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In this letter the author calculate, by applying fracture mechanics, Young’s modulus reduction for a
nanotube, imposed by the presence of nanodefects, with specified size, shape, and number. The
results are compared with atomistic and continuum simulations. Vacancy fraction, eccentricity,
orientation, and interaction of defects are found to be the key parameters influencing the stiffness
degradation. © 2007 American Institute of Physics. �DOI: 10.1063/1.2425048�

Carbon nanotubes �CNTs� have extremely high axial
Young’s modulus, about 1 TPa.1–6 This outstanding elastic
stiffness holds for nearly perfect CNTs. However, if CNTs
are defective, one can expect that even a small number of
defects in their atomic network will result in some degrada-
tion of their characteristics, as recently emphasized analyti-
cally for mechanical strength.7–10 Even if Young’s modulus
reduction is expected to be less critical than the related and
tremendous strength reduction �just a single vacancy reduces
the strength of an isolated small nanotube by a factor of
about 20% �see Refs. 7 and 8��, such an elastic degradation
cannot be neglected and has to be accurately predicted for
high-nanotechnology applications. For example, whereas the
presence of a defect could become critical for the ultimate
strength of the carbon-nanotube-based space elevator
megacable10 �see also the related Ref. 11�, it could destabi-
lize the cable orbit.12 Such reasons have motivated the
present study.

Consider a single nanotube having thickness t, radius r,
and length l, under a tension � �or force F=2�rt�� and
containing a nanocrack of length 2a orthogonal to the ap-
plied load. The variation of the total potential energy induced
by the presence of the crack is �W=�L−F��, where L is
the elastic energy stored in the nanotube and �=F /S is the
elastic displacement; S is thus the nanotube stiffness, i.e., S
=2�rtE / l, with E as Young’s modulus. Applying Clapey-
ron’s theorem,13 �L= 1

2F�� and consequently �W
= 1

2F2 /S2�S. The same result can be deduced for imposed
displacement rather than imposed force. Furthermore, ac-
cording to fracture mechanics, dW=−GdA, where A is the
crack surface area, i.e., 2at, and G is the energy release rate
�the crack will propagate when G reaches a critical value GC,
the so-called material fracture energy, per unit area created�.
The energy release rate is related to the stress-intensity factor
K at the tip of the crack, reported for hundreds of different
configurations in the stress-intensity factor handbooks, via
Irwin’s correlation,13 G=K2 /E. Let us consider the presence
of an isolated crack and neglect the energy associated with
the nanotube circumferential curvature as well as the crack
tip self-interactions: accordingly, K=���a since this case is
analogous to the well-known Griffith case.13 Consequently,
equating the two expressions for �W, i.e., 1

2F2 /S2�S=
−2t�0

aG�a�da, we deduce the variation of Young’s modulus,
imposed by the presence of a crack of half-length a �sub-

script a� with respect to its theoretical �subscript th, i.e.,
defect-free� value, in the following simple form: Ea /Eth=1
−a2 / �rl�. We assume the presence of an additional transver-
sal crack of half-length b, noninteracting with the previous
one. According to our previous result, Ea�b /Ea=1−b2 / �rl�
�Eb /Eth, where Ea�b�Eb�a denotes Young’s modulus of
the nanotube containing the two noninteracting transversal
cracks. Thus, by multiplying the two previous results, we
derive Ea�b /Eth= �Ea /Eth��Eb /Eth�= �1−a2 / �rl���1−b2 / �rl��.

For different schemes, e.g., interacting cracks, the previ-
ous approach remains valid if K=���a is substituted with
the corresponding value of the stress-intensity factor �from
the stress-intensity factor handbooks�. However, to have an
idea of the possible role of the interaction we note that it will
be maximal for collinear coalescing cracks. After coales-
cence, Ea+b /Eth=1− �a+b�2 /rl, the interaction is predicted to
be Imax= �Ea�b−Ea+b� /Eth= �a2b2+2abrl� / �rl�2�2ab / �rl�,
where the last approximation is valid only for small crack
lengths �with respect to r and l�.

