

www.afm-journal.de

Super-Tough Silk: The Potential of Knots in Evolved Spiders

Nicola M. Pugno

Spider silk is renowned for its exceptional mechanical properties, combining low density with high tensile strength and high extensibility and thus very high toughness modulus (t., i.e., dissipated energy per unit mass). However, the potential toughness of spider silk can be significantly enhanced if spiders evolved the -currently absent/undiscovered- ability to tie knots in their silk. This advancement will allow for a new level of gigantic toughness (T) revealing today "hidden toughness", mimicking human engineering techniques and in particular a related proposal by the author used for realizing the world's toughest fibers. Indeed, knotting can provide additional energy dissipation via friction, enabling spiders to construct webs and traps with unprecedented efficiency. To quantify this scenario, the author calculates the gigantic toughness of 393 real spiders virtually assumed with evolving knot-making behaviors, showing toughness gain (G = T/t) of about one or two orders of magnitude. The resulting "super-tough silk" can benefit spiders in their natural habitats and suggests a new perspective on how knotting can serve as a key innovation in spider evolution and in Biology in general.

1. Introduction

Spiders can produce different types of silks for a variety of purposes, such as making webs for capturing preys, sheets for wrapping objects, anchorages for connecting threads to surfaces, nestbuilding, cocoons for protecting eggs, dragline for safe locomotion, ballooning for rapid movement^[1] and even using it as a tool for lifting large masses.^[2,3] Spider silks and webs are in general remarkable examples of natural materials and structures that play a crucial role in the spider's survival.^[1]

N. M. Pugno

Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics University of Trento Via Mesiano 77, Trento I-38123, Italy E-mail: nicola.pugno@unitn.it N. M. Pugno School of Engineering and Materials Science Queen Mary University of London Mile End Road, London E14NS, UK

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adfm.202421636

© 2025 The Author(s). Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1002/adfm.202421636

On the one hand, spider silk has attracted significant attention for material scientists due to its combination of high strength and high deformability and thus very high toughness.^[4] On the other hand, the architecture of spider webs provides not only a functional solution for catching preys but also serves as an inspiration for structural engineers.^[5] Replicating the remarkable properties of spider silk fibers presents a major challenge to materials scientists,^[6] while understanding the web response is equally crucial for engineers.^[7]

Research of nearly the last decade, however, suggests that the separate consideration of material properties and structural design is insufficient for understanding spiderweb performance.^[8] The material properties of the silk and the structural design of the web are tightly interdependent, creating enhanced functionality through synergistic interactions.^[9] These interactions are also evident in spiderweb junctions,^[10]

where structural features contribute to the web's overall resilience. In particular, at the microscale level in spider silk^[4] and at the mesoscale level in spider web junctions^[11] and anchorages,^[12] the concept of a "hidden length" plays a pivotal role in enhancing the toughness of the material. This hidden length allows for substantial elongation or deformation under relatively high force or stress, resulting in impressive specific energy dissipation and thus material toughness. This hidden length also improves the structural robustness of the web.^[9]

In parallel, there has been a growing interest in materials science to develop new materials with high strength and toughness, aiming to surpass the mechanical properties of existing highperformance fibers. Advancements have seen the production of macroscopic carbon nanotube bundles and graphene sheets, though their macroscopic strength remains well below than their theoretical potential (≈100 GPa)^[13–15] due to defects that by force statistically increase in number with the size-scale.^[16] However, significant progress has been made in improving their toughness. For instance, composite carbon nanotube fibers have been developed with toughness modulus values as high as 570 J g^{-1} ,^[17] or 870 J g^{-1} ,^[18] and even 970 J g^{-1} when combined with graphene.^[19] These values far surpass high-tech tough materials like Kevlar, which has a toughness modulus of ≈ 80 J g⁻¹, or like artificial spider silk today able to reach 110 J g^{-1} (the silk density assumed for computing this number is equal to $\rho =$ 1300 kg m⁻³)^[6] or even like spider silk itself, with a record toughness of 390 J g⁻¹ for the giant riverine orb spider.^[20] Also, from spiders fed with nanomaterials, a bionic silk with a toughness modulus up to 588 J g^{-1} (the silk density is again assumed here

Figure 1. Knots as a key for gigantic toughness. A classical fiber dissipates during fracture its cumulated strain energy (also released in kinetic energy of fragments), thus displays a toughness modulus (dissipated energy per unit mass) of $t = \phi / m \approx \sigma_f \epsilon_f / (2\rho)$ (proportional to ultimate stress by ultimate strain divided by density, the constant of proportionality of 1/2 is here reported just as example for linear elastic fibers). In contrast, a fiber with a loop and a knot can dissipate much more energy, thanks to a sliding friction force working for the "hidden length" of the loop. The upper limit of the toughness in this case is constituted by the product of the force F_f^- just below the breaking force F_f and a displacement equal to the entire fiber length *l*, thus reaching a toughness modulus of $T = \phi/m \approx (\sigma_f / \rho) (1 + \epsilon_f / 2) = t + \Delta t$, where a huge $(1 >> \epsilon_f)$ "hidden toughness" of $\Delta t = \Delta \phi / m \approx \sigma_f / \rho$ (i.e., the specific material strength) naturally emerges, independently from the intrinsic material constitute law.^[43]

equal to $\rho = 1300 \text{ kg m}^{-3}$) has been collected^[21] and the proof of this concept has been recently confirmed,^[22] suggesting that "bionicomposites"^[23,24] (proposed by the author) are in general very promising.

Concerning artificial spider silk, there are two main strategies for their production:^[6] one being expression of insoluble spidroins with subsequent solubilization and fiber processing using organic solvents,^[25-29] and another being a biomimetic approach involving only aqueous solutions throughout the purification and spinning procedures and in which the molecular mechanisms and triggers for fiber formation are replicated.^[30-33] The first approach enables expression of large spidroins that can be spun into fibers with high tensile strength, but the protein yields are far from what is required for industrial production. Using the second approach, mini-spidroins have been developed, that are extremely water-soluble and can be spun into tough fibers using biomimetic spinning set-ups in large quantities and with toughness comparable to that of native spider silk^[6] and can also mixed with nanomaterials, e.g. magnetic nanoparticles for added functionalities.[34]

Eventually, recent advancements in analytical modeling^[35,36] and physically based machine learning^[37,38] applied to spider silk are helping the understanding of their macroscopic mechanical properties starting from their nanoscopic constituents and through its hierarchical architecture as well the design of artificial spider silk. These approaches are completing previous studies performed on spider silk, with molecular dynamics simulations and hierarchical lattice spring models,^[39–42] and represent a new powerful design tool especially when coupled.

2. The Potential of Knots in Toughness

Inspired by the "hidden length" observed in spider silks and web junctions, the author introduced a friction-based system to enhance the toughness of fibers,^[43] **Figure 1**. In this approach, a slider –even a simple knot– is incorporated as a frictional element to dissipate energy through a hidden length or loop within the fiber, thereby reshaping the fiber's apparent mechanical constitutive law and revealing what it was termed "hidden toughness". This toughness increment is directly related to the material's specific strength. The resulting constitutive law of the knotted fiber is theoretically nearly perfectly plastic, mimicking the behavior observed in spider silk and elasto-plastic materials in general.

In particular, the energy at break ϕ per unit mass m of a fiber having cross-sectional area A, length l, Young's modulus E, strength σ_f and mass density ρ , can be calculated from the load-displacement curve as $\phi/m = 1/m \int_{0}^{x_f} F dx = l_0 A/m \int_{0}^{\epsilon_f} \sigma d\varepsilon = (1 - k_1)/\rho \int_{0}^{\epsilon_f} \sigma d\varepsilon$, where F is the force, x is the displacement, $\sigma = F/A$ is the stress, $\varepsilon = x/l_0$ is the apparent strain, l_0 is the apparent (end-to-end) length of the fiber and $0 \le k_1 = (l - l_0)/l \le 1$ is the loop fraction length (thus in principle for large loops $k_1 \rightarrow 1$), whereas the subscript f denotes final/fracture values, see Figure 1.

For a linear elastic fiber, classical thus without an extra-length or loop ($k_1 = 0$), this simply yields a "toughness" (this energy is elastically stored and dissipated in fracture plus kinetic energy of the fragments) $t = \phi/m = \sigma_f \varepsilon_f / (2\rho)$, where $\varepsilon_f = \sigma_f / E$; in contrast,

for "knotted fibers" the situation changes dramatically and the toughness increases enormously.

SCIENCE NEWS

www.advancedsciencenews.com

When a knot is inserted in a fiber, the fiber strength in general decreases due to the stress concentration imposed by the presence of the knot/localized curvature; the related "knot strength" of the fiber is here denoted by $\sigma_k = k_2 \sigma_{f_2}$ where accordingly 0 $\leq k_2 \leq 1$. Considering an unfastening knot and/or intrinsically tough fiber, as in the case of spider silk, would result in an upper limit $k_2 \rightarrow 1$. During fiber tension, first the strain increases with the fiber sliding through the knot at a mean stress plateau value of $\sigma_n \approx k_3 \sigma_k$, where $0 \le k_3 \le 1$ denotes the ratio between plateau stress and fiber knot strength, where in principle in the absence of stick-slips and for sliding force just below the fiber fracture force $k_3 \rightarrow 1$. This sliding phase takes place for a displacement Δx $\approx l - l_0$, ideally at a force just below the breaking force F_f of the fiber, in order to maximize the dissipated energy; then, the sliploop further tightens (it could also unfasten, depending on the type of slider/knot topology) and the fiber deforms and finally breaks. Thus, in the stress-strain curve a long plastic-like plateau naturally emerges thanks to the presence of the knot/loop. The increment of the final strain is $\Delta \varepsilon_f \approx \Delta x / l_0 = k_1 / (1 - k_1)$. Accordingly, the increment in toughness modulus, or previously "hidden toughness", is huge and given by $\Delta t = \Delta \phi / m \approx k_1 k_2 k_3 \sigma_f / \rho$, with the upperbound $(k_{1,2,3} \rightarrow 1)$ of σ_f / ρ , which is the fibre specific strength.

