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Abstract. In this contribution some characteristics and predictive capabilities are discussed of a 

recently introduced model for damage progression and energy release, in view of modelling 

Acoustic Emission. The specimen is discretized in a network of connected springs, similar to a 

Fibre Bundle Model approach, with the spring intrinsic strengths statistically distributed according 

to a Weibull distribution. Rigorous energy balance considerations allow the determination of the 

dissipated energy due to crack surface formation and kinetic energy propagation. Based on results of 

simulations, the macroscopic behaviour emerging from different choices at “mesoscopic” level is 

discussed, in particular the relevance of model parameters such as the distribution of spring cross 

sections, Weibull modulus values, and discretization parameters in determining results like stress-

strain curves and energy scaling versus time or specimen size. 

Introduction 

Various attempts have been made in the literature to describe the qualitative and quantitative 

behaviour emerging in Acoustic Emission (AE) experiments (e.g. [1,2]). In most of the existing 

approaches, however, essential aspects of fracture mechanics are often neglected, such as energy 

dissipation and fracture energy balance.  

Recent analysis of AE experiments has highlighted the multiscale aspect of cracking phenomena 

and fractal statistical analysis has been applied to describe the data, and energy dissipation has been 

shown to occur in a fractal domain comprised between a surface and a volume [3,4]. The aim is to 

introduce these aspects in a simple model that expands on the approaches appearing in the literature, 

and evaluate the influence of the proposed modifications on expected results.  

Description of the model 

To correctly describe the phenomenon of damage progression in quasistatic experiments, our 

goal is to introduce the simplest possible model MB0B containing the correct energetic behaviour. For 

the sake of simplicity, a specimen having length LBtotB and cross-section ABtotB is considered. In a 1-D 

approximation, the specimen is modelled as a discrete arrangement of NBxB×NBy Bsprings, as shown in 

Fig.1. Each spring is identified by the index pair (i,j), with i=1… NBxB and j=1… NByB. The specimen is 

thus discretized in NBxB portions, each modelled as an array of NByB parallel springs. Two opposite 

uniaxial forces of time-varying magnitude FBtotB(t) are applied at the two ends of the specimen, each 

undergoing a displacement of magnitude xBtotB(t) in the direction of the force. In the simplest possible 

approach, all springs are considered identical in length l and in elastic parameters (Young’s modulus 

E), but their cross-section ABijB is allowed to vary within chosen limits, i.e. ABminB < ABijB <ABmaxB, with the 

total specimen cross section remaining constant. The stiffness of a single spring can therefore be 
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written as kBijB=EABijB/l, whilst the equivalent stiffness of the i-th undamaged material portion, 

represented by the i-th arrangement of NBy Bparallel springs, is 
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The length and cross-section of the entire specimen are, respectively: 
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i.e. the cross-section is constant and equal to ABtotB. 
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Fig. 1 : Discretization of a specimen subjected to uniaxial tension as adopted in simulations. 

 

Next, a fracture criterion is introduced whereby the failure of the individual spring (i,j) occurs 

when it undergoes a stress σBijB that exceeds its intrinsic strength σBCijB. The value of σBCijB is assumed to 

vary from spring to spring and to be distributed randomly, according to the Weibull distribution [5], 

which is widely used in fracture mechanics. The distribution P(σBCijB) of the spring strengths can 

therefore be expressed as: 
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where σB0B  is a nominal stress value for the material under investigation, and m is the Weibull 

modulus, which is characteristic of the considered material. In the model, damage progression is 

modelled as the failure of the springs used to discretize the specimen. In the case of failure of the 

(i,j)-th spring, its stiffness kBijB is set to zero. It is clear that, as the loading of the specimen increases 

and the resulting damaging process advances, the stiffness of each section of the material will 

decrease as fewer and fewer springs forming the section remain intact. Therefore, the stiffness of 

each section is time dependent, i.e. KBi B= KBi B(t). Correspondingly, the overall specimen compliance 