We are now ready to derive a general law. Let us con-
sider N cracks having size ai or, equivalently, M different
cracks with multiplicity Ni �N=	i=1

M Ni�. Noting that ni

=2ai /q represents the number of adjacent vacancies in a
crack of half-length ai, with q atomic size, and f i
=Nini / �2�rl /q2� its related numerical �or volumetric� va-
cancy fraction, we can write �the approximations are valid
for small cracks�
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with �i=��� /2. Extending the interpretation of our for-
malism, we note that ni=1 would describe a single vacancy,
i.e., a small hole. Thus, different defect geometries, from
cracks to circular holes, e.g., elliptical holes, could in prin-
ciple be treated as a first approximation by Eq. �1�, interpret-
ing ni as the ratio between the transversal and longitudinal
�parallel to the load� defect sizes. Thus, introducing the de-
fect eccentricity ei as the ratio between the lengths of the
longer and shorter axes for the ith defect, we must have
ni��i��ei sin2 �i+1/ei cos2 �i, where �i denotes the angle
between the longer axis and the uniaxial load. Furthermore,
considering N=2 coalescing identical cracks of half-length a,a�Electronic mail: nicola.pugno@polito.it
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noting that the maximum interaction would be Imax
�2a2 / �rl� we deduce for such a case �max��. Thus, differ-
ent �i allow one to describe defect-defect or defect-boundary
or self-defect �tip� interactions and a reference value could
be considered, ��� �Imax�2a2 / �rl��.

If only one defect typology �e.g., a crack composed by n
adjacent vacancies� is present with a fraction f in a nanotube
or nanotube bundle, the related Young modulus E�f ,n� must
satisfy

E�f ,n�
Eth

� 1 − �fn , �2�

with n����e sin2 �+1/e cos2 � and ��� /2.
We note that our treatment can be viewed as a generali-

zation of the interesting approach proposed in Ref. 14, being
able to quantify the constants ki fitted by atomistic simula-
tions in Ref. 14 for three different types of defect. In particu-
lar, rearranging Eq. �1� and in the limit of three small cracks,
we deduce Eth /E�1+k1c1+k2c2+k3c3, identical to their Eq.
�15�, in which ci=Ni / l is the linear defect concentration and
ki=�ini

2q2 / �2�r�. These authors14 consider one, two, and
three atoms missing, with and without reconstructed bonds;
for nonreconstructed bonds two alternative defect orienta-
tions were investigated for two and three atoms missing �for
details see Ref. 14�. Even if their defect geometries are much
more complex than the nanocracks that we consider here, the
comparison between our approach and their atomistic simu-
lations, which does not involve best-fit parameters, shows a
good agreement, as summarized in Table I.

Now let us compare the results of Eq. �2� with the three
dimensional atomistic and continuum simulations on exten-
sion behavior of single crystals containing nanoholes re-
ported in the relevant paper in Ref. 15. A rectangular plate
with width W=100q and height H=200q �q is the triangular

lattice constant, 0.2892 nm for the investigated fcc Ag� con-
taining a circular hole was stretched along the “vertical” di-
rection, see Fig. 1 �left�. Twelve different hole radii R, vary-
ing from 5q to 40q, were investigated with both finite
element methods �FEMs� or molecular dynamics �MD�
simulations. The related defect-free structures were also in-
vestigated to derive the theoretical Young modulus. FEM
Young modulus reductions were found to be comparable to
those predicted by MD simulations, even if, in general,
slightly larger. According to Eq. �2�, we expect E�R� /Eth

�1−k�R /q�2, with k=��q2 / �WH��5.0	10−4 for �=�.
We note that these authors fitted their 26 simulations using
exactly the previous equation �see their Fig. 7� and, remark-
ably, with kfit�4.4	10−4 �or �fit�2.76�, in strong agree-
ment with our prediction.

We further compare Eq. �2� with two additional sets of
four simulations each ��a–d�, �e–h��,15 performed maintain-
ing the volumetric fractions constant �0.063 and 0.014�, see
Fig. 1 �right�: �a� one single hole of radius 20q and two �b�
horizontal or �c� vertical holes of radius 14.14q �at distance
3R�, �d� four holes of radius 10q placed at the vertic of a
square �with size 4R�, and �e� one circular hole of radius
9.54q and one elliptical hole with long and short axes of 20q
and 4.5q, respectively, �f� horizontal, �g� vertical, or �h� in-
clined by an angle of � /4. The comparison is summarized in
Table II and again shows a good agreement.

