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A B S T R A C T

Origami extends beyond intricate paper creations, envisioning revolutionary engineering applications. While
3D printing has simplified fabricating complex structures, Kresling origami remains predominantly paper based
due to the challenge of achieving multistable behavior, especially at a small scale. Our study focuses on
investigating modifications to the energy landscape induced by changes in crease geometrical parameters,
addressing the effects of viscoelasticity in the creases. The latter aspect is investigated using different rubbery
materials with varying relaxation moduli. Considering the limitations of manufacturing techniques, we also
provide design insights for crease geometry and distribution, along with photopolymers suitable for fabricating
both multi- and monomaterial bistable cells, at both micro- and macro- scales. By leveraging 3D printing and
overcoming its material and technological constraints, our goal is to contribute to a deeper understanding of
the mechanics of 3D printed materials and broaden their applications into new frontiers.
1. Introduction

Once origami has surpassed the barrier of being merely decorative
folded paper objects, it has become a source of inspiration for creating
groundbreaking devices across various engineering fields [1]. Kresling
origami is currently one of the most studied origami patterns for the
development of versatile structures, particularly in the programmable
soft robotics area [2–9], highly deployable and energy absorption
devices [10–14], and wave control metastructures [15–18]. Kresling
origami is considered a natural twisted buckling shape that results
from the compression of two interacting tubes. This pattern can also
be identified in nature, for example, in the bellows shapes found in
the abdomen of hawk-moths [19,20]. The intrinsic bistability exhib-
ited by a single Kresling cell, permits the achievement of controlled
compliant mechanisms and in the case of coupled Kresling cell mod-
ules, multistability [21–27]. The material characteristics of the creases
play a key role in Kresling origami mechanics, regulating the contrac-
tion/expansion process, tailoring the overall stiffness, and leading to
mono or bistable behavior [28]. Thus, the creases become essential
components for controlling the energy landscape of the Kresling cell.
Manual, subtractive and additive manufacturing processes have been
used for the fabrication of Kresling structures with materials different
than the traditional paper or cardboard. This is mostly done at the
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macro and meso-scale. Since multi-material 3D printing techniques,
such as Material Jetting (MJ), Fused Deposition Modeling (FDM), or
Fused Filament Fabrication (FFF), enable a more direct methodology to
manufacture complex origami shapes and the use of rigid and flexible
materials during a single printing round, their popularity has been
increasing among academics and industry. There are current examples
that exploit these techniques for the fabrication of Kresling structures,
with panels made up of stiffer materials and softer creases that act
as hinges. It allows for a smoother transition between an expanded
and a compressed state, or vice-versa, by using different photopoly-
mers [29–31] or filaments [32–36]. In addition, the use of flexible
creases improves the fatigue resistance and life cycle of the Kresling
cells [37]. Resin-based techniques, such as MJ, offer the possibility
to build objects with high precision (layers 16–27 microns), a lower
level of anisotropy (<5%), smoother surface finishing, fewer support 
removal operations, stronger interface bond between rigid and flexible
parts, and a broader range of soft photopolymers for fabricating flexible
creases, compared to other multi-material printing processes. These
types of soft photopolymers are characterized by a long-range crys-
talline order, which enhances their mechanical strength and enables
tunable deformation responses  [38]. However, such 3D printing photo-
resins exhibit an inherent viscoelastic behavior [39] that can lead to a
https://doi.org/10.1016/j.eml.2025.102314
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temporary bistability in Kresling cells and a gradual loss of stiffness 
over time. Consequently, the expected achievement of this mechanical 
characteristic in theory tends to be compromised in practice, and the 
Kresling cells return to their initial configuration prematurely. More-
over, the technological limitations of most multi-material 3D printers 
could restrict the possibility of miniaturizing devices, especially in 
demanding sectors such as biomedical for the fabrication of drug 
delivery soft robotics. For instance, the minimum wall thickness is 
constrained by the nozzle size of extrusion printers in FDM and FFF 
techniques, typically ranging from 0.25 mm to 1.00 mm depending 
on the current printer series [40,41]. Regarding MJ, producing strong 
load-bearing elements with less than 1.0 mm thickness is restricted due 
to the likelihood of presenting defects [42]. Furthermore, the majority 
of the ‘‘micro-scale’’ printers currently available in the market still 
utilize a single photo-resin. Therefore, this limitation prevents direct 
fabrication of Kresling cells with the required difference in stiffness 
between rigid panels and soft creases, and this feature is essential 
for facilitating the characteristic contraction/expansion mechanism, as 
seen in multi-material techniques.

1.1. Motivation and outline

The outcomes of our study provide design insights for programming 
the energy landscape of 3D printed Kresling cells, counteracting the 
material and technological limitations in 3D printing. Our goal is 
to enable the manufacturing of more precise, reliable, scalable and 
multistable Kresling structures. We explored two main manufacturing 
approaches: Multi-material and Mono-material. In the multi-material 
scenario, rigid and rubbery photopolymers are assigned to the panels 
and creases, respectively. Although the bending of the panels plays a 
significant role in the folding of non-rigid Kresling cells, as seen in 
paper-based models, we chose to print the panels using rigid materials 
to better understand the role of the geometry of the creases on the 
energy landscape of the Kresling cell. Therefore, the primary folding 
relies mostly on the flexible, rubbery-like creases.

We initially defined the fundamental geometrical parameters of a 
cylindrical Kresling cell to achieve theoretical bistability and developed 
parametric 3D models based on this configuration, as illustrated in Fig. 
1A. However, the viscoelastic nature of rubbery photopolymers inter-
feres with practical bistability, causing the cell to prematurely return 
to its original configuration during the compression/expansion process. 
Then, we implemented a design strategy that involved gradually re-
ducing the cross-section of the crease geometries. This created peak 
and valley creases with V+circular shapes, variable widths (𝑤), and 
internal thicknesses (𝑠𝑖). A parametric study was conducted to assess 
the influence of these reductions on cross-section and rotational stiff-
ness, using Reduction Factors (𝑅𝐹 ) ranging from 0.25 ≤ 𝑅𝐹 ≤ 0.80, 
as shown in Fig.  1B. These gradual reductions facilitated transitions 
between bistable (Bi), and monostable (M) behavior, as detailed in the 
results Section 2.

The bistable behavior is related to a Kresling cell whose energy 
landscape exhibits a second local minimum of energy, and negative 
force in the load path. We categorized the behavior as monostable when 
the Kresling cell’s load path does not intersect its displacement axis at 
zero load [43].

Time-dependent stress–strain responses and energy loss are key 
characteristics of viscoelastic materials, which exhibit residual strain 
that recovers over time, allowing the material to return to its origi-
nal state. This results in temporary bistability. Once stress relaxation 
occurs, stability is lost, and the structure gradually returns to its ini-
tial configuration. In our second analysis, we evaluated these effects 
in bistable multi-material Kresling cells with rubbery photopolymer 
creases of varying relaxation moduli. In the numerical simulations, we 
considered elasto-plastic and visco-hyperelastic models with 3D hybrid 
formulation elements to accurately capture the mechanical behavior 
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of 3D-printed rigid and rubbery photopolymers, respectively. This ap-
proach offers a more realistic alternative to traditional 2D origami 
models, particularly for materials such as paper or thin polymeric 
sheets.