Also note that since a size-effect is expected on the fracture strength of materials, i.e., $\sigma_f \propto R^{(D-3)/2}$, [16] where *R* is the structural size and $2 \le D \le 3$ is the dimension of the domain in which the energy dissipation occurs (for brittle fracture D = 2 an thus the classical scaling of fracture mechanics $\sigma_f \propto R^{-1/2}$ emerges), we expect a scaling of the toughness increment $\Delta t \propto R^{(D-3)/2}$. Also note that a scaling is expected also in the intrinsic toughness t: the area under the stress-strain curve is the dissipated energy per unit volume, e.g. for a brittle fiber (D = 2) it is $\rho t = G_c A/(Al)$ where G_c is the fracture energy of the material, thus ρt (D = 2) = G_c/l ; accordingly, it should not be surprising that even brittle materials become ductile at the nanoscale $(l \rightarrow 0)$, whereas vice versa even ductile materials become brittle at the macroscale $(l \rightarrow \infty)$; also resulting in snap-backs with positive slope in the stress-strain curve and thus kinetic energy release under displacement control, e.g., earthquakes); in general $t \propto R^{D-3}$.^[16] Thus smaller is stronger and also tougher (we are here referring to the discussed toughness modulus and not to the fracture toughness or critical stress intensity factor).

This concept has been experimentally validated, with the creation of fibers exhibiting unprecedented toughness. A commercial Endumax fiber, for example, saw its toughness modulus increased from t = 44 J g⁻¹ to T = 1400 J g⁻¹ through the introduction of knots.^[43] The same approach has been applied to carbon fibers and other high-performance fibers^[44] as well as silk fibers,^[45,46] always yielding significant improvements in toughness. The theoretical limit of this concept is the specific strength of the material, with a huge upper bound max(T) expected to be $\approx 10^5$ J g⁻¹ for graphene and carbon nanotubes. This concept could work also in compression and bulk materials.^[47]

It is the author's opinion that the remarkable ability of knots to increase toughness by one or more orders of magnitude may also provide at least a partial still unknown justification of the evolutionary prevalence of knots in biological systems.^[43] Indeed, despite their complexity and the energy costs associated with their formation, knots are observed in many biological structures, including DNA strands and proteins.^[43] A very recent review^[48] has explored the presence of knots in various soft matter systems, further emphasizing the abundance of this structural feature in Nature. Fibers with loops and knots could become orders of magnitude tougher and in Biology this may result in much higher robustness for the related living systems.

3. The Super-Tough Silk

In spite of this, while humans and weaver birds are capable of intentionally producing knots, spiders are not, whereas other animals –like octopuses, eels, and snakes– may only inadvertently form knots in parts of their bodies. Accordingly, spiders, along with other animals that produce silk and filaments or use fibers, could theoretically gain significant advantages from evolving the ability to intentionally form knots into them, as already demonstrated by weaver birds. In particular, spider silk is already recognized as one of the toughest natural materials known, but if spiders could incorporate knots into their webs, their silk could become significantly tougher, potentially transforming spider webs into even much more resilient and durable structures.

To quantify this scenario, here we analyze the group of 393 spiders recently reported,^[49] estimating the potential upperbound of their silk's toughness $T = t + \Delta t$ if they could form knots, with $\Delta t = \sigma_f / \rho$. The calculations, summarized in Table 1 and Figure 2, reveal the potential for dramatic increases in silk toughness if spiders were able to exploit the hidden toughness revealed by the knot-based mechanism. The potential gains in toughness (G) were calculated as the ratio between the hypothetical gigantic toughness (T) that could be achieved through loop and knot formation and the current toughness (t) of the spider silk. The results show that spiders, if able to incorporate loops and knots into their silk, could achieve tremendous increases in material performance. For example, a record of $T_{\rm max}$ = 2740.77 J g⁻¹ for Clubionidae, Clubiona, vigil (https://spider-silkome.org/organisms/403) emerges as well as of $G_{max} = 159$ for Salticidae, Yaginumaella, striatipes, while $t_{max} = 326.92 \text{ Jg}^{-1}$ is for Araneidae, Araneus, ishisawai, see Table 1.

Note that the mechanical data employed for the calculation of the gigantic toughness here are obtained from the Silkome DB project as introduced in ref. [49]. In order to illustrate the range of even higher values of strain at breaking that may be observed in various spider species under different tensile testing conditions it may be worth mentioning the values obtained within the framework of the Spider Silk Standardization Initiative (www.ctb.upm.es/core-facilities/), as presented, for instance, in refs. [50,51]. Slightly different input values would result in sligtly different output results.

4. Conclusion

The advantage of using knots is thus demonstrated to be so compelling for toughness that the author suggests spiders could evolve the ability to tie knots given enough evolution time, see an imaginary picture in **Figure 3** (i).

SCIENCE NEWS

www.advancedsciencenews.com

Table 1. 393 spiders (family, genus, species; see ref. [49]) are compared in terms of current mechanical properties of their silk (d = diameter; E = Young's modulus; σ_f = strength; ε_f = strain at break; t = toughness modulus, i.e., dissipated energy per unit mass) and predicted gigantic toughness T of knotted silk reachable when/if spiders will become able to realize (in a proper way, with loops) knots and related toughness gain G = T/t (the silk density is assumed here equal to ρ = 1300 kg m⁻³). Spiders are listed as emerging from the calculation in descending order of T, with first/second/third place values of T, t, and G reported in **bold/bold&italic**/italic, respectively. Concerning Statistical Analysis (including standard deviations, here omitted for brevity) please refer to the full data reported in ref. [49]

Family	Genus	Species	<i>d</i> [μm]	E [GPa]	$\sigma_{\!f}[{\sf GPa}]$	ε _f [%]	t [J g ⁻¹]	T [J g ⁻¹]	G = T/t
Clubionidae	Clubiona	Vigil	0.48	20.3	3.33	12.7	179.23	2740.77	15.292
Araneidae	Plebs	Sachalinensis	0.72	30.4	3.06	24.1	323.85	2677.69	8.268
Araneidae	Nephilingis	Livida	3.37	16.9	2.97	21.4	300.00	2584.62	8.615
Deinopidae	Deinopis	sp.	0.49	31.2	2.98	12.9	156.15	2448.46	15.680
Araneidae	Araneus	Ishisawai	1.39	17.5	2.62	31	326.92	2342.31	7.165
Araneidae	Metazygia	Zilloides	0.36	19	2.52	23.6	238.46	2176.92	9.129
Araneidae	Argiope	Keyserlingi	0.43	31.7	2.45	22.4	283.08	2167.69	7.658
Thomisidae	Phrynarachne	katoi	0.43	33.5	2.64	8.9	87.69	2118.46	24.158
Araneidae	Larinia	argiopiformis	0.56	9.92	2.45	27.2	220.00	2104.62	9.566
Araneidae	Poltys	columnaris	3.6	19.1	2.4	20.9	224.62	2070.77	9.219
Thomisidae	Stephanopis	cambridgei	0.4	25.1	2.49	14.5	129.23	2044.62	15.821
Pisauridae	Hygropoda	sp.	0.38	8.64	2.5	15.1	110.00	2033.08	18.483
Segestriidae	Ariadna	lateralis	0.54	37	2.46	8.6	116.92	2009.23	17.184
Araneidae	Cyclosa	japonica	0.54	17.3	2.42	12.3	110.00	1971.54	17.923
Agelenidae	Agelena	labyrinthica	0.32	18.6	2.31	21.7	178.46	1955.38	10.957
Theridiidae	Parasteatoda	tepidariorum	0.71	10.9	2.23	27.1	235.38	1950.77	8.288
Araneidae	Araneus	marmoreus	2.34	21.9	2.37	15	123.08	1946.15	15.813
Araneidae	Argiope	amoena	2.08	15.6	2.2	23.7	220.00	1912.31	8.692
Thomisidae	Xysticus	sp.	0.45	13.7	2.34	13	103.85	1903.85	18.333
Araneidae	Trichonephila	clavata	2.26	15.7	2.22	21.5	189.23	1896.92	10.024
Tetragnathidae	Leucauge	dromedaria	0.52	17.3	2.3	13.3	123.85	1893.08	15.286
Araneidae	Nuctenea	umbratica	0.43	28.6	2.21	15.5	166.15	1866.15	11.231
Araneidae	-	sp.	0.55	14.5	2.27	13	96.15	1842.31	19.160
Theridiidae	Parasteatoda	angulithorax	0.58	6.59	2.18	20.8	147.69	1824.62	12.354
Uloboridae	Octonoba	varians	0.76	16.8	2.12	20.2	192.31	1823.08	9.480
Araneidae	Plebs	sachalinensis	0.41	8.11	2.12	19.8	165.38	1796.15	10.860
Araneidae	Gea	spinipes	0.48	13	2.17	13.7	98.46	1767.69	17.953
Theridiidae	Cryptachaea	gigantipes	0.41	14	2.04	19.7	186.92	1756.15	9.395
Theridiidae	Yunohamella	yunohamensis	0.37	13.1	2.13	11.2	86.15	1724.62	20.018
Araneidae	Araneus	sp.	0.35	4.61	1.97	31.3	205.38	1720.77	8.378
Araneidae	Acusilas	coccineus	0.57	13.1	2.06	16.6	120.00	1704.62	14.205
Mimetidae	Mimetus	testaceus	0.44	13.6	2.06	15.8	110.77	1695.38	15.306
Araneidae	Eriophora	transmarina	1.43	13.7	1.93	25.6	210.00	1694.62	8.070
Theridiidae	Latrodectus	hasselti	1.37	15.1	1.99	17.9	163.08	1693.85	10.387
Araneidae	Nephilingis	livida	3.96	13.1	1.9	23.7	192.31	1653.85	8.600
Sparassidae	Heteropoda	sp.	0.36	26.8	1.88	27.1	205.38	1651.54	8.041
Araneidae	Arachnura	melanura	0.46	10.1	1.91	21.9	156.92	1626.15	10.363
Araneidae	Herennia	sp.	1.47	12.3	1.84	26.4	201.54	1616.92	8.023
Salticidae	Carrhotus	xanthogramma	0.49	16.9	1.91	24.1	144.62	1613.85	11.160
Tetragnathidae	Leucauge	tessellata	0.42	15.1	1.91	13.2	128.46	1597.69	12.437
Araneidae	Cyclosa	ginnaga	0.33	16.4	1.87	18.7	133.85	1572.31	11.747
Theridiidae	Rhomphaea	labiata	0.43	13.3	1.84	19	140.77	1556.15	11.055
Psechridae	Psechrus	sp.	0.52	9.19	1.86	16.8	123.85	1554.62	12.553
Theridiidae	Parasteatoda	culicivora	0.57	16.6	1.84	17.9	139.23	1554.62	11.166
Theridiidae	Meotipa	sp.	0.45	10.2	1.81	19.8	161.54	1553.85	9.619
Araneidae	Trichonephila	inaurata	3.92	14.6	1.73	27.2	219.23	1550.00	7.070