We conclude that our approach, summarized by Eqs. �1�
and �2�, could have interesting high-nanotechnology applica-
tions; it quantifies the role of nanodefects on elasticity of
single crystals, such as carbon nanotubes. The reported three
comparisons with atomistic and continuum simulations con-
firm the reliability of our approach. Clearly, the trivial pre-
diction purely based on the volumetric fraction, i.e., E /Eth
�1− f , has to be considered wrong in the light of Eq. �2�:

TABLE I. Comparison between the present theory �theor� and the atomistic simulations �num� reported in Ref. 14. The constants ki governing the elastic
reduction �Eth /E�1+k1c1+k2c2+k3c3� calculated according to the present theory �ki=�ini

2q2 / �2�r�� are compared with those derived for the �m , p� nanotubes
numerically investigated in �Ref. 14�, considering defects with reconstructed �a� and nonreconstructed �b� vacancies; two different nonreconstructed orien-
tations �b1,b2� for two and three atoms missing were numerically investigated, �see Ref. 14, for details�. All the reported quantities are in angstrom.
Parameters used are �i=� /2, ni= i=1,2 ,3, r�0.0392�m2+ p2+mp, and q�0.246 nm �Ref. 7�.

�m , p� r k1
�theor� k1

�num� k2
�theor� k2

�num� k3
�theor� k3

�num�

�5,5� 3.39 0.45 1.2�a� 1.2�b� 1.79 1.4�a� 1.7�b1� 2.8�b2� 4.02 1.8�a� 2.2�b1� 3.6�b2�

�9,0� 3.53 0.43 1.1�a� 1.1�b� 1.71 1.2�a� 1.3�b1� 2.1�b2� 3.86 1.6�a� 2.4�b1� 3.6�b2�

�10,10� 6.79 0.22 0.8�a� 0.5�b� 0.89 1.0�a� 0.7�b1� 1.3�b2� 2.01 1.2�a� 1.0�b1� 1.5�b2�

�17,0� 6.67 0.23 0.8�a� 0.5�b� 0.91 1.0�a� 0.7�b1� 1.0�b2� 2.04 1.2�a� 1.2�b1� 1.7�b2�

FIG. 1. Geometries numerically inves-
tigated in Ref. 15 �from which the fig-
ure has been adapted� and compared
with our theory in Table II.
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defects perpendicular to the load with large eccentricity
�and/or interaction�, even if in small fractional amount, could
significantly reduce the elastic properties of a crystal.
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TABLE II. Elasticity of a perforated plate of size of 100q	200q �see Fig. 1� with �a� one single hole of radius
20q and two �b� horizontal or �c� vertical holes of radius 14.14q �at distance3R�, �d� four holes of radius 10q
placed at the vertices of a square �with size4R�, and �e� one circular hole of radius 9.54q and one elliptical
hole with long and short axes of 20q and 4.5q, respectively, �f�, horizontal �g�, vertical or �h� inclined by an
angle of �=� /4. Comparison between MD atomistic simulations, FEM �Ref. 15�, and present approach
�Theory�. The numbers between brackets represent the values of � needed to identically recover the numerical
simulations. Note the higher values observed in the �b� �stronger hole interaction� than in the �c� simulations.
All the values are found to be larger than � /2 and of the order of � �with the exception of the FEM �g�
simulation�. The last row simply considers Eq. �2� with �=�.

E /Eth , ��fit� a b c d e f g h
MD 0.791 0.779 0.855 0.832 0.953 0.843 0.985 0.917

�3.326� �3.518� �2.31� �2.67� �3.29� �2.47� �4.66� �2.49�

FEM 0.787 0.760 0.831 0.802 0.936 0.830 0.965 0.901
�3.390� �3.82� �2.69� �3.15� �4.48� �2.68� �10.88� �2.97�

Theory 0.803 0.803 0.803 0.803 0.955 0.800 0.990 0.895
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