We experimentally validated the load paths and energy landscapes 
obtained numerically by testing 3D-printed Kresling cells fabricated 
using the Polyjet technique. In addition, we performed microscopic 
characterization of the rubbery creases to assess potential dimensional 
discrepancies between the CAD model and actual printed dimensions, 
as illustrated in Fig.  1C. Lastly, we explored alternative designs for 
a mono-material bistable cell, as depicted in Fig.  1D, aimed at mi-
crofabrication. The stiffness differences between creases and panels 
are achieved through geometric reductions, including voids along the 
peaks and valleys. Furthermore, we also investigated the effects of 
various 3D printing photo-resins on Kresling multistability and the 
programmability of monostable Kresling assemblies through crease 
stiffness distribution.

2. Results

2.1. Parametric study of creases geometry for bistability

First, we selected the following initial sizing configuration for the 
parametric design of 3D Kresling cells, shown in Fig.  1A: polygons 
with n=6 sides, initial relative angle  𝜃𝑜 = 𝜋∕6, and an aspect ratio 
ℎ𝑜∕𝑟=1.75, as detailed in sections S.1.1 and S.1.2 of Supplementary 
Materials and Methods. Initially, we analyzed Kresling cells with intact 
crease cross-sections. The results showed that their bistability was 
compromised by a sudden return to the initial configuration, attributed 
to the viscosity of the rubbery creases (as further explained in the 
Supplementary Text S.2.1).

As a design strategy to achieve bistability and program energy 
landscapes, we conducted a parametric study to assess how gradually 
reducing crease cross-sections influences the energy landscape. The 
geometrical changes illustrated in Fig.  1B were proposed based on the 
following procedure: The upper V-shape remained constant, preserving 
the crease width 𝑤, while the bottom part was gradually reduced by 
considering a variable cutting radius 𝑠𝑐 . It encompasses a circumference 
with its center at the extreme vertex 𝑂. Using imposed reduction 
factors, denoted as 𝑅𝐹 , we can control the decrease of the parameter 
𝑠𝑐 relative to the limiting crease radius 𝑟′, and thereby determine the 
extent of crease cross-section reduction. Accordingly, we can define the 
reduction factor as: 𝑅𝐹 = 𝑠𝑐∕𝑟′.

We then introduced a new geometrical parameter corresponding to 
the internal thickness 𝑠𝑖. This term represents the difference between 
the external thickness 𝑠 and the variable cutting-radius 𝑠𝑐 , which 
depends on the selected reduction factor 𝑅𝐹 . As the 𝑅𝐹  values in-
crease, the generated creases exhibit smaller internal thickness 𝑠𝑖 and 
these gradual reductions can be quantified as the ratios of the re-
duced to intact cross-sections, 𝐴̃∕𝐴, and their corresponding rotational 
stiffness, 𝐾̃∕𝐾. Here, the reduced cross-sections and corresponding 
rotational stiffness are denoted by 𝐴̃ and 𝐾̃, respectively, while the 
intact cross-section and its rotational stiffness are denoted as 𝐴 and 𝐾.

As a result, the proposed variable creases geometry consists of 
a combined V+circular typology, yielding a series of Kresling cell 
cases to be analyzed in terms of the parameters: 𝑤, 𝑅𝐹 , 𝑠𝑖, and 𝑠. 
Thereby, we introduced eleven main cases, C1 to C11, derived from 
the variation of the width with respect to the external thickness, 
expressed as the ratio 𝑤∕𝑠=0.50, 0.60, 0.75, 0.90, 1.07, 1.20, 1.35, 
1.50, 1.65, 1.80, 2.00. The gradual reductions applied to each of 
the main cases are represented by the variations in internal thick-
ness 𝑠𝑖, which directly depend on the reduction factors, denoted as 
𝑅𝐹= 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80. This process
subdivided each crease case into eight sub-cases, each correspond-
ing to one of the specified 𝑅𝐹  values. The load paths and stored 
energy landscapes of the generated geometrical combinations were 
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Fig. 1. 3D models of the Kresling cell. (A) Multi-material (MM) with crease design cases. (B) Crease cross-section gradual reductions derived from the former intact creases 
cross-sections, 𝐴, with a variable width–thickness ratio 𝑤∕𝑠, an internal thickness 𝑠𝑖 obtained from cutting radius 𝑠𝑐 and reduction factors 𝑅𝐹 . Here, 𝐴̃ and 𝐴 represent the 
reduced and intact cross-sections, respectively. Similarly, 𝐾̃ denotes the rotational stiffness of the reduced cross-sections, while 𝐾 corresponds to that of the intact cross- sections. 
(C) Comparison between 3D printed creases dimensions taken from microscope images and CAD files of case C8 with gradual reductions. Units: microns. Scale bar:1 mm. (D) 
Mono-material cases M-1 and M-2.
obtained through numerical simulations, as detailed in Supplementary 
Text S.2.2, using a multi-material approach. A rigid photopolymer 
(VB), modeled as an elasto-plastic material, was assigned to the panels. 
A rubbery photopolymer (DM60), modeled as a visco-hyperelastic 
material, was assigned to the creases. For this, we incorporated vis-
coelastic parameters into its characteristic hyperelastic behavior, such 
as the Prony series coefficients (𝑔𝑖, 𝜏𝑖) and relaxation moduli (𝐺(𝑡)), 
as explained in sections  5.3, and  S.1.3 of Supplementary Materials 
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and Methods. Then, the effect of the gradual reduction of the creases 
on the energy landscape was evaluated based on the variation of the 
width w and internal thickness 𝑠𝑖 with respect to the external thickness 
𝑠, denoted as the ratios w/s and 𝑠𝑖∕𝑠, respectively.

Thereafter, in Fig.  2A, we show which geometrical combinations 
exhibited a bistable, or monostable behavior, along with their rota-
tional stiffness 𝐾̃, estimated using the bending formulations of an 
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Fig. 2. Influence of the creases geometrical parameters on the energy landscape. (A) Parametric study of creases to evaluate the achievement of bistability (Bi), or monostability 
(M), in terms of the variation of width (𝑤) and internal thickness (𝑠𝑖) with respect to the external thickness (𝑠), reduction factors (RF) and Rotational Stiffness (𝐾̃). The crease-cutting 
radius limit determines the range of reduction factors necessary to maintain a circular shape at the lower part of the crease. ‘Limit Bi’: boundary between bistability and monostability 
determined experimentally. Results are based on Kresling cells at 1:1 scale (x1). (B) Load paths and (C) stored energy (U) landscapes of case C8 (𝑤∕𝑠=1.50) at 3:1 scale (x3). 
The corresponding curves are presented in the following order 𝑅𝐹 : 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80. (D) Iterative process to adjust CAD dimensions, verify 
discrepancies with the real dimensions of 3D-printed Kresling cells, and determine the corresponding adjusted load paths (FEAad).
incompressible elastic Neo-Hookean block [44] (as detailed in Sup-
plementary Text S.2.3). For instance, the Kresling cells that satisfied 
the bistability criteria were made of wider creases (1.07 ≤ 𝑤∕𝑠 ≤ 2.00) 
and designed with greater cross-section reductions (0.58 ≥ 𝑠𝑖∕𝑠 ≥ 0.05). 
The latter were generated by reduction factors relying on the range 
0.66 ≤ 𝑅𝐹  ≤ 0.80. Such reduction factors enabled the creation of 
creases with the thinnest internal thicknesses, si, resulting in the highest 
decrement of cross-section and rotational stiffness up to 𝐴̃∕𝐴=0.50 and 
𝐾̃∕𝐾=0.10 compared to the corresponding intact creases, as shown in 
Fig.  1B. Therefore, this confirms that as the crease becomes less stiff, 
it gains enough flexibility to ensure the achievement of bistability. 
On the other hand, creases designed with reduction factors below 
𝑅𝐹=0.66 reached greater internal thickness (𝑠 ) values. They tend 
𝑖
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to increase the restoring force values of the respective Kresling cells, 
gradually moving them away from zero. Therefore, they are unable 
to achieve bistability and are prone to show a monostable behavior 
instead. Thus, we determined a possible limit for achieving bistability 
from the combinations with 𝑅𝐹 ≥ 0.66, as shown in Fig.  2A.