(Continued)

www.advancedsciencenews.com

Family	Genus	Species	<i>d</i> [μm]	E [GPa]	$\sigma_f [{ m GPa}]$	ϵ_{f} [%]	t [J g ⁻¹]	T [J g ⁻¹]	G = T/t
Araneidae	Nephila	pilipes	2.75	7	1.72	41.8	224.62	1547.69	6.890
Cheiracanthiidae	Cheiracanthium	japonicum	0.36	10.1	1.89	17.9	90.00	1543.85	17.154
Tetragnathidae	Orsinome	sp.	0.69	7.96	1.76	24.7	173.08	1526.92	8.822
Araneidae	Argiope	aemula	1.89	6.5	1.74	32.7	188.46	1526.92	8.102
Araneidae	Araneus	ventricosus	3.05	9.86	1.75	28.4	171.54	1517.69	8.848
Araneidae	Larinioides	cornutus	2.84	15.4	1.82	15.3	106.92	1506.92	14.094
Araneidae	Araneus	sp.	0.43	5.86	1.79	20.3	120.77	1497.69	12.401
Theridiidae	Rhomphaea	labiata	0.57	11	1.7	18	128.46	1436.15	11.180
Araneidae	Cyrtophora	sp.	1.73	16.1	1.68	17.6	138.46	1430.77	10.333
Araneidae	Araneus	sp.	0.58	6.57	1.66	27.4	149.23	1426.15	9.557
Theridiidae	Episinus	nubilus	0.33	6.31	1.7	18.9	100.77	1408.46	13.977
Araneidae	_	sp.	1.47	11.1	1.64	21.5	135.38	1396.92	10.318
Zoropsidae	Zoropsis	spinimana	0.47	22.8	1.65	16.5	126.15	1395.38	11.061
Tetragnathidae	Orsinome	sp.	0.47	6.4	1.66	20.5	118.46	1395.38	11.779
Araneidae	Backobourkia	brouni	0.64	5.77	1.6	25.6	163.08	1393.85	8.547
Araneidae	Nephilingis	livida	3.86	8.78	1.63	22.5	139.23	1393.08	10.006
Theridiidae	Parasteatoda	tepidariorum	1.67	17.3	1.65	15.9	122.31	1391.54	11.377
Araneidae	Eriovixia	poonaensis	0.47	12.8	1.56	27.6	185.38	1385.38	7.473
Araneidae	Argiope	keyserlingi	0.66	11.6	1.59	19.9	155.38	1378.46	8.871
Araneidae	Singa	perpolita	0.38	3.41	1.63	24.4	119.23	1373.08	11.516
Araneidae	Cyrtophora	sp.	1.2	9.28	1.47	35.6	233.08	1363.85	5.851
Araneidae	Cyrtophora	sp.	2.49	14	1.63	16.5	109.23	1363.08	12.479
Araneidae	Neoscona	sp.	1.28	24.1	1.68	8.7	66.92	1359.23	20.310
Araneidae	Caerostris	sp.	1.06	9.81	1.56	21	140.00	1340.00	9.571
Araneidae	Plebs	sp.	0.41	8.65	1.6	18.9	109.23	1340.00	12.268
Arkyidae	Arkys	sp.	0.55	9.59	1.51	25.4	173.85	1335.38	7.681
Araneidae	Zygiella	dispar	0.36	10.4	1.63	13.2	78.46	1332.31	16.980
Araneidae	Argiope	sp.	2.05	7.16	1.52	31.4	163.08	1332.31	8.170
Theridiidae	Parasteatoda	tepidariorum	0.54	9.67	1.6	15	92.31	1323.08	14.333
Araneidae	-	sp.	2.25	12.9	1.57	17.7	110.77	1318.46	11.903
Theridiidae	Parasteatoda	tepidariorum	0.87	10.6	1.5	25.5	159.23	1313.08	8.246
Araneidae	Poltys	illepidus	2.2	7.14	1.5	25.9	158.46	1312.31	8.282
Araneidae	Cyrtophora	sp.	1.92	16.1	1.54	16.9	126.92	1311.54	10.333
Theridiidae	Argyrodes	kumadai	0.46	10.3	1.52	23.6	142.31	1311.54	9.216
Clubionidae	Clubiona	riparia	0.68	25.3	1.64	6.6	47.69	1309.23	27.452
Araneidae	Trichonephila	clavipes	0.8	10.4	1.56	17.1	100.77	1300.77	12.908
Araneidae	Caerostris	darwini	3.44	11.7	1.46	25.2	176.15	1299.23	7.376
Araneidae	Cyrtarachne	nagasakiensis	0.33	9.52	1.53	19.2	120.77	1297.69	10.745
Araneidae	Nephilingis	livida	3.51	9.93	1.55	15.7	100.77	1293.08	12.832
Araneidae	Gea	spinipes	0.51	4.66	1.54	21.9	108.46	1293.08	11.922
Araneidae	Trichonephila	clavata	3.03	11.8	1.51	19.2	130.00	1291.54	9.935
Araneidae	Argiope	aemula	4.55	11.7	1.48	22.7	137.69	1276.15	9.268
Uloboridae	Hyptiotes	affinis	0.86	9.71	1.45	27.4	150.00	1265.38	8.436
Thomisidae	Oxytate	striatipes	0.94	15.3	1.43	21.4	148.46	1248.46	8.409
Tetragnathidae	Tetragnatha	montana	0.4	5.92	1.51	16.2	80.00	1241.54	15.519
Araneidae	Cyclosa	argenteoalba	0.6	15.9	1.46	17.9	109.23	1232.31	11.282
Oxyopidae	Peucetia	viridans	1.15	9.24	1.47	15.9	98.46	1229.23	12.484
Araneidae	Parawixia	dehaani	3.14	5.8	1.34	40	193.85	1224.62	6.317
Theridiidae	Argyrodes	miniaceus	0.38	8.62	1.51	12.3	59.23	1220.77	20.610
Araneidae	Araneus	sp.	1.02	10.2	1.35	28.7	177.69	1216.15	6.844
									(Continued)

www.advancedsciencenews.com

Table 1. (Continued)