C(t) increases in time. In particular, the overall specimen compliance variation ∆C(t) deriving from 
a single spring failure occurring at the location (i,j) can be written as: 
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The denominator in Eq. (4) indicates that the variation ∆CBijB depends on time and on the location of 

the spring failure taking place, as is intuitive. 
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The energetic aspects of damage progression are now considered. Energy balance considerations 

require that the variation of total potential energy ∆WBijB(t) when a spring fails be compensated by the 

kinetic energy ∆TBijB(t) released in the form of a stress wave generated in the sample. The energetic 

contribution of the dissipated energy ∆ΩBijB(t) in the formation of a crack surface at micro- or meso-

scale must also be considered. Thus, one can write: 

0)t()t(T)t(W ijijij =++ ∆Ω∆∆ .           (5) 

The last term is important in order to obtain the correct scaling properties observed in AE 

experiments, as discussed below.  

One can further observe that in Force-Controlled (FC) or Displacement-Controlled (DC) 

quasistatic experiments the potential elastic energy variation for a spring failure can be respectively 

written as: 
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where ∆C(t) and ∆K(t) are the specimen compliance and stiffness variations, respectively, due to the 
spring failure. The dissipated energy ∆Ω  is assumed to be proportional to the newly created surface 
ABijB:  

ijCij AG=∆Ω .             (7) 

where GBC B is the critical strain energy release rate for the material [5]. The above energy 

contributions can be expressed as a function of the accumulated elastic energy of the (i,j)-th spring 

at failure when the spring failure takes place: 
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In the case of quasistatic experiments, it can be assumed as a first approximation that, when a single 

spring used to discretize the specimen fails, the force acting on the corresponding specimen section 

will be redistributed evenly among all the adjacent springs. In this mean field approximation, the 

kinetic released energy can be written, according to the previous equations, as: 
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with K(t+1) and K(t) the total specimen stiffnesses immediately before and after the spring failure, 

respectively. The dissipated energy can also be expressed by means of the accumulated energy in the 

(i,j)-th spring: 
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   ijijij Φγ∆Ω = .           (12) 

Simulation results 

As an example, a 1-D specimen is considered in the form of a thin bar of length L= 10P

-2
Pm and 

cross section Σ=10P

-6
PmP

2
P, discretized by means of a NBxB=1000, NByB=1000 spring arrangement. The 

chosen material is concrete, with a Young’s modulus E= 23 GPa, peak stress σB0B= 0.1 GPa, and 

Weibull modulus m varying between 1 and 6. To evaluate the influence of the variable spring cross 

section ABijB, two types of simulations are carried out: the first with all the springs having constant 

cross section (ABijB=ABtotB/NBy B∀i,j), and the second by assigning random ABij Bvalues, with the constraint 

that the specimen cross section remain constant (∑ =
j

totij AA , ∀i). 

Firstly, the specimen is subjected to traction with a displacement xBtotB that increases linearly in 
time: xBtotB=vt. The objective is to compare the scaling properties for damage progression both when 

energy dissipation is accounted for and when it is not. The number of failure events, calculated 

without accounting for energy dissipation and indicated here with NBAEB, correspond simply to the 

number of springs undergoing failure because their intrinsic strength is exceeded. A more reliable 

quantity characterising AE is however the released kinetic energy T.  

Figure 2 shows results for a typical numerical experiment with m=3. In the case of constant 

spring cross sections (Fig. 2a), the stress-strain curve displays only some softening before failure 

occurs. Instead, in the case of randomly varying spring cross sections (Fig. 2b), failure of the whole 

specimen is reached at a considerably later stage, and softening continues up to decreasing stress 

values for increasing strain. In the case of constant spring cross section, NBAEB increases exponentially 

with time up to failure, as do the released kinetic energy T and the dissipated energy Ω. As 
discussed in detail elsewhere [6], it is possible to fit the data using a power law dependence, e.g. 

NBAEB∝ tP

α
P, T∝ tP

β
P where α and β are non-integer exponents that are strongly dependent on the chosen 

Weibull modulus m. The simulated behaviour is shown in Fig. 2c and 2d: best-fits are obtained for 

α = 2.7 and β = 6.8 in this case. This fitting procedure supplies the possibility to compare 
predictions of specific experimental data, and thus derives the most appropriate Weibull modulus 

value for the material. In the case of variable spring cross sections, the NBAEB(t) and T(t) plots again 

display an initial exponential growth, although there is an additional phase where the growth rate 

decreases and a saturation value is reached before failure, when failure events occur more rarely, 

and at greater energies. 