In an extreme scenario, when the width versus external thick-
ness ratio is below 𝑤∕𝑠 ≤ 1.07, the creases tend to be narrower 
and very rigid, falling into a mono-stable category, and when they 
presented higher 𝑠𝑖 values, the stored energy values also increased. 
In general, we observed that Kresling cells exhibited monostable be-
haviors when they are formed by stiffer creases. These crease con-
figurations reached reduction ratios of approximately  𝐴̃∕𝐴 ≥ 0.70 for 
cross-sections and  𝐾̃∕𝐾 ≥ 0.30 for rotational stiffness. Moreover, we 
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analyzed the load paths and the corresponding stored energy obtained 
numerically for the intermediate case C8 (𝑤∕𝑠=1.50), as shown in 
Fig.  2B, and Fig.  2C. We compared two types of numerical simula-
tions, the first considering the exact cross-section dimensions from 
the CAD file and the second with the adjusted dimensions obtained 
from the microscope characterization, indicated as FEA and FEAad, 
respectively. We also observed that a second local minimum of energy 
was reached when the creases presented gradual reductions between 
the range 0.40 ≥ 𝑠𝑖∕𝑠 ≥ 0.35 corresponding to the already mentioned 
reduction factors 0.66 ≤ 𝑅𝐹 ≤ 0.80.

2.2. Scalability and experimental validation

Furthermore, we observed through numerical simulations that the 
load paths of the analyzed Kresling cells can be scaled. For instance, 
Fig.  3A shows that the position of the second local minimum of energy 
of the C8 𝑅𝐹=0.80 Kresling cell, at a 1:1 scale (x1), varies from a 
displacement u=4.53 mm, to 9.06 mm at a 2:1 scale (x2) and 13.59 mm 
at a 3:1 scale (x3). This fact demonstrates that scaled Kresling cells 
maintained the expected bistable behavior at the same geometrical 
proportions with respect to 1:1 scale (x1). Thus, Kresling cells can 
be scaled to meet manufacturing requirements across different length 
scales, from microfabrication to large-scale additive manufacturing. 
In the present study, Kresling cells for the C8 case were fabricated 
using the PolyJet technique at a 3:1 scale (x3) for the corresponding 
experiments, as detailed in Section 5.4. This scale ensures feasible 
printing, as the internal thickness dimensions  𝑠𝑖, fall within the PolyJet 
manufacturing limits of 0.6–1.0 mm.

The experimental setup for the compression tests is illustrated in 
Fig.  3B. The experiments were performed by imposing a displacement 
𝑢 at one side of the sample and leaving free the rotation in the opposite 
side, as detailed in Section 5.5. During the test we monitored the ap-
plied displacement 𝑢 against the measured restoring force 𝐹 . Moreover, 
the achievement of bistability is highly sensitive to geometric variations 
in crease parameters, such as width 𝑤 and internal thickness 𝑠𝑖. The 
existent differences between the exact (CAD) and the real dimensions 
of the 3D printed Kresling cells are attributed to the inherent loss of 
dimensional accuracy of the 3D printer in use.

Thorough a microscopic characterization (further explained in Sec-
tions 5.6, and S.1.10 of Supplementary Materials and Methods), we 
estimated a mean percentage error, MPE (%), between the exact and 
the real dimensions of the analyzed creases and panels from a sample 
corresponding to the case C8. In this example, the internal thick-
ness 𝑠𝑖 dimensions exhibited an mean percentage error in the range: 
−25 ≤ 𝑀𝑃𝐸 (%) ≤ 10, where negative values imply higher real mea-
sures than the CAD models. This error range represents a small dif-
ference between the exact dimensions and the real dimensions of the 
creases, and corresponds to the expected dimensional accuracy of a 
J750 Polyjet 3D printer, which is commonly about 10%. Therefore, we 
primarily relied on the load paths obtained from the numerical simula-
tions (FEA) using the exact dimensions from the CAD file geometry for 
their respective experimental validation, as shown in Fig.  3C, D and E.

Subsequently, we experimentally confirmed that C8 case samples 
with reduction factors in the range 0.25 ≤ 𝑅𝐹  ≤ 0.57 exhibited monos-
tability, as illustrated in Fig.  3C. These cases corresponded to creases 
with internal thickness 𝑠𝑖 greater than the manufacturing limit of 
1.0 mm. The effect of crack formation during the experiments on 
these thicker creases was minimized. For this reason, the numerical 
load paths (FEA) closely matched those obtained experimentally (EXP). 
In Fig.  3D, the experiments from C8 cases with  0.74 ≤ 𝑅𝐹  ≤ 0.80 
validated the bistable behavior observed in the corresponding Kresling 
cells at a 1:1 scale, as described in Fig.  2A.

However, some discrepancies were observed in the load path region 
where a change in the sign of the load was expected. This may be 
attributed to the fact that these narrow creases, with thicknesses below 
the manufacturing limit of 0.6 mm, are prone to develop longitudinal 
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cracks that dramatically reduce their stiffness. In addition, the load 
path corresponding to the configuration with a reduction factor of 
𝑅𝐹  = 0.66 may represent the actual limit between bistability and 
monostability, denoted as ‘Limit Bi’ in Fig.  2A. Its experimental load 
path tends to remain above zero, making it difficult to confirm whether 
the condition for achieving a second local minimum of energy is truly 
satisfied, as shown by the corresponding numerical load path. A sum-
mary of the experiments, including hands-on experimental validation of 
bistability, is presented in videos S1 and S2. Furthermore, we observed 
that sequential compression tests can induce degradation in the rubbery 
photopolymer, resulting in longitudinal cracks along the creases, partic-
ularly in areas with cross-sectional dimensions smaller than 0.6 mm. To 
investigate this, we performed the compression experiment three times 
on the same samples.

Gradual decreases in the load values achieved for sample RF = 0.80 
were detected across experimental curves denoted 1, 2, and 3, as shown 
in Fig.  3E, along with additional details in video S3 and supporting 
Fig. S24. We determined that approximately 30% and 50% of the load 
capacity achieved in test 1 was lost after tests 2 and 3, respectively.