Family	Genus	Species	<i>d</i> [μm]	E [GPa]	$\sigma_{\!f}[{ m GPa}]$	ϵ_{f} [%]	t [J g ⁻¹]	T [J g ⁻¹]	G = T/t
Araneidae	Trichonephila	plumipes	0.46	12.1	1.44	18.1	104.62	1212.31	11.588
Araneidae	Eriophora	pustulosa	0.57	15.3	1.41	18.1	126.92	1211.54	9.545
Tetragnathidae	Leucauge	sp.	0.4	5.41	1.47	21.7	80.77	1211.54	15.000
Araneidae	Hypsosinga	рүдтаеа	0.45	10.9	1.45	18.2	90.77	1206.15	13.288
Theridiidae	Takayus	latifolius	0.47	14.9	1.45	14.8	89.23	1204.62	13.500
Thomisidae	Tmarus	rimosus	0.38	8.76	1.46	14.2	77.69	1200.77	15.455
Pimoidae	Weintrauboa	contortipes	0.85	10.3	1.39	20.3	126.92	1196.15	9.424
Araneidae	Mecynogea	lemniscata	0.75	7.76	1.4	17.6	116.92	1193.85	10.211
Tetragnathidae	Metellina	merianae	0.64	11.6	1.43	16.8	93.08	1193.08	12.818
Theridiidae	Parasteatoda	tepidariorum	1.32	9.12	1.35	24.8	150.77	1189.23	7.888
Araneidae	Neoscona	nautica	1.18	9.4	1.34	29.2	156.15	1186.92	7.601
Theridiidae	Parasteatoda	tepidariorum	0.61	8.9	1.38	21	121.54	1183.08	9.734
Araneidae	Gasteracantha	sp.	1.78	10.2	1.3	26.3	171.54	1171.54	6.830
Araneidae	Trichonephila	inaurata	6.69	11.1	1.35	21.1	127.69	1166.15	9.133
Araneidae	Cyclosa	octotuberculata	0.97	8.85	1.34	19.4	126.92	1157.69	9.121
Pisauridae	Pisaura	lama	0.35	7.08	1.37	18.7	99.23	1153.08	11.620
Salticidae	Plexippus	paykulli	0.48	7.7	1.43	7.8	49.23	1149.23	23.344
Araneidae	Poltys	illepidus	1.06	6.97	1.36	19.8	100.77	1146.92	11.382
Theridiidae	Yunohamella	yunohamensis	0.57	9.54	1.37	14.6	90.00	1143.85	12.709
Araneidae	Neoscona	sp.	1.08	9.24	1.36	20.4	96.92	1143.08	11.794
Araneidae	Cyclosa	omonaga	0.62	5.35	1.33	27.1	117.69	1140.77	9.693
Araneidae	Caerostris	extrusa	1.45	8.91	1.31	23.5	132.31	1140.00	8.616
Araneidae	Argiope	sp.	2.78	5.85	1.32	24.8	123.08	1138.46	9.250
Araneidae	Araneus	seminiger	1.63	9.5	1.31	25.1	126.92	1134.62	8.939
Araneidae	Argiope	sp.	1.79	6.75	1.32	26.3	116.15	1131.54	9.742
Araneidae	Caerostris	darwini	4.13	10.6	1.21	35.3	197.69	1128.46	5.708
Tetragnathidae	Tetragnatha	nitens	0.81	13.7	1.35	16.5	87.69	1126.15	12.842
Linyphiidae	Turinyphia	yunohamensis	0.75	9.35	1.28	18.9	139.23	1123.85	8.072
Cheiracanthiidae	Cheiracanthium	lascivum	0.37	11.1	1.34	15.4	90.00	1120.77	12.453
Araneidae	Caerostris	darwini	3.31	8.73	1.17	42.8	218.46	1118.46	5.120
Sparassidae	Thelcticopis	severa	2.59	7.93	1.32	21.5	99.23	1114.62	11.233
Tetragnathidae	Tetragnatha	sp.	0.79	4.89	1.3	23.8	113.85	1113.85	9.784
Mimetidae	Mimetus	sp.	0.9	6.77	1.32	18.7	95.38	1110.77	11.645
Tetragnathidae	Metellina	merianae	0.54	8.74	1.35	14.5	71.54	1110.00	15.516
Pholcidae	Pholcus	phalangioides	0.78	9.1	1.28	21.9	116.92	1101.54	9.421
Araneidae	Araneus	ventricosus	3.51	6.31	1.24	31.9	145.38	1099.23	7.561
Deinopidae	Deinopis	sp.	0.38	8.66	1.32	17.7	80.77	1096.15	13.571
Theridiidae	Parasteatoda	sp.	0.69	3.34	1.3	21.7	88.46	1088.46	12.304
Oxyopidae	Oxyopes	macilentus	0.87	13	1.31	14.2	78.46	1086.15	13.843
Araneidae	Eriophora	pustulosa	0.82	7.61	1.27	23.5	108.46	1085.38	10.007
Theridiidae	Enoplognatha	ovata	0.46	8.05	1.32	13.6	64.62	1080.00	16.714
Araneidae	Cyclosa	alba	0.6	2.38	1.25	29.2	117.69	1079.23	9.170
Tetragnathidae	Metleucauge	yunohamensis	0.54	12.9	1.25	20.2	106.92	1068.46	9.993
Araneidae	Herennia	multipuncta	2.14	12.1	1.27	15.4	90.00	1066.92	11.855
Araneidae	Metepeira	labyrinthea	0.7	4.04	1.26	20.3	96.92	1066.15	11.000
Araneidae	Cyrtophora	ikomosanensis	2.07	16.6	1.18	25	152.31	1060.00	6.960
Zoropsidae	Zoropsis	spinimana	0.45	10.8	1.22	22.6	120.77	1059.23	8.771
Araneidae	Neoscona	mellotteei	1.94	11.3	1.26	17.2	86.15	1055.38	12.250
Theridiidae	Argyrodes	flavescens	0.65	2.44	1.23	30.9	107.69	1053.85	9.786
Araneidae	Gasteracantha	kuhli	1.52	6.59	1.21	24.5	122.31	1053.08	8.610
									(Continued)

www.advancedsciencenews.com

ADV FUN	ANCED Ctional Terials
www.afm-	journal.de

Family	Genus	Species	<i>d</i> [µm]	E [GPa]	$\sigma_f[{ m GPa}]$	ϵ_f [%]	t [J g ⁻¹]	T [J g ⁻¹]	G = T/t
Araneidae	Caerostris	darwini	3.47	8.21	1.15	30.5	166.92	1051.54	6.300
Araneidae	Araneus	pentagrammicus	1.89	8.52	1.21	23.4	117.69	1048.46	8.908
Tetragnathidae	Leucauge	argyra	1.37	11.9	1.19	26.3	131.54	1046.92	7.959
Araneidae	Nephila	pilipes	3.25	12.2	1.14	30.2	170.00	1046.92	6.158
Araneidae	Araniella	yaginumai	1.2	11.6	1.2	24.5	123.85	1046.92	8.453
Araneidae	Araneus	variegatus	1.79	4.85	1.2	27.3	118.46	1041.54	8.792
Araneidae	Araneus	pentagrammicus	1.45	8.9	1.21	24.3	110.77	1041.54	9.403
Araneidae	Larinioides	cornutus	1.74	10.7	1.25	15.2	78.46	1040.00	13.255
Zoropsidae	Zoropsis	spinimana	1.49	14.7	1.21	18.4	107.69	1038.46	9.643
Desidae	Badumna	insignis	0.7	13.1	1.28	10.7	53.85	1038.46	19.286
Araneidae	Araneus	bicentenarius	5.37	7.93	1.23	18.4	86.15	1032.31	11.982
Araneidae	Cyclosa	octotuberculata	1.16	8.37	1.16	28	140.00	1032.31	7.374
Pisauridae	Dolomedes	sp.	1.4	14.1	1.27	9.2	53.08	1030.00	19.406
Uloboridae	Zosis	geniculata	0.48	6.5	1.23	17	76.92	1023.08	13.300
Araneidae	Caerostris	darwini	4.31	8.46	0.97	65.3	276.15	1022.31	3.702
Tetragnathidae	Tylorida	ventralis	0.6	7.47	1.24	13.5	62.31	1016.15	16.309
Araneidae	Argiope	sp.	2.44	10.7	1.21	14.8	76.15	1006.92	13.222
Oxyopidae	Peucetia	sp.	2.8	11.5	1.17	19.9	105.38	1005.38	9.540
Araneidae	Nephila	pilipes	0.98	9.38	1.17	19.7	103.85	1003.85	9.667
Araneidae	Neoscona	sp.	0.69	5.42	1.2	23.4	79.23	1002.31	12.650
Araneidae	Argiope	bruennichi	2.47	4.4	1.15	30.7	114.62	999.23	8.718
Uloboridae	Octonoba	grandiconcava	0.44	2.16	1.21	23.3	64.62	995.38	15.405
Thomisidae	Thomisus	labefactus	1.33	14.9	1.18	14.2	86.15	993.85	11.536
Araneidae	Araneus	mitificus	0.68	9.01	1.05	34.3	183.85	991.54	5.393
Uloboridae	Miagrammopes	sp.	0.8	3.36	1.1	26.3	144.62	990.77	6.851
Araneidae	Plebs	eburnus	0.37	7.93	1.17	17.4	86.15	986.15	11.446
Araneidae	Neoscona	mellotteei	2.72	10.5	1.18	22.3	77.69	985.38	12.683
Araneidae	Eriovixia	sakiedaorum	0.54	6.53	1.16	18.9	90.77	983.08	10.831
Pisauridae	Hygropoda	sp.	0.44	6.13	1.23	10.1	36.15	982.31	27.170
Araneidae	Cyclosa	omonaga	0.46	14.6	1.14	21.4	103.08	980.00	9.507
Araneidae	Neoscona	punctigera	2.18	9.01	1.14	20.2	102.31	979.23	9.571
Tetragnathidae	Mesida	sp.	0.48	3.14	1.18	19.1	70.00	977.69	13.967
Tetragnathidae	Zhinu	reticuloides	1.19	8.23	1.13	19.8	106.92	976.15	9.129
Tetragnathidae	Zhinu	reticuloides	0.7	9.45	1.1	22.3	123.85	970.00	7.832
Linvphiidae	Neriene	SD.	0.73	11.7	1.13	57.1	100.77	970.00	9.626
Araneidae	Cyrtarachne	nagasakiensis	1.52	8.54	1.09	30.5	129.23	967.69	7.488
Araneidae	, Thelacantha	brevispina	1.03	16.4	1.09	22.4	125.38	963.85	7.687
Araneidae	Cyrtarachne	akirai	4.54	11.2	1.12	19.3	102.31	963.85	9.421
Araneidae	, Micrathena	sagittata	1.67	9.54	1.1	24.5	117.69	963.85	8.190
Theridiidae	Steatoda	SD.	0.49	6.31	1.11	28.3	107.69	961.54	8.929
Tetragnathidae	Orsinome	SD.	0.47	13.6	1.15	16.8	76.92	961.54	12.500
Araneidae	Neoscona	nunctigera	1.85	4.25	1.08	32.7	124.62	955.38	7.667
Salticidae	Mvrmarachne	japonica	1.03	19.5	1.17	8.3	53.08	953.08	17.957
Araneidae	Araneus	uvemurai	2.75	9,75	1.05	26.8	143.85	951.54	6.615
Theridiidae	Platnickina	sterninotata	0.63	10.7	1.14	11.3	72.31	949.23	13.128
Araneidae	Nenhilenous	malaharensis	1 57	12 3	1 12	17.6	83.85	945 38	11 275
Araneidae	Nephilenovs	malabarensis	4.96	13.2	1,12	15.4	83.08	944 62	11,370
Araneidae	-	sn	0.94	6 89	1 09	25	102 31	940 77	9 195
Tetragnathidae	leucoure	celebesiana	1 22	7.05	1 15	15	55 28	940.00	16 972
Ivcosidae	Trachasa	ruricala	0 / 1	6.2	1.15	15	62 21	939 22	15 074
Lycosidae	110611050	типсоти	0.41	0.2	1.14	13.1	02.31	JJJ.23	13.074

