constant & is determined by
inserting equations (17) into equation (6).

The results of the analysis described are
presented in Figure 3,4,5. Figure 3 shows the
curve for the function f (x), governing
torsional moment transmission in the joint,
Figure 4 its derivative, which governs relative
rotations and stresses in a constant z plane,
and Figure 5 the stress field surface on the
bond plane.

From equation (16) it is possible to obtain the
value of the stress concentration factor. This
value can be calculated in a approximated
form as: -

N
1420 ¢, (H)
MH) =z —= )

2, (H)

(18)

24

df(x)

Z [stresses and strains]

where N is the finite number of terms
considered. If N increases the series
expansions converge and A becomes N-
independent.

Table 1 shows as A (N-independent) changes
with .

4 Approximated solution

The H parameter for real joints assumes a
value much smaller than 1 (x10™). When H
tends to zero the power series presented
converges less rapidly and it is possible to
have some numerical problems. In this case an
approximated solution can be used. If we set
H=0 in (10), the order of this differential
equation becomes zero and the function £ (x)
can be directly obtained. By applying equation
(3), f (x) assumes the physical meaning of
relative torsional rigidity and coefficient of
distribution:

1,(x)

NAGIAC) (19)

J(x)

As expected, this indicates that the stress field
is extremely sensitive to external geometry.
The simplified solution (19) satisfies the
boundary conditions of the problem and the

symmetrical conditions (8).
The correspondent torsional moment
becomes:
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Fig. 6 Curves for f(x) and its derivative (H—0)

M, (x)=Mr _Mz(x)=

2 3
{242
(CJ+C e/ ... (20)
= 2 Mr
2+5(5J
C B
The stress and strain predominant field
become as follows:

v ([1=v,)E, _
o, (.2)= Qv Yi-2v.)" (s.2)=
, (21)

BE
s | le) o
= cb; ¢ |z, A=—==3
l+3(£) T s
[

and the relative rotation between the two
beams is:

2

46(x)=6,(x)-6,(x)=

=1ss(1+v,,)(1—21;‘,)&1&4',[(Z)z_l - (22)

1-v.)E,5’ [1+ 3[5]’

The torsional moment absorbed by the two
beams (20) is proportional to the
correspondent torsional stiffness (which in
turn is proportional to the cube of the height).

In any given section of the overlap, the top
beam will thus tend to absorb almost all of the
transmitted  torsional moment, whose
maximum variation will consequently take
place at the centerline of the joint. The
variation in torsional moment is balanced by
the stresses (21) that the adhesive transmits to
the beam. By contrast in the situation without
tapered adherends joints (Pugno and Surace,
2000), these stresses will thus also be highest
at the centerline. The stress concentration
factor expressed is equal to 3. It is important
to observe that it is an high upper bound for
every practical value of H (Table 1). This
stress concentration factor value is the same
as we find in a linear elastic infinite plate with
a circular hole subject to tension.

Figure 6 shows the function (19) and its
derivative {torsional moment and stress/strain
field in a z=const. plane or relative rotation).
Clearly this approximated solution cannot be
at the same time statically (equilibrium) and
kinematically (compatibility) determinated:
indeed the difference between equations (17),
inserting eq. (19), is a constant value in
disagreement with equation (22). In order to
satisfy both equilibium and compatibility
equations the exact solution has to be
considered.

H= m -6 -5 -4 3 -2

-1 0 1 2 3

10" {2 3 2.999(2.99712.977

2.824

2279(1.56711.16311.033|1.004]1

Table 1 Stress concentration factor varying H =107 (real joint: m around -4)

25
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5 Conclusions

A closed form solution for the problem of a
non-tubular bonded joint with tapered
adherends in torsion has been presented. The
torsional moment transmission along the
overlap, the predominant stress and strain
fields in the adhesive and the joint’s
compliance have been obtained in series
expansions. An approximated solution has
been also presented.

It has been shown that, by contrast with the
situation for conventional non-tubular joints,
the stresses for tapered adherends will be
surprisingly highest not at the ends of the
adhesive layer but at its centerline. Finally, the
correspondent stress concentration factor has

“been evaluated via the exact “soludon. Ti -

appears substantially constant and close to
three.
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