2.3. Effects of creases viscosity on bistability

In a second parametric study, we focused on the effects of viscosity 
on the bistability and stored energy in Kresling cells composed of 
rubbery creases while preserving the same rigid panels. Specifically, we 
analyzed the configurations of creases from cases C8 to C11, which led 
to bistability during the first parametric study described in Section 2.1. 
Those creases were modeled exclusively with the rubbery material 
DM60, which has a relaxation modulus of G60=0.220 MPa. The se-
lected groups of creases are located within the following geometrical 
ranges: 0.05 ≤ 𝑠𝑖∕𝑠 ≤ 0.41 and 1.50 ≤ 𝑤∕𝑠 ≤ 2.00, as shown in Fig.  4A
We obtained the corresponding numerical load paths and energy land-
scapes using various rubbery photopolymers characterized by differ-
ent relaxation moduli and viscosity with respect to DM60, including 
AG30 (G∞=0.7G60), DM70 (G∞=1.4G60), DM85 (G∞=2.6G60), and 
DM95 (G∞=3.9G60), as detailed in Supplementary Text S.2.4. Their vis
coelastic properties, such as relaxation modulus (𝐺(𝑡)) and Prony 
parameters (𝑔𝑖, 𝜏𝑖), were determined experimentally (see Section S.1.6 
of Supplementary Materials and Methods for more details). As a result, 
Fig.  4A summarizes whether bistability is preserved in the geometrical 
configurations analyzed under various levels of relaxation modulus 
and viscosity. In addition, bistability was numerically evaluated over 
different time scales, considering the initial  (𝜏∗𝑖 ), short-  (𝜏), and long-
term  (n𝜏) relaxation times exhibited by the visco-hyperelastic materials 
analyzed, as indicated in Fig.  4B.

Thus, we observed that Kresling cells composed of creases with 
a lower relaxation modulus, characterized by the softest photopoly-
mers AG30, DM60, and DM70, remained in bistable behavior in the 
majority of cases and in all the analyzed time scales. Configurations 
whose reduction factors are in the range within 0.74 ≤ 𝑅𝐹  ≤ 0.80 can 
also achieve bistability with rubbery materials having an intermediate 
relaxation modulus, such as that of DM85. However, in cases where 
geometrical configurations are at the limit of achieving bistability, 
which are generated with a reduction factor RF=0.66 and when using 
DM85, a monostable scenario occurred. On the other hand, we inferred 
that at the highest relaxation modulus and viscosity, for instance DM95 
material, the Kresling cell tends to exhibit monostability in most cases. 
Consequently, we estimate that as the rubbery material in the creases 
becomes more highly viscous, with a high relaxation modulus, the load 
values consistently stay above zero, and the sample tends to return to 
its initial state, compromising a bistable behavior.
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Fig. 3. Scalability and experiments on multi-material 3D printed Kresling cells. (A) Observed scalability in Load paths and in the position of the second local minimum of 
energy on Kresling cells, at a 1:1 (x1), 2:1 (x2) and 3:1 (x3) scales. (B) Experimental Setup for multi-material 3D printed Kresling cells at 3:1 scale, designed to impose a vertical 
displacement 𝑢 corresponding to a restoring force 𝐹 , with free rotation at one end. (C–E) Comparison between Numerical and Experimental tests performed on case C8 with: (C) 
𝑅𝐹 = 0.25, 0.33, 0.40, 0.50 and 0.57. (D) 𝑅𝐹 = 0.66, 0.74, and 0.80. (E) Effect of the degradation of the rubbery crease cross-sections on the load path after performing three 
sequential experiments on the same sample (C8, 𝑅𝐹=0.80 creases made of DM60).
2.4. Experiments on Kresling cells with variable visco-hyperelastic creases

We selected the configurations of the case C8 𝑅𝐹=0.80 to ex-
perimentally validate their bistable behavior previously described in 
Fig.  4A. For this, we compared their numerical and experimental load 
paths and stored energy landscapes, as illustrated in Fig.  4C. The 
fabrication of the samples and the experiments were done as detailed 
in Sections 5.4 and 5.5, respectively. We confirmed experimentally 
that bistability is maintained by Kresling cells made of creases with 
the less stiff rubbery materials and characterized by lower relaxation 
moduli, such as AG30, DM60, DM70, and the intermediate, DM85. 
Similarly, Kresling cells with creases made of DM95, which has the 
highest relaxation modulus among the analyzed rubbery materials, lost 
the ability to achieve bistability in practice. Instead, the Kresling cell 
transitioned to a monostable scenario, where the load values tend to 
deviate further from intersecting the displacement axis at zero force.

Then, a corresponding rise in stored energy is observed without 
reaching a second local minimum of energy. This occurs despite the fact 
that the geometrical design favors bistability when using softer materi-
als with lower relaxation moduli. We can attribute this to the fact that 
the rubbery material DM95 is more likely to exhibit higher viscosity 
than the other photopolymers and retain stiffness over time, making 
even the folding of the Kresling cell more difficult. Consequently, we 
observed that variations in relaxation modulus can aid in tuning the 
energy landscapes, as well as modifying the geometrical parameters of 
the creases.

The experiments were conducted similarly to those described in 
Section 2.2 and included hands-on experimental validation of bista-
bility, as shown in video S4. We also detected crack initiation along 
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the creases made of other rubbery materials different from DM60, 
including AG30, DM70, DM85 and DM95, in the tested Kresling cells. 
This affected the accuracy of the experimental load paths with respect 
to the corresponding numerical counterparts, as we observed in the 
experiments shown in Fig.  3D. Likewise, degradation in the creases was 
noted after testing each sample consecutively three times, representing 
a technological limitation related to the use of rubbery photopoly-
mers with very small cross-sections (≤0.6 mm), as further detailed in 
supporting Fig. S33.