www.advancedsciencenews.com

Family	Genus	Species	<i>d</i> [μm]	E [GPa]	$\sigma_{\!f}[{\rm GPa}]$	ϵ_f [%]	t [J g ⁻¹]	T [J g ⁻¹]	G = T/t
Araneidae	Parawixia	dehaani	2.66	5.98	1.12	26.9	76.15	937.69	12.313
Araneidae	Nephilengys	malabarensis	5.58	6.3	1.04	28.9	137.69	937.69	6.810
Araneidae	Thelacantha	brevispina	1.08	8.62	1.08	28	106.15	936.92	8.826
Araneidae	Trichonephila	clavata	2.68	9.05	1.12	16.9	70.77	932.31	13.174
Pisauridae	Dolomedes	yawatai	0.82	10.7	1.08	20	101.54	932.31	9.182
Pisauridae	-	sp.	0.65	3.53	1.13	18.5	61.54	930.77	15.125
Araneidae	Gasteracantha	kuhli	2.38	6.16	1.01	36.2	150.00	926.92	6.179
Araneidae	Neoscona	mellotteei	1.75	7.54	1.04	27.2	120.77	920.77	7.624
Araneidae	Cryptaranea	sp.	2.13	8.73	1.09	18.7	81.54	920.00	11.283
Araneidae	Eriophora	sp.	0.42	5.76	1.04	24	118.46	918.46	7.753
Tetragnathidae	Tylorida	ventralis	0.71	8.39	1.07	23.1	95.38	918.46	9.629
Tetragnathidae	Metellina	merianae	0.79	12.4	1.13	9.8	48.46	917.69	18.937
Pisauridae	Dolomedes	sp.	1.1	12.1	1.09	15.9	77.69	916.15	11.792
Araneidae	Argiope	amoena	4.56	9.61	1.09	16.4	74.62	913.08	12.237
Theridiidae	Parasteatoda	sp.	0.74	6.34	1.04	26.8	110.00	910.00	8.273
Araneidae	Micrathena	sagittata	0.95	15.5	1.04	20.8	108.46	908.46	8.376
Araneidae	Gasteracantha	cancriformis	2.56	8.62	1.03	26.9	113.08	905.38	8.007
Araneidae	Acrosomoides	sp.	2.23	9.02	1.02	26.1	112.31	896.92	7.986
Araneidae	Araneus	diadematus	1.39	6	1.08	17.8	63.08	893.85	14.171
Araneidae	Cyclosa	bifida	0.75	2.49	1.06	25.8	76.15	891.54	11.707
Araneidae	Araneus	amabilis	2.7	6.85	1.03	25.3	97.69	890.00	9.110
Theridiidae	Chrysso	sp.	0.72	5.51	1.05	18.4	81.54	889.23	10.906
Araneidae	Araneus	seminiger	7.95	6.85	0.98	32.9	134.62	888.46	6.600
Araneidae	Neoscona	scylloides	0.45	4.92	1	28.4	114.62	883.85	7.711
Araneidae	Cyrtophora	unicolor	1.69	6.07	1.06	16.5	68.46	883.85	12.910
Araneidae	Neoscona	scylla	1.28	6.48	1.01	26.7	106.92	883.85	8.266
Araneidae	Gibbaranea	abscissa	1.08	7.36	0.99	24.4	106.15	867.69	8.174
Araneidae	Cyrtophora	unicolor	2.08	7.13	1	23.2	96.92	866.15	8.937
Araneidae	Araneus	macacus	2.44	6.41	1.04	17.9	64.62	864.62	13.381
Tetragnathidae	Tetragnatha	sp.	0.66	4.16	1.03	18.6	70.00	862.31	12.319
Thomisidae	Phrynarachne	ceylonica	0.28	12	1.05	10.7	50.77	858.46	16.909
Philodromidae	Philodromus	subaureolus	0.48	4.56	1.04	14.4	55.38	855.38	15.444
Araneidae	Araneus	pinguis	2.54	4.2	0.99	53.2	93.08	854.62	9.182
Tetragnathidae	Metleucauge	yunohamensis	1.12	9.3	0.97	19.4	107.69	853.85	7.929
Araneidae	Poltys	columnaris	2.16	7.88	0.97	23.4	105.38	851.54	8.080
Theridiidae	-	sp.	0.81	8.94	1	18	81.54	850.77	10.434
Araneidae	Argiope	ocula	4.46	7.2	1.01	19.7	73.85	850.77	11.521
Araneidae	Argiope	bruennichi	2.09	8.16	1.02	18.7	66.15	850.77	12.860
Araneidae	Argiope	sp.	4.26	9.51	1.02	16.3	63.08	847.69	13.439
Araneidae	Neoscona	sp.	2.07	6.84	0.97	30.8	100.00	846.15	8.462
Araneidae	Larinia	argiopiformis	1.3	10.1	1.03	12.2	46.92	839.23	17.885
Theridiidae	Nihonhimea	japonica	0.59	4.64	1	20.2	69.23	838.46	12.111
Theridiidae	Latrodectus	geometricus	2.49	9.77	0.97	19.6	90.77	836.92	9.220
Araneidae	Mecynogea	lemniscata	0.69	7.63	1.01	11.2	59.23	836.15	14.117
Araneidae	Thelacantha	brevispina	1.61	7.1	0.99	20.5	71.54	833.08	11.645
Pisauridae	Dolomedes	saganus	0.8	10.5	1.04	8.7	32.31	832.31	25.762
Araneidae	Yaginumia	sia	0.87	10.1	0.97	16.7	81.54	827.69	10.151
Araneidae	Yaginumia	sia	1.19	8.79	0.96	19.7	89.23	827.69	9.276
Araneidae	Poecilopachys	australasia	1.49	7.89	0.95	23.7	94.62	825.38	8.724
Araneidae	Nephila	pilipes	1.95	5.59	0.98	19.5	68.46	822.31	12.011
									(Continued)