Different loading protocols are also evaluated: Figures 2e and 2f illustrate the behaviour in the 

case of cyclic loading with increasing amplitudes. The stress-strain behaviour in this case shows 

progressive material softening (not shown) with successive cycles and NBAEB evolves in time with 

increasing plateaux, as does the released kinetic energy T (Fig. 2f). However, T presents a more 

marked increase for large t values with respect to NBAEB, because each spring failure releases a greater 

energy than released for small t values. 

It is of particular interest now to verify the predicted scaling behaviour with specimen 

dimensions (length, cross-section, and volume) and compare it with experimental results in the 

literature. Indeed, it was shown in [4] that the number of AE events scales with non-integer 

exponents smaller than unity, indicating that AE occurs in a fractal domain with dimensions 

comprised between those of a surface and those of a volume. One therefore assumes: 

;L)L(N NLd

tottotAE ∝  ;A)A(N NAd

tottotAE ∝  ;L)L(T TLd

tottot ∝  TAd

tottot A)A(T ∝ . (13) 

and proceeds to determine the relevant exponents dBNLB, dBNAB, dBTLB, dBTAB through simulations. To do this, 

specimens of different dimensions are considered. In particular, the specimen length LBtotB is varied 

between 10P

-6
Pm and 10P

-2
Pm (with corresponding discretizations NBxB varying between 1 and 1000) and 
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the cross-section ABtotB is varied between 10P

-10
PmP

2
P and 10P

-4
PmP

2 
P(with corresponding discretizations NByB 

varying between 1 and 1000). Here, results are discussed for constant spring cross-sections only. 
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Fig. 2: Simulation results: (a) σ(ε) up to failure in the case of constant ABij Band xBtotB=vt; (b) σ(ε) for 
random ABijB and xBtotB=vt; (c) NBAEB(t) and (d) T(t) relative to case (a) (fitting power-law functions are 

also shown). (e) ε(t) and (f) T(t) for constant ABij Band a periodic loading protocol.  

 

 

 

 

NAE ∝∝∝∝ tαααα    

αααα    ≈≈≈≈    2.72.72.72.7    
 

T ∝∝∝∝ t
ββββ    

ββββ    ≈≈≈≈    6.86.86.86.8    

a) b) 

c) d) 

e) f) 
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As a uniaxial tensile test is under consideration, one expects LBtotB to be the relevant dimension 

with respect to which non-integer scaling occurs. Indeed, the exponents dBNAB, dBTAB are on average 

close to unity after repeated simulations, indicating direct proportionality with respect to specimen 

cross-section. On the other hand, simulations for different specimen lengths produce average values 

of dBNLB= 0.78 and dBTLB= 0.57, respectively. Both exponents are consistent with the experimentally 

derived effect of non-integer exponent scaling. However the latter of the two differs considerably 

from unity, indicating that the released kinetic energy is a variable that displays the effect to a 

greater extent, and is therefore a better candidate for comparison with experimentally derived 

results. This is due to the fact that, when considering T instead of NBAEB, the dissipated energy is 

accounted for, as explained above. Figure 3 displays typical results for the T vs. LBtotB dependence in 

repeated numerical simulations. 
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Fig. 3: Scaling properties of AE energy T vs. specimen length LBtotB in 6 repeated numerical 

experiments (plot is in log-log scale). 

Summary 

In conclusion, a simple phenomenological model has been presented that allows to capture a 

number of important characteristics that emerge in damage progression experiments and AE 

measurements. In particular, the power law scaling behaviour with respect to specimen dimensions 

emerges from a correct energetic formulation of fracture events, where part of the stored elastic 

energy is released in the creation of surfaces at micro/mesoscopic level. Having verified the 

predictive possibilities of the model, the next step is to compare numerical predictions with specific 

experimental data both to determine relevant material parameters, verify fitting capabilities and if 

need be introduce additional elements in the formulation. 
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