2.5. Mono-material cells

In the context of the multi-material 3D printing approach, the 
compression/expansion process of Kresling cells, as well as the achieve-
ment of bistability, becomes feasible by combining the bending of 
panels and rubbery creases. In the case of using a single material, 
we propose a strategy in which we segmented the creases and create 
voids along the full volume of the valleys (𝑉𝑣𝑓 ), and peaks (𝑉𝑝𝑓 ), as 
shown in Fig.  5A and B. This difference in volume contributed to 
reduce the stiffness of the creases with respect to the panels. Then, the 
analyzed Kresling cells, denoted as M-1 and M-2, are designed with 
the geometrical configuration of case C11 RF=0.80. We selected this 
configuration because it potentially exhibits bistability, independently 
of the viscoelastic properties of the creases materials, as described in 
Section 2.3. The variable volume of the valley creases is denoted as 𝑉𝑣. 
In the M-1 case, where the number of voids along the valleys is zero, 
and their volume is 𝑉𝑣 = 𝑉𝑣𝑓 . In M-2 case, the number of voids along 
the valleys is 2, and their volume is equal to 𝑉 =3/5 𝑉 .
𝑣 𝑣𝑓
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Fig. 4. Visco-hyperelastic effects on the achievement of bistability. (A) Parametric study to assess bistable Kresling cells with creases made of rubbery materials (AG30, DM60, 
DM70, DM85 and DM95) with different viscoelastic properties in terms of relaxation modulus 𝐺∞, for Cases C8, C9, C10, and C11 designed with reduction factors within the 
ranges 0.66 ≤ 𝑅𝐹 ≤ 0.80. Results of Kresling cells at 1:1 scale (x1). (B) Experimental relaxation curve. Times  𝜏∗𝑖 , 𝜏 and n𝜏, respectively considered for the numerical analysis 
of viscosity effects. Experiments were performed at a test speed which correspond to a relaxation time 𝜏∗𝑖 =180 s. (C) Numerical and experimental load paths, along with stored 
energy landscapes (U). Results for C8 RF=0.80 cells at a 3:1 scale (×3), with rubbery creases exhibiting different relaxation moduli. Filled regions include FEA simulations within 
the range 𝜏∗𝑖 ≤ 𝜏 ≤ 𝑛𝜏.
In both Kresling cell cases M-1 and M-2, the reduction of the peaks 
volume was also considered as a minimum fraction of their respective 
full volume, denoted as 𝑉𝑝=2/7 𝑉𝑝𝑓 . The remaining small amount 
of material that forms the peaks, only contributes to the connection 
between the panels. Thus, we simplify the analysis by regarding the 
volume of the valleys 𝑉𝑣 with their voids inclusions, as the sole variable 
of analysis. The load paths and energy landscapes corresponding to 
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M-1 and M-2 cases are shown in Fig.  5A and B. They indicate that 
both Kresling cells, made completely of rubbery photopolymers such 
as Origin 402, IP-PDMS, and DM95, exhibited a monostable behavior. 
In addition to these materials, the use of photopolymers with a stiffness 
of around 600 MPa, like UTL, suggests that monomaterial Kresling cells 
can also achieve bistability. This type of photopolymers are used in 
micro-printing being characterized by high-flexibility and toughness, 
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Fig. 5. Load paths and stored energy landscapes of monomaterial Kresling cells and programmable Kresling assemblies. (A) M-1, and (B) M-2 cases. Materials with 
intermediate stiffness tend to achieve bistability (Bi). Results of Kresling cells at 1:1 scale. (C) Compression test and folding process of cases (i) All the creases DM60, (ii) Stiffer 
creases (DM95) in the even stories, and (iii) Stiffer creases (DM95) in the odd stories. The number of folded stories at a displacement u≈ 12 mm is indicated. (D) Numerical (FEA) 
and experimental (EXP) results. The numerical simulations stopped at the first contact among panels.
suitable for snap-fits or similar fixtures. Additional results with rubbery 
photopolymers, including DM60, DM70, and DM85, are presented in 
Supplementary Text S.2.5.

2.6. Programmable monostable Kresling assemblies

The variation of geometrical parameters in Kresling cells, such 
as initial relative angle 𝜃𝑜 and the aspect ratio between the initial 
height and the polygon’s radius ℎ𝑜∕𝑟, can lead to programmable energy 
absorption levels. We analyzed the following mono-stable Kresling cell 
configuration: number of polygon’s sides n=8, 𝜃𝑜 = 45◦, and ℎ𝑜∕𝑟=0.40, 
determined using the same criteria as the previously analyzed config-
uration with n=6. Next, 3D parametric Kresling cells were designed 
and coupled in chiral configurations to form multi-story cylinders with 
five stories (#𝑠𝑡𝑜𝑟𝑖𝑒𝑠=5). In this analysis, we aimed to explore the 
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crucial role of crease stiffness in the compression/expansion process 
and storing energy in multi-story and monostable Kresling cells.

These structures were numerically analyzed in Abaqus/CAE stan-
dard to determine their load paths and energy landscapes during com-
pression, as detailed in Section 5, and were validated experimentally, 
as described in Section 5.5 and video S5. A vertical displacement, was 
applied at the top, while the bottom is fixed, as shown in Fig.  5C. 
The Kresling multi-story cylinders were designed for fabrication using 
multi-material 3D printing, with rigid panels (VB), and creases made 
of softer (DM60) and stiffer (DM95) rubbery materials. Thereafter, we 
generated three different cases to specifically evaluate the influence of 
creases with variable stiffness: (i) creases made entirely of the softer 
rubbery material DM60 across all five stories, (ii) stiffer creases in the 
even stories (DM60-DM95-DM60-DM95-DM60), and (iii) stiffer creases 
in the odd stories (DM95-DM60-DM95-DM60-DM95).
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During the folding of the multi-story cylinders, the numerical load 
paths were tracked until the contact between panels started, reaching 
a displacement in the range of 12 mm ≤u≤16 mm. We calculated the 
stored energy at these points. Using the value from case (i) as a 
reference, we observed increases of 59.15% and 139.05% with the 
inclusion of stiffer creases, as seen in cases (ii) and (iii), respectively. 
Moreover, considering the intermediate stories 2, 3, 4 as points of 
analysis, we observed that all the stories are folded uniformly in the 
case (i), where creases are made of the same material DM60. On the 
alternating creases stiffness cases, stories with creases made of softer 
material tended to be folded first than their rigid counterparts. For 
instance, the odd story 3 (DM60) in case (ii), was folded first than the 
even stories 2 and 4 made of stiffer material (DM95) and vice-versa in 
case (iii), as described in Fig.  5D. Hence, we proposed another approach 
for the programmability of stored energy and to control the localized 
deformation of specific stories during the folding process of multi-story 
Kresling structures. Therefore, we aimed to provide design hints for 3D 
printed structures that could potentially be employed in programmable 
motion and damping devices.

3. Discussion and limitations

Starting with a Kresling cell configuration (n=6, ℎ𝑜∕𝑟=1.75,
𝜃𝑜 = 𝜋∕6), along with the proposed gradual reduction of the creases 
cross sections, we conducted numerical simulations to obtain the cor-
responding load paths and energy landscapes. Traditional modeling 
approaches for Kresling structures typically involve thin-shell elements 
primarily intended for physical prototypes made from paper-based 
or thin polymer sheets. However, using 3D hybrid-modified elements 
enabled us to incorporate visco-hyperelastic models, providing a more 
realistic mechanical response for viscous and nearly incompressible ma-
terials, such as the flexible photopolymers used in 3D printing. Under 
the assumptions of paper-based models, such as constant crease cross-
sections and zero viscosity, predictions of mechanical behavior differ 
when applied to 3D-printed Kresling cells. For example, the design of 
an intact rubbery crease is more likely to not exhibit the theoretically 
predicted bistability. For multi-material 3D printing Kresling cells, we 
established a range of geometrical parameters, including width-to-
external thickness ratio 𝑤∕𝑠, internal thickness 𝑠𝑖, and reduction factor 
RF, leading to parametric design process to obtain bistable cells. Based 
on the results of the parametric study, we have confirmed that the 
geometry of the creases is influential when aiming a specific load path.

Particularly, when the crease width 𝑤 exceeds a ratio 𝑤∕𝑠 ≥ 1, 
the energy landscapes of the multi-material 3D-printed Kresling cells 
can be significantly controlled by modifying the internal thickness 𝑠𝑖
using imposed reduction factors 𝑅𝐹 , while maintaining the same width 
w. For example, we demonstrated that the internal thickness 𝑠𝑖 is a 
critical factor in achieving bistability. Specifically, values in the range 
0.30 ≥ 𝑠𝑖∕𝑠 ≥ 0.05 generated by reduction factors 𝑅𝐹  between 0.74 and 
0.80, ensure bistability while reducing the cross-section relative to 
the intact cross-section by an approximate ratio of 0.60 ≥ 𝐴̃∕𝐴 ≥ 0.50. 
Consequently, the rotational stiffness of the reduced creases relative 
to the intact crease decreases to a range of  0.20 ≥ 𝐾̃∕𝐾 ≥ 0.10, en-
suring the flexibility required for bistable Kresling cells. In contrast, 
Kresling cells generated with 𝑅𝐹  values below 0.66 tended towards 
monostable behavior in practice. In these cases, we observed that the 
experimental load path remains above zero, which differs from the 
numerical counterpart’s prediction. Furthermore, we noted that, after 
applying a compressive load to the Kresling cell, it returned to its initial 
configuration more quickly, as shown in video S2. Thus, we confirmed 
that bistability was not achieved in practice.