www.advancedsciencenews.com

Family	Genus	Species	<i>d</i> [μm]	E [GPa]	$\sigma_f[{ m GPa}]$	ϵ_{f} [%]	t [J g ⁻¹]	T [J g ⁻¹]	G = T/t
Araneidae	Cyclosa	sp.	0.37	8.38	1	10.8	41.54	810.77	19.519
Desidae	Badumna	sp.	0.79	7.37	0.97	16.4	63.85	810.00	12.687
Viridasiidae	Vulsor	sp.	1.25	10.5	0.96	14.5	68.46	806.92	11.787
Araneidae	Araneus	amabilis	1.72	6.17	0.92	25.7	98.46	806.15	8.188
Araneidae	Cyrtarachne	akirai	3.21	12.1	0.94	17.3	80.00	803.08	10.038
Araneidae	Cyclosa	laticauda	1.96	8.02	0.94	21.9	79.23	802.31	10.126
Araneidae	Argiope	sp.	1.14	6.67	0.86	36	140.00	801.54	5.725
Araneidae	Argiope	minuta	2.34	8.29	0.93	20.3	81.54	796.92	9.774
Tetragnathidae	Leucauge	subblanda	0.59	6.25	0.96	14.7	58.46	796.92	13.632
Tetragnathidae	Tetragnatha	ceylonica	0.93	8.43	0.91	21.7	96.92	796.92	8.222
Araneidae	Zygiella	hiramatsui	0.57	2.34	0.92	29.8	85.38	793.08	9.288
Araneidae	Parawixia	dehaani	3.33	8	0.94	18.3	69.23	792.31	11.444
Araneidae	Araneus	mitificus	1.97	7.19	0.87	32	121.54	790.77	6.506
Tetragnathidae	Orsinome	sp.	1	7.64	0.94	18.2	66.15	789.23	11.930
Pisauridae	Pisaura	bicornis	0.68	3.23	0.97	17.9	42.31	788.46	18.636
Tetragnathidae	Metleucauge	kompirensis	1.24	5.65	0.94	16.5	60.00	783.08	13.051
Theridiidae	Enoplognatha	margarita	0.43	14.2	0.98	7	28.46	782.31	27.486
Araneidae	Eustala	anastera	1.19	8.17	0.91	18	81.54	781.54	9.585
Pholcidae	Holocnemus	pluchei	0.43	7.62	0.92	18.3	64.62	772.31	11.952
Theridiidae	Nihonhimea	japonica	0.88	8.82	0.89	21	87.69	772.31	8.807
Araneidae	Neoscona	mellotteei	1.23	5.21	0.87	27.4	103.08	772.31	7.493
Agelenidae	Agelenopsis	sp.	1	6.72	0.95	10.8	40.77	771.54	18.925
Oxyopidae	Oxyopes	sp.	0.46	2.98	0.93	18.7	55.38	770.77	13.917
Araneidae	Argiope	aetheroides	2.87	7.06	0.89	24.3	86.15	770.77	8.946
Araneidae	Gasteracantha	diadesmia	2.42	5.85	0.89	26.5	83.85	768.46	9.165
Araneidae	Araneus	sp.	1.74	6.64	0.87	26.8	99.23	768.46	7.744
Araneidae	Plebs	astridae	1.18	8.58	0.92	16.4	57.69	765.38	13.267
Araneidae	Argiope	bruennichi	4.19	10.1	0.93	11.9	46.15	761.54	16.500
Araneidae	Thelacantha	brevispina	3	4.5	0.83	35.5	120.77	759.23	6.287
Araneidae	Gasteracantha	sp.	3.46	4.5	0.83	31.8	116.15	754.62	6.497
Tetragnathidae	Leucauge	sp.	2.06	9.3	0.82	34.4	119.23	750.00	6.290
Thomisidae	Oxytate	hoshizuna	0.57	10.6	0.9	10.8	53.85	746.15	13.857
Tetragnathidae	Tetragnatha	makiharai	0.68	5.01	0.91	13.2	44.62	744.62	16.690
Thomisidae	Oxytate	striatipes	1.3	10.9	0.86	17.6	77.69	739.23	9.515
Tetragnathidae	Metellina	mengei	0.56	3.39	0.88	17.9	56.15	733.08	13.055
Uloboridae	Octonoba	yesoensis	0.75	3.57	0.85	43.2	74.62	728.46	9.763
Tetragnathidae	Tetragnatha	praedonia	1.25	8.61	0.87	16.6	59.23	728.46	12.299
Araneidae	Trichonephila	plumipes	1.25	7.81	0.81	28.2	103.85	726.92	7.000
Tetragnathidae	Zhinu	reticuloides	0.89	10.2	0.88	13.4	49.23	726.15	14.750
Theridiidae	Parasteatoda	sp.	2.25	10.4	0.81	8.9	100.77	723.85	7.183
Salticidae	Pancorius	submontanus	0.64	15.8	0.91	5.4	21.54	721.54	33.500
Theridiidae	Parasteatoda	tepidariorum	2.43	9.46	0.79	18.8	110.77	718.46	6.486
Araneidae	Argiope	amoena	4.94	8.31	0.87	15.2	47.69	716.92	15.032
Pisauridae	Dolomedes	pegasus	2.58	13.4	0.85	15.4	58.46	712.31	12.184
Tetragnathidae	Zhinu	reticuloides	0.92	10	0.86	16.2	49.23	710.77	14.438
Salticidae	Portia	fimbriata	0.8	4.5	0.85	16.4	46.92	700.77	14.934
Tetragnathidae	Tetragnatha	sp.	1.11	6.48	0.84	17.1	53.08	699.23	13.174
Theridiidae	Parasteatoda	ryukyu	0.89	8.1	0.81	20.8	73.08	696.15	9.526
Dictynidae	Dictyna	felis	0.67	9.06	0.84	13	47.69	693.85	14.548
Salticidae	Plexippoides	doenitzi	1.18	8.41	0.77	25.2	101.54	693.85	6.833
									(Continued)

www.advancedsciencenews.com

Family	Genus	Species	d [µm]	E [GPa]	$\sigma_{\!f}[{ m GPa}]$	ϵ_f [%]	t [J g ⁻¹]	T [J g ⁻¹]	G = T/t
Agelenidae	Agelena	silvatica	0.83	14.1	0.81	17.8	69.23	692.31	10.000
Pisauridae	Dolomedes	raptor	0.72	6.74	0.82	16.4	61.54	692.31	11.250
Araneidae	Cyclosa	mulmeinensis	0.64	3.41	0.81	24.5	67.69	690.77	10.205
Uloboridae	Octonoba	yesoensis	0.7	5.98	0.83	16.4	52.31	690.77	13.206
Araneidae	Neoscona	scylloides	2.85	3.21	0.77	35.4	96.92	689.23	7.111
Araneidae	Neoscona	theisi	1.07	13	0.79	20.3	81.54	689.23	8.453
Cheiracanthiidae	Cheiracanthium	japonicum	0.48	14.2	0.82	14.3	54.62	685.38	12.549
Theridiidae	Chrysso	scintillans	1.1	6.2	0.78	34.7	83.85	683.85	8.156
Theridiidae	Enoplognatha	abrupta	1.37	10	0.81	14.2	56.92	680.00	11.946
Araneidae	Cyrtophora	exanthematica	3.19	7.1	0.81	17	56.92	680.00	11.946
Araneidae	Neoscona	subpullata	1.16	6.31	0.8	18.6	63.85	679.23	10.639
Theridiidae	Ariamnes	cylindrogaster	1.26	7.05	0.79	20.6	71.54	679.23	9.495
Theridiidae	Spheropistha	melanosoma	0.62	4.54	0.8	19.2	62.31	677.69	10.877
Araneidae	Neoscona	sp.	0.8	2.9	0.82	19.1	46.15	676.92	14.667
Theridiidae	Rhomphaea	sp.	0.54	1.9	0.77	31.1	80.00	672.31	8.404
Sparassidae	Heteropoda	venatoria	1.84	7.57	0.75	27.2	92.31	669.23	7.250
Oxyopidae	Oxyopes	sertatus	1.77	5.58	0.78	19	68.46	668.46	9.764
Lycosidae	Piratula	iriomotensis	2.43	7.89	0.74	26.7	96.92	666.15	6.873
Sparassidae	Sinopoda	forcipata	3.71	8.47	0.74	24.6	96.15	665.38	6.920
Araneidae	Cyrtarachne	bufo	1.23	10.3	0.73	25.9	93.08	654.62	7.033
Araneidae	Neoscona	subpullata	0.73	11.1	0.78	13.1	53.85	653.85	12.143
Philodromidae	Tibellus	oblongus	1.14	5.91	0.8	11.5	37.69	653.08	17.327
Araneidae	Neoscona	scylla	1.83	3.99	0.75	25.5	75.38	652.31	8.653
Araneidae	Larinioides	cornutus	1.64	6.42	0.75	20.9	74.62	651.54	8.732
Araneidae	Cyrtophora	unicolor	0.64	4.42	0.76	18.5	65.38	650.00	9.941
Pisauridae	Dolomedes	orion	2.42	11.6	0.76	16.1	63.85	648.46	10.157
Salticidae	Sibianor	pullus	0.4	6.65	0.77	13.5	50.77	643.08	12.667
Araneidae	Neoscona	theisi	1.19	6.68	0.76	16	58.46	643.08	11.000
Araneidae	Neoscona	adianta	1.36	4.31	0.71	28.2	96.92	643.08	6.635
Araneidae	Zygiella	x-notata	0.57	5.87	0.75	14.7	60.77	637.69	10.494
Theridiidae	Nesticodes	rufipes	0.38	3.26	0.76	19.8	52.31	636.92	12.176
Araneidae	Araneus	sp.	0.96	4.29	0.74	20.3	56.92	626.15	11.000
Salticidae	Portia	sp.	1.2	10.8	0.77	8.8	31.54	623.85	19.780
Salticidae	Yaginumanis	sexdentatus	1.33	9.07	0.7	21	82.31	620.77	7.542
Salticidae	Yaginumaella	striatipes	2.08	1.29	0.79	28.2	3.85	611.54	159.000
Araneidae	Gasteracantha	sp.	2.33	4.11	0.72	19	48.46	602.31	12.429
Pisauridae	Dolomedes	silvicola	0.87	6.19	0.73	13.1	38.46	600.00	15.600
Araneidae	Araneus	diadematus	1.27	9.16	0.68	21.2	75.38	598.46	7.939
Theridiidae	Argyrodes	bonadea	0.65	1.65	0.71	25.6	51.54	597.69	11.597
Uloboridae	Uloborus	sp.	0.64	5.73	0.68	19.6	63.08	586.15	9.293
Araneidae	Cyrtophora	moluccensis	2.18	10.9	0.66	21.8	76.92	584.62	7.600
Salticidae	Burmattus	pococki	0.56	9.44	0.73	5.9	16.15	577.69	35.762
Salticidae	Phintelloides	versicolor	0.69	8.74	0.72	7.7	23.85	577.69	24.226
Araneidae	Neoscona	nautica	2.09	6.33	0.7	13.1	38.46	576.92	15.000
Tetragnathidae	Tetragnatha	praedonia	0.87	6.36	0.67	21.3	60.77	576.15	9.481
Salticidae	Menemerus	fulvus	0.67	7.85	0.72	6.7	22.31	576.15	25.828
Araneidae	Araneus	ventricosus	4.68	6.72	0.62	28.9	99.23	576.15	5.806
Araneidae	_	sp.	0.45	3.07	0.71	13.2	27.69	573.85	20.722
Araneidae	Gasteracantha	kuhli	2	3.23	0.64	30.9	78.46	570.77	7.275
Pholcidae	Pholcus	opilionoides	0.57	8.93	0.68	14.4	45.38	568.46	12.525
									(Continued)

www.advancedsciencenews.com

Family	Genus	Species	<i>d</i> [μm]	E [GPa]	$\sigma_{\!f}[{\rm GPa}]$	ϵ_f [%]	t [J g ⁻¹]	T [J g ⁻¹]	G = T/t
Araneidae	Yaginumia	sia	1.91	5.48	0.65	22.5	66.15	566.15	8.558
Psechridae	Psechrus	sp.	2.42	5.96	0.66	18.2	56.15	563.85	10.041
Tetragnathidae	Leucauge	blanda	1.16	7.58	0.66	17.3	51.54	559.23	10.851
Araneidae	Trichonephila	antipodiana	6.29	4.71	0.55	49.9	130.77	553.85	4.235
Theridiidae	Dipoena	punctisparsa	1.16	6.03	0.64	20.3	58.46	550.77	9.421
Araneidae	Cyrtophora	unicolor	0.72	5.08	0.67	12.2	33.08	548.46	16.581
Araneidae	Araneus	ventricosus	2.69	2.59	0.6	31	78.46	540.00	6.882
Pisauridae	Dolomedes	sulfureus	2.86	9.26	0.63	13.9	47.69	532.31	11.161
Araneidae	Cyclosa	confusa	1.17	5.29	0.64	16.3	38.46	530.77	13.800
Theridiidae	Chrysso	viridiventris	0.56	2.75	0.65	14.6	27.69	527.69	19.056
Araneidae	Araneus	ishisawai	2.3	9.6	0.63	12.1	38.46	523.08	13.600
Thomisidae	Oxytate	striatipes	1.35	10.1	0.64	9.9	30.00	522.31	17.410
Theridiidae	Parasteatoda	ryukyu	1.26	5.74	0.62	15.2	44.62	521.54	11.690
Araneidae	Neoscona	adianta	1.9	5.76	0.59	20.7	50.77	504.62	9.939
Tetragnathidae	Tetragnatha	tanigawai	0.54	2.93	0.62	14.5	26.92	503.85	18.714
Araneidae	Neoscona	mellotteei	2.76	5.02	0.58	22.4	55.38	501.54	9.056
Salticidae	Epeus	sumatranus	0.56	8.46	0.63	5.1	12.31	496.92	40.375
Clubionidae	Clubiona	sp.	1.38	4.69	0.54	30.8	79.23	494.62	6.243
Pisauridae	Dolomedes	sulfureus	1.28	5.63	0.6	11.9	30.77	492.31	16.000
Araneidae	Neoscona	sp.	2.07	4.23	0.59	17	35.38	489.23	13.826
Theridiidae	Cryptachaea	gigantipes	1.04	3.47	0.57	20.2	49.23	487.69	9.906
Theridiidae	Chrysso	foliata	1.09	4.07	0.58	17	40.77	486.92	11.943
Araneidae	Nephilingis	livida	2.63	6.7	0.53	25.3	73.08	480.77	6.579
Agelenidae	Allagelena	opulenta	1.67	5.14	0.54	20.2	58.46	473.85	8.105
Araneidae	Thelacantha	brevispina	4.63	3.15	0.52	36.1	69.23	469.23	6.778
Araneidae	Arachnura	melanura	0.53	6.41	0.55	20.5	44.62	467.69	10.483
Pisauridae	Hygropoda	higenaga	1.45	6.03	0.55	11.4	25.38	448.46	17.667
Thomisidae	Bassaniana	decorata	0.77	4.25	0.55	9.6	19.23	442.31	23.000
Araneidae	Larinia	fusiformis	0.79	2.57	0.54	14.4	26.15	441.54	16.882
Tetragnathidae	Leucauge	celebesiana	0.89	2.09	0.53	18.4	33.08	440.77	13.326
Araneidae	Araneus	acusisetus	1.23	3.26	0.5	19.7	40.77	425.38	10.434
Uloboridae	Hyptiotes	affinis	1.13	2.98	0.49	22.2	39.23	416.15	10.608
Araneidae	Araneus	pinguis	6.29	5.83	0.49	18.1	35.38	412.31	11.652
Araneidae	Araneus	marmoreus	2.07	6.99	0.5	8.1	17.69	402.31	22.739
Salticidae	Telamonia	vlijmi	0.77	5.46	0.49	6.9	10.77	387.69	36.000
Thomisidae	Oxytate	hoshizuna	0.7	2.11	0.46	14.7	21.54	375.38	17.429
Agelenidae	Allagelena	donggukensis	0.74	2.85	0.44	17.4	28.46	366.92	12.892
Araneidae	Eustala	anastera	1.25	4.21	0.45	9.9	19.23	365.38	19.000
Cheiracanthiidae	Cheiracanthium	sp.	0.61	2.15	0.42	13.1	22.31	345.38	15.483
Araneidae	Araneus	pentagrammicus	1.09	2.19	0.36	34.5	38.46	315.38	8.200
Hersiliidae	-	sp.	0.49	0.38	0.34	48.9	49.23	310.77	6.313
Salticidae	Marpissa	milleri	1.08	2.83	0.33	25	26.92	280.77	10.429
Araneidae	Cyclosa	hamulata	1.18	1.68	0.33	16.7	23.08	276.92	12.000
Salticidae	Pancorius	crassipes	1.5	4.05	0.31	22.9	36.92	275.38	7.458
Pisauridae	-	sp.	1.31	2.85	0.32	13.4	16.15	262.31	16.238
Thomisidae	Thomisus	kitamurai	1.45	2.85	0.31	9.8	10.77	249.23	23.143
Araneidae	_	sp.	1.58	1.01	0.17	15.3	11.54	142.31	12.333

Figure 2. Asbhy's Plot of y = T (gigantic toughness of spiders evolved with knotting abilities) versus x = t (toughness of current spiders, unable to realize knots).

This same advantage of course applies to other animals that produce (or use) silk or silk-like fibers, each adapting the material for various purposes, from building nests and cocoons to anchoring and protection. These best well-known animals include -in addition to spiders- silkworms (e.g., Bombyx mori, produce silk cocoons for metamorphosis; the silk from these cocoons is the primary source of silk used in the textile industry), moths and butterflies (some moth and butterfly larvae produce silk to construct cocoons or protective shelters), weaver ants (the larvae of some ant species produce silk, which adult ants use to build nests by binding leaves and branches together), mussels and other bivalve mollusks (may produce byssus, a silk-like thread used to anchor themselves to rocks and prevent dislodging by ocean currents), pine processionary caterpillars (may produce silk threads to create communal nests and pathways, especially during group development), silk mites (some mites produce silk threads for building shelters and moving across vertical surfaces), bees

Figure 3. A futuristic Clubionidae, *Clubiona, vigil* (https://spider-silkome. org/organisms/403) spider, the one emerged with the highest gigantic toughness *T*, hypothetically doing a spiderweb with loops/knots in the radial threads, in order to increase (by about one order of magnitude, see Table 1) the dissipated specific energy (image adapted by Vincenzo Fazio).

and bumblebees (for certain types of nests, some bee species use silk-like secretions to build small structures within their nests), etc. (ii).

www.afm-journal.de

More in general, this new concept could have important consequences in Biology as already discussed by the author in ref. [43]. In particular, proteins separated by a billion years of evolution often display slipknots, also observed in DNA strands, and are conserved in different families and species. This happens even if the folding process resulting in the formation of knots is intrinsically more energetically expensive and topologically difficult than the process of producing unknotted proteins. Thus knotting might seem unlikely to occur during evolution but, in contrast and still surprising,^[48] it does regularly occur. Thus, despite the larger energy cost and topological difficulty in the formation of knots, they are somehow advantageous and important to the function of the protein. Biological structures may have evolved with knots in order to easily and dramatically (1-2 folds, as we have here demonstrated for the example of spider silk) increase their robustness. This huge robustness enhancement of the protein could be crucial for resisting against different types of diseases and thus better preserving life (iii).

Conflict of Interest

The author declares no conflict of interest.