For this reason, we established a reduction factor  𝑅𝐹=0.66 as a ge-
ometric limit for determining bistability. This discrepancy may be due 
to slight increases in cross-sectional dimensions resulting from printing 
accuracy, potentially leading to a greater thickness, 𝑠𝑖, and closer to 
that of the next case with 𝑅𝐹  = 0.57. Although taking measurements 
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along the crease length is complicated due to the complex geometry 
of the Kresling cell, the fact of having such a greater crease thickness 
is confirmed by the microscopic measurements we performed along an 
horizontal slicing plane that cuts the Kresling cell at the mid-height.

We numerically and experimentally determined how the achieved 
bistability is affected by the visco-hyperelastic behavior character-
istic of rubbery 3D printing materials. For example, in the partic-
ular case of C8 Kresling cells with creases made of rubbers with 
lower (AG30, DM60, DM70) and intermediate (DM85) relaxation mod-
uli preserved bistability. Considering DM60 relaxation modulus as 
G∞=1.0G60, we have AG30 (G∞=0.7G60), DM70 (G∞=1.4G60) and 
DM85 (G∞=2.6G60). In contrast, when the creases were characterized 
by a higher relaxation modulus such as the case of DM95 mate-
rial (3.9 G60), the Kresling cells transitioned towards a monostable 
behavior. Our numerical simulations also predicted that bistability is 
preserved over different time scales corresponding to the initial  (𝜏∗𝑖 ), 
short-  (𝜏), and long-term  (n𝜏) relaxation times. Since numerical sim-
ulations showed that the energy landscapes did not vary significantly 
for relaxation times higher than 𝜏𝑖, we decided to perform them a test 
speed which correspond to a relaxation time  𝜏∗𝑖 =180 s. This choice 
allows for efficient characterization while avoiding unnecessary long-
term testing, as the observed bistability remains over time. When 
comparing visco-hyperelastic creases made of different rubbery materi-
als, the viscoelastic component, specifically the difference in relaxation 
modulus, appeared to have a greater effect on achieving bistability 
than the time scale of analysis. Furthermore, these results suggest that 
specific geometrical parameters leading to creases with smaller cross-
section thickness 𝑠𝑖, such as those generated with a reduction factor 
RF=0.80, play a more significant role in the achievement bistability 
and programming the energy landscape, counteracting the inherent 
viscoelastic effects.

In the case of a monomaterial approach, the geometrical designs 
with the narrowest creases (especially those generated with a reduction 
factor 𝑅𝐹=0.80) were selected, as they provide the highest rotational 
stiffness reduction  𝐾̃∕𝐾 ≈ 0.10 and flexibility. Our design strategy 
was based on variations in stiffness along the creases, achieved through 
the inclusion of voids in the peaks and valleys, which facilitated the 
compression and expansion processes of the Kresling cell. Regardless 
of the material used, we also evidenced that decreasing the volumes 
of the creases by including more voids along the valleys, can mod-
ify the energy landscapes resulting in lower stored energy values. 
These differences can be observed by comparing the energy landscapes 
corresponding to the cases M-1 in Fig.  5A and M-2 in Fig.  5B. For 
example, considering both cases made of UTL resin, M-1 and M-2, 
their achieved total stored energy values were U=32 mJ and U=26 mJ, 
respectively. This means that the inclusion of two voids along the 
valleys, corresponding to the fraction 𝑉𝑣=3/5 𝑉 𝑣𝑓 , can result in a 
decrease of 18.75% in the total stored energy.

Since rubbery photopolymers exhibit low tensile instantaneous re-
laxation moduli between  1.0 MPa ≤ 𝐸𝑜 ≤ 10 MPa, the effect of their 
visco-hyperelastic properties on preserving bistability is almost not 
mitigated without the interaction with stiffer panels. On the other hand, 
very rigid photopolymers led to earlier failure, tending to present a 
brittle behavior, and the folding mechanism is limited. For this reason, 
materials with intermediate stiffness values can be an alternative for 
achieving bistability. We have confirmed this fact by analyzing a Kres-
ling cell composed of UTL resin [45], with a Young’s Modulus around 
E ≈ 600 MPa, where bistability was observed. Therefore, it opens the 
possibility of miniaturizing bistable Kresling cells using a single mate-
rial. These configurations can be used to fabricate downscaled Kresling 
cells, even at the micro-scale, thereby overcoming the dimensional 
limitations of traditional 3D printing technologies.

In addition, we investigated the role of creases in monostable Kres-
ling assemblies. Using a multi-material printing approach, we evaluated 
and fabricated Kresling structures with variable stiffness assigned to 
the creases in even and odd stories. For instance, during the folding 
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process, deformation occurs first in the stories with softer creases, 
such as those made of DM60, and later in the stiffer ones made of 
DM95. This approach facilitates the control and programming of the 
energy landscape. Notably, we also achieved an increase of up to 
approximately 140% in stored energy by including stiffer creases.

3.1. Limitations

We validated the numerical predictions experimentally, considering 
manufacturing limitations to prevent defects at the time of fabricating 
3D-printed parts. Dimensional constraints due to technological lim-
itations restrict the size of 3D-printed multi-material Kresling cells 
that can be tested. In the case of the PolyJet technique, load-bearing 
elements with cross-sections smaller than 0.6 mm tend not to cure well 
and may exhibit defects during the photopolymerization and layer de-
position processes. However, considering cross-sections above 1.0 mm 
helps reduce defects and they remain intact during post-processing 
operations [42]. During subsequent compression tests on Kresling cell 
samples, we observed a reduction in stiffness and peak loads of 30% 
after the second test and 50% after the third test. This can be attributed 
to crack initiation in thin creases made of rubbery photopolymers. This 
suggests material degradation in thin cross-sections made of the rub-
bery material after repeated loading cycles, potentially compromising 
its suitability for long-term applications. This observation highlights po-
tential limitations in the reliability of this technique for experiments on 
multi-material Kresling cells, indicating potential long-term durability 
concerns. However, fabricating on a larger scale could be an option 
to overcome these manufacturing dimensional limitations, although it 
might result in higher material costs and longer working times.

4. Concluding remarks

We proposed alternatives to explore the untapped engineering po-
tential of Kresling origami beyond traditional paper models. The ad-
vent of 3D printing has enabled the creation of complex multistable 
structures with programmable energy landscapes inspired by Kresling 
patterns. However, this approach also faces unique challenges related 
to manufacturing and material limitations, especially at small scales 
and when addressing the visco-hyperelastic nature of photopolymers.

Our study emphasized the critical role of crease design in achiev-
ing reliable multistability in Kresling cells, highlighting overlooked 
parameters such as crease geometry and viscosity. By modifying the 
crease cross-section, we obtained diverse energy landscapes ranging 
from bistability, to monostability.

For instance, reducing the crease internal thickness 𝑠𝑖, through 
proposed reduction factors RF, by over 50% of the intact cross-section 
facilitated bistability, as confirmed by experimental validation that 
accounted for manufacturing limitations and scalability considerations. 
Rubbery creases with the highest relaxation modulus (𝐺∞ ≈ 0.855 
MPa) compromised bistability, while those with lower relaxation mod-
uli preserved it. In addition, the observed bistability remained over 
different time scales, including the initial, short- and long-term re-
laxation times regions. Consequently, we found that the difference in 
relaxation modulus had a greater impact on bistability than the time 
scale of analysis.

Our results further indicate that the most significant changes in 
the energy landscape were primarily attributed to modifications in the 
geometrical parameters of the crease cross-section, which contributed 
to limiting the influence of visco-hyperelastic effects, especially in 
the configurations with the smallest cross-sections generated with a 
reduction factor RF=0.80.

Considering a monomaterial approach, stiffness variations achieved 
through voids in crease geometry improved the compression and expan-
sion of Kresling cells and allowed energy storage to be tailored. Materi-
als with intermediate stiffness (E ≈600MPa) were identified as optimal 
for foldable, bistable designs, particularly oriented to micro-fabrication.
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Moreover, we explored the role of creases in monostable Kresling 
assemblies by varying their stiffness. This allowed us to control the de-
formation of specific stories, enabling programmable energy landscapes 
and adjustable energy storage based on the inclusion of softer or stiffer 
creases.

In summary, our findings address key 3D printing challenges and 
offer potential for applications such as customized and scalable energy 
absorbers, actuators, and delivery robots that rely on compact and 
programmable energy landscapes. These configurations advance our 
understanding of Kresling-origami-inspired structures while also paving 
the way for future research.

5. Materials and methods

5.1. Initial sizing of Kresling cells

The geometrical parameters that define the initial sizing config-
uration of the Kresling cells were estimated using a five-parameters 
model [26], as further detailed in section S.1.1 of Supplementary 
Materials and Methods. Considering a Kresling cylinder defined by top 
and bottom polygons with a number of sides n=6, under an axial 
displacement 𝑢, the total elastic stored energy of the creases 𝑈 can 
be defined by the sum of the deformation strain 𝑈𝑏 and the rotational 
springs 𝑈𝑠 contribution of the peak and valley creases, by using the 
expressions: 

𝑈𝑏 =
1
2
𝑛𝐾𝑠𝑏(𝑏 − 𝑏𝑜)2 +

1
2
𝑛𝐾𝑠𝑐 (𝑐 − 𝑐𝑜)2, (1)

𝑈𝑠 =
1
2
𝑛𝐾𝑎(𝛿𝑎 − 𝛿𝑎𝑜)2 +

1
2
𝑛𝐾𝑏(𝛿𝑏 − 𝛿𝑏𝑜)2 +

1
2
𝑛𝐾𝑐 (𝛿𝑐 − 𝛿𝑐𝑜)2, (2)

𝑈 = 𝑈𝑏 + 𝑈𝑠 (3)

Here, 𝐾𝑠𝑏 and 𝐾𝑠𝑐 represent the stretching stiffness of the creases, 
while 𝑏 and 𝑐 denote the final lengths during the compression/
expansion corresponding to the peaks and valleys, respectively. The 
original peak and valley lengths are denoted as bo and 𝑐𝑜, respectively. 
The terms 𝐾𝑎, 𝐾𝑏, and 𝐾𝑐 represent the rotational stiffness of the 
creases. The dihedral angles in the original configuration are 𝛿𝑎𝑜, 𝛿𝑏𝑜, 
𝛿𝑐𝑜, while those in the folded configuration are 𝛿𝑎, 𝛿𝑏, 𝛿𝑐 , corresponding 
to their respective creases. An iterative process was performed applying 
Eq. (3) to select the initial sizing configuration that theoretically leads 
to a second local minimum of energy when 𝛿𝑈∕𝛿𝑢=0 [46,47].

5.2. Parametric design

The cylindrical Kresling cells were designed as solid bodies in 
Autodesk Inventor in 1:1 scale (x1), following the initial sizing config-
uration: polygons with n=6 sides, rotating at an initial angle  𝜃𝑜 = 𝜋∕6
with respect to each other, and an aspect ratio ℎ𝑜∕𝑟=1.75. The panels 
were modeled with a small thickness value with respect to the initial 
height (0.04 ℎ𝑜≤ 𝑠 ≤ 0.08 ℎ𝑜). In addition, rings were included at the 
top and bottom of the cylinders to ensure a uniform rotation of the 
upper and lower polygons. Moreover, we created a small gap at the top 
and bottom intersections of the creases with the rings to prevent stress 
concentrations, as illustrated in the 3D Kresling cell renders from Fig. 
3A.

In the Multi-material approach, the creases of the Kresling cells were 
parametrically designed with dimensional and geometrical variations. 
The dimensionless ratio w/s represents the creases width, 𝑤, variation 
relative to its thickness, 𝑠, ranging within 0.50 ≤ 𝑤∕𝑠 ≤ 2.00, and being 
gradually reduced considering the reduction factors 0.25 ≤ 𝑅𝐹  ≤ 0.80. 
The generated configurations were obtained by combining the men-
tioned parameters and they are detailed in section S.1.2 of Supplemen-
tary Materials and Methods.

In the Mono-material approach, the Kresling cells were similarly 
designed following the initial sizing configuration and incorporating 
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the creases design from the case C11- RF=0.80. The latter repre-
sents the most flexible crease with the lowest rotational stiffness 
(𝐾̃= 1.26x10-5 N mm/rad). The voids inclusions along the peaks and 
valleys, corresponded to a fraction of the total volume of their respec-
tive full creases, as explained in Section 2.5. Thereby, multiple Kresling 
cell configurations for Multi-material and mono material approaches 
were exported as *.step and *.𝑥𝑏 Parasolid files, for the respective 
numerical simulations and 3D printing, respectively.

5.3. Numerical simulations and constitutive models

Quasi-static non-linear analyses were carried out in Abaqus/CAE 
Standard meshing the systems with quadratic tetrahedron C3D10MH 
elements due to the complexity of the geometry. This type of mesh 
contains 10 node quadratic tetrahedron with hybrid modified constant 
pressure elements. This choice was dictated by the hyperelastic nature 
of the rubbery material which is nearly incompressible. Tie constraints 
were assigned to the panels, creases, top and bottom ring surfaces to 
create a uniform contact among them. The defined boundary conditions 
at the bottom of the cylinder constrained all the displacements and the 
rotations. An imposed vertical displacement close to the one third of 
the initial height (≈ 1∕3 ℎ𝑜) was applied at the top.

Simultaneously, the rotation of the upper part was also released 
to simulate the natural twisted motion, characteristic of the Kresling 
patterns along with a compressive force. Furthermore, we remark 
that the quasi-static simulations were conducted using a VISCO step 
to capture the time-dependent behavior of the visco-hyperelastic ele-
ments. The simulations proceeded until the target displacement was 
reached, ensuring that while the panels made initial contact during 
the folding process, overlapping was prevented. Further details are 
explained in section S.1.3 of Supplementary Materials and Methods. 
Moreover, we incorporated calibrated material models obtained from 
their respective material characterization tests, as described in section 
S.1.5 of Supplementary Materials and Methods. The components made 
of rigid materials, such as the panels and rings, were modeled with 
an elasto-plastic behavior. In contrast, flexible photopolymers were 
assigned to the creases, being initially characterized by a Neo-Hookean 
strain potential energy function described as follows: 
𝑈𝑁 = 𝐶10(𝐼1 − 3) (4)

where 𝐶10 = 𝐺𝑜/2, being 𝐺𝑜 the instantaneous shear modulus and 𝐼1 is 
the first stretch invariant. This hyperelastic model assumes an almost 
incompressible material and was fitted to experimental data to find 
the 𝐶10 coefficients, which define the rate-independent behavior [48]. 
Subsequently, the viscoelastic effects of the rubbery materials were 
then incorporated into the hyperelastic model. The Prony parame-
ters dimensionless weight 𝑔𝑖 and relaxation time 𝜏𝑖 characterize the 
time-dependent behavior associated with viscosity [49]. They were 
determined by a non-linear regression analysis by fitting them to the 
relaxation test data, as detailed in section S.1.6 of Supplementary 
Materials and Methods. We then applied the obtained Prony parameters 
to the constants within the strain energy function 𝑈𝑁 (𝑡), which is 
defined by the instantaneous constant 𝐶𝑜

10, and the visco-hyperelastic 
relaxation function can be expressed as follows: 

𝑈𝑁 (𝑡) = 𝐶𝑜
10

(

1 −
𝑁
∑

𝑖=1
𝑔𝑖(1 − 𝑒−𝑡∕𝜏𝑖 )

)

(5)

In the context of Polyjet photopolymers, the selected rigid material 
for the panels in all the numerical simulations of multi-material cases 
was VeroBlack (VB). Regarding the flexible creases, the rubbery digital 
material DM60 was used for the first parametric study (Section 2.1). 
In subsequent analyses, we included additional rubbery photopolymers 
with different relaxation moduli and viscosity than DM60, such as 
Agilus30 (AG30) and digital materials DM70, DM85, and DM95, to 
evaluate and predict the effects of viscosity on bistability (Section 2.3). 
The duration of each numerical simulation using the VISCO step, was 
11 
set equal to the initial, short-term and long-term relaxation times 
exhibited by the different rubbery materials, based on their relaxation 
times 𝜏𝑖 from the Prony series. For the mono-material approach, flexible 
photopolymers used in other 3D printing techniques were also con-
sidered, including Origin 402 (Direct Light Processing), IP-PDMS and 
UTL-BMF (Two-photon polymerization for micro-fabrication).

5.4. Fabrication of multi-material Kresling cells

The Kresling cell samples were fabricated following the framework 
of Polyjet multi-material technique. It is important to remark that cross-
sections of structural elements lower than 1.0 mm demand special 
attention during the Polyjet process. They are prone to exhibit defects 
and demand extremely careful post-processing operations. For this 
reason, the printed Kresling cells were scaled three times to make the 
printing feasible, maintaining the ratios and proportions previously 
detailed in the parametric design Section 5.2, video S6 and section 
S.1.2 of Supplementary Materials and Methods. Based on the materials 
we used in the numerical simulations, the panels were fabricated with 
VeroBlack (VB). For the creases, the following flexible materials were 
employed in the different Kresling cells: AG30, DM60, DM70, DM85 
and DM95. The 3D CAD models were generated in Autodesk Inventor, 
to be subsequently printed in a Stratasys J750 printer series. The 
selected printing setting was High-Mix mode with a layer resolution 
thickness of 27 μm and glossy surface finishing. The majority of the 
supports grids made of SUP706B material surrounding the printed 
Kresling cells were manually removed, and briefly rinsed in water for 
less than five minutes. A prolonged contact between small elements or 
multi-material interfaces, lower than 1.0 mm cross-section, with water 
or alkaline solutions lead to a premature breakage and detachment. 
Further details on the fabrication of 3D printed Kresling cells protocol 
are presented in section S.1.7 of Supplementary Materials and Methods.

5.5. Experimental validation

A series of quasi-static experiments were carried on the 3D printed 
Kresling cells to validate the numerical simulations results. A com-
pression load was applied at the top with an imposed displacement of 
approximately  𝑢 ≈ 1∕3 ℎ𝑜. The experimental setup, described in detail 
in section S.1.8 -  Fig. S10 of Supplementary Materials and Methods, 
consists on a fixture that resembles free rotation assigned to the top 
of the sample, with a fixed bottom fixture to prevent displacements 
and rotations. Thus, replicating the natural twist under compression 
inherent in Kresling patterns kinematics [26]. The connections between 
the sample and the setup were implemented in two different systems: 
(i) A female-male pinned system, and (ii) Use of magnets to prevent the 
sliding of the samples. The cross-head testing speed was 0.1 mm/sec, 
which can be considered sufficiently slow to capture viscosity effect 
(relaxation time 𝜏∗𝑖 = 180 s), as well as the most representative 
bistable behavior according to numerical predictions across different 
time scales.

5.6. Microscopic characterization of 3D printed creases

The real dimensions of the 3D printed samples were determined via 
a stereo microscope (Nikon SMZ800) equipped with an ED Plan 1.5x 
lens and with a DS-Ri2 camera. The analyzed creases belong to the 
configurations presented in case C8 with gradual reductions between 
0.25 ≤ 𝑅𝐹 ≤ 0.80. We compared the mean values of the real measure-
ments of the 3D printed Kresling cells, versus the exact measurements 
of the CAD models, as detailed in section S.1.10 of Supplementary 
Materials and Methods. Thus, we determined the mean percentage 
error, 𝑀𝑃𝐸 (%) between the dimensions from the tested samples and 
those used in the numerical simulations. Hence, this estimated error 
was incorporated to update the analyzed geometrical configurations 
and considering the loss of dimensional accuracy attributed to the 
Polyjet printing process.
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S.1 Materials and Methods

S.1.1 Initial sizing of Kresling cells

We determined an initial geometrical configuration of the Kresling cell that could potentially

exhibit bistability. The approach relied on a five-parameters model incorporating the elastic

deformation of stretchable mountain and valley creases [1, 2] with their rotational behavior [3].

As illustrated in Fig. S.1A, we first considered the following initial geometrical parameters:

an initial height denoted by ho, upper and lower polygons with n sides circumscribed within a

radius r, an initial relative angle θo between these polygons. The original lengths of the creases,

denoted by ao (side of the polygon), bo (peaks), and co (valleys), and their corresponding

dihedral angles δao, δbo, and δco, can be calculated using the expressions:

ao = 2r sin
(
π

n

)
(1)

bo =

√
4r2 sin2

(
θo

2

)
+ h2

o (2)

co =

√√√√√√√√
4r2 sin2


θo +

2π
n

2

 + h2
o (3)

δao = arctan
ho

2r sin
(
θo

2

)
sin

(
θo

2
+
π

n

) (4)

δbo = π − arccos
h2

o cos
(
θo +

2π
n

)
− r2

[
cos

(
θo +

π

n

)
− cos

(
π

n

)]2

h2
o + r2

[
cos

(
θo +

π

n

)
− cos

(
π

n

)]2 (5)

δco = π − arccos
h2

o cos (θo) − r