Keywords

friction, knot, loop, spider silk, toughness

Received: November 8, 2024 Revised: December 12, 2024 Published online: January 7, 2025

- R. F. Foelix, *Biology of Spiders*, Third Edition, Oxford University Press, Oxford, UK 2011.
- [2] N. M. Pugno, Meccanica 2018, 53, 1105.
- [3] G. Greco, N. M. Pugno, J. R. Soc., Interface 2021, 18, 175.
- [4] J. M. Gosline, P. A. Guerette, C. S. Ortlepp, K. N. Savage, J. Exp. Biol. 1999, 202, 3295.
- [5] V. F. Dal Poggetto, F. Bosia, M. Miniaci, N. M. Pugno, *Mater. Des.* 2021, 209, 109980.
- [6] T. Arndt, G. Greco, B. Schmuck, J. Bunz, O. Shilkova, J. Francis, N. M. Pugno, K. Jaudzems, A. Barth, J. Johansson, A. Rising, *Adv. Funct. Mater.* 2022, *32*, 2200986.
- [7] F. Vollrath, Sci. Am. 1992, 266, 70.
- [8] S. W. Cranford, N. M. Pugno, M. J. Buehler, Silk and Web Synergy: The Merging of Material and Structural Performance, Biotechnology of Silk, Springer, Berlin, Germany 2014, pp. 219-268.
- [9] S. W. Cranford, A. Tarakanova, N. Pugno, M. J. Buehler, *Nature* 2012, 482, 72.
- [10] N. M. Pugno, S. Cranford, M. J. Buehler, Small 2013, 9, 2747.
- [11] G. Greco, M. F. Pantano, B. Mazzolai, N. Pugno, Sci. Rep. 2019, 9, 5776.
- [12] J. O. Wolff, G. B. Paterno, D. Liprandi, M. J. Ramírez, F. Bosia, A. van der Meijden, P. Michalik, H. M. Smith, B. R. Jones, A. M. Ravelo, N. M. Pugno, M. E. Herberstein, *Evolution* **2019**, *73*, 2122.
- [13] N. M. Pugno, J. Mechan. Phys. Solids 2010, 58, 1397.

www.advancedsciencenews.com

- [14] N. M. Pugno, Acta Astronaut. 2013, 82, 221.
- [15] S. Jaddi, M. W. Malik, B. Wang, N. M. Pugno, Y. Zeng, M. Coulombier, J. P. Raskin, T. Pardoen, *Nat. Commun.* **2024**, *15*, 5863.
- [16] A. Carpinteri, N. Pugno, Nat. Mater. 2005, 4, 421.
- [17] A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, *Nature* 2003, 423, 703.
- [18] P. Miaudet, S. Badaire, M. Maugey, A. Derr, V. Pichot, P. Launois, P. Poulin, C. Zakri, *Nano Lett.* 2005, *5*, 2212.
- [19] M. K. Shin, B. Lee, S. H. Kim, J. A. Lee, G. Spinks, S. Gambhir, G. G. Wallace, M. E. Kozlov, R. H. Baughman, S. J. Kim, *Nat. Commun.* 2012, *3*, 650.
- [20] I. Agnarsson, M. Kuntner, T. A. Blackledge, PLoS One 2010, 5, e11234.
- [21] E. Lepore, F. Bosia, F. Bonaccorso, M. Bruna, S. Taioli, G. Garberoglio, A. C. Ferrari, N. M. Pugno, 2D Mater. 2017, 4, 031013.
- [22] G. Greco, L. Valentini, N. M. Pugno, APL Mater. 2022, 10, 101111.
- [23] N. M. Pugno, L. Valentini, Nanoscale 2019, 11, 3102.
- [24] N. M. Pugno, Matter 2023, 6, 2621.
- [25] F. Teule, A. R. Cooper, W. A. Furin, D. Bittencourt, E. L. Rech, A. Brooks, R. V. Lewis, *Nat. Protoc.* 2009, 4, 341.
- [26] X. X. Xia, Z. G. Qian, C. S. Ki, Y. H. Park, D. L. Kaplan, S. Y. Lee, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 14059.
- [27] Q. Peng, Y. Zhang, L. Lu, H. Shao, K. Qin, X. Hu, X. Xia, Sci. Rep. 2016, 6, 36473.
- [28] A. Heidebrecht, L. Eisoldt, J. Diehl, A. Schmidt, M. Geffers, G. Lang, T. Scheibel, Adv. Mater. 2015, 27, 2189.
- [29] C. G. Copeland, B. E. Bell, C. D. Christensen, R. V. Lewis, ACS Biomater. Sci. Eng. 2015, 1, 577.
- [30] M. Andersson, Q. Jia, A. Abella, X. Y. Lee, M. Landreh, P. Purhonen, H. Hebert, M. Tenje, C. v. Robinson, Q. Meng, G. R. Plaza, J. Johansson, A. Rising, *Nat. Chem. Biol.* **2017**, *13*, 262.
- [31] W. Finnigan, A. D. Roberts, C. Ligorio, N. S. Scrutton, R. Breitling, J. J. Blaker, E. Takano, *Sci. Rep.* **2020**, *10*, 10671.
- [32] N. Gonska, P. A. López, P. Lozano-Picazo, M. Thorpe, G. V. Guinea, J. Johansson, A. Barth, J. Pérez-Rigueiro, A. Rising, *Biomacromolecules* 2020, 21, 2116.
- [33] G. Greco, J. Francis, T. Arndt, B. Schmuck, F. G. Bäcklund, A. Barth, J. Johansson, N. M. Pugno, A. Rising, *Molecules* **2020**, *25*, 3248.
- [34] G. Greco, B. Schmuck, L. Del Bianco, F. Spizzo, L. Fambri, N. M. Pugno, S. Veintemillas-Verdaguer, M. P. Morales, A. Rising, Adv. Compos. Hybrid Mater. 2024, 7, 163.

[35] V. Fazio, D. Tommasi, N. M. Pugno, G. Puglisi, J. Mech. Phys. Solids 2022, 164, 104857.

www.afm-journal.de

- [36] V. Fazio, N. M. Pugno, G. Puglisi, Extrem. Mechan. Lett. 2023, 61, 102010.
- [37] V. Fazio, N. M. Pugno, O. Giustolisi, G. Puglisi, Cell Rep. Phys. Sci. 2024, 5, 101790.
- [38] A. Pandey, W. Chen, S. Keten, Commun. Mater. 2024, 5, 83.
- [39] A. Nova, S. Keten, N. Pugno, A. Redaelli, M. J. Buehler, *Nano Lett.* 2010, 10, 2626.
- [40] T. Giesa, M. Arslan, N. M. Pugno, M. J. Buehler, Nano Lett. 2011, 11, 5048.
- [41] S. Lin, S. Ryu, O. Tokareva, G. Gronau, M. M. Jakobsen, W. Huang, D. J. Rizzo, D. Li, C. Staii, N. M. Pugno, J. Y. Wong, D. L. Kaplan, M. J. Buehler, *Nat. Commun.* **2015**, *6*, 6892.
- [42] F. Bosia, M. Buehler, N. M. Pugno, Phys. Rev. E 2010, 82, 056103.
- [43] N. Pugno, PLoS One 2014, 9, E93079.
- [44] F. Bosia, E. Lepore, N. T. Alvarez, P. Miller, V. Shanov, N. M. Pugno, *Carbon* 2016, 102, 116.
- [45] M. F. Pantano, A. Berardo, N. M. Pugno, Sci. Rep. 2016, 6, 18222.
- [46] A. Berardo, M. F. Pantano, N. M. Pugno, Interface Focus 2016, 6, 20150160.
- [47] G. Puglisi, N. M. Pugno, Int. J. Eng. Sci. 2022, 176, 103673.
- [48] L. Tubiana, G. P. Alexander, A. Barbensi, D. Buck, J. H. E. Cartwright, M. Chwastyk, M. Cieplak, I. Coluzza, S. Copar, D. J. Craik, M. Di Stefano, R. Everaers, P. F. N. Faísca, F. Ferrari, A. Giacometti, D. Goundaroulis, E. Haglund, Y.-M. Hou, N. Ilieva, S. E. Jackson, A. Japaridze, N. Kaplan, A. R. Klotz, H. Li, C. N. Likos, E. Locatelli, T. López-León, T. Machon, C. Micheletti, D. Michieletto, et al., *Phys. Rep.* **2024**, *1075*, 1137.
- [49] K. Arakawa, N. Kono, A. D. Malay, A. Tateishi, N. Ifuku, H. Masunaga, R. Sato, K. Tsuchiya, R. Ohtoshi, D. Pedrazzoli, A. Shinohara, Y. Ito, H. Nakamura, A. Tanikawa, Y. Suzuki, T. Ichikawa, S. Fujita, M. Fujiwara, M. Tomita, S. J. Blamires, J. Chuah, H. Craig, C. P. Foong, G. Greco, J. Guan, C. Holland, D. L. Kaplan, K. Sudesh, B. B. Mandal, Y. Norma-Rashid, et al., *Sci. Adv.* **2022**, *8*, eabo6043.
- [50] J. Garrote, V. Ruiz, O. P. Troncoso, F. G. Torres, M. Arnedo, M. Elices, G. V. Guinea, J. Pérez-Rigueiro, J. Mech. Behav. Biomed. Mater. 2020, 111, 104023.
- [51] S. Blamires, P. Lozano-Picazo, A. L. Bruno, M. Arnedo, Y. Ruiz-León, D. González-Nieto, F. J. Rojo, M. Elices, G. Víctor Guinea, J. Pérez-Rigueiro, J. Mech. Behav. Biomed. Mater. 2023, 140, 105729.

Nicola Maria Pugno (born 4 January 1972) is a mechanical engineer, and physicist, with PhDs in fracture mechanics and biology. He is a professor of solid and structural mechanics at the University of Trento and of materials science at the Queen Mary University of London (part-time). He has been selected as member of several committees such as the technical and scientific committee of the Italian Space Agency and as plenary speaker in several international workshops, events, and conferences, such as at Falling Walls, at the World Economic Forum, and at the European Parliament invited by the European Research Council as well as –as opening plenary speaker– at the quadrennial International Conference of Theoretical and Applied Mechanics. Since 2011, he has received several grants also from the European Union within the Excellent Science pillars for both fundamental science and high-tech transfer, that he is developing for several high-tech industries. He has received the A. A. Griffith Medal and Prize in 2017 and the Humboldt Research Award in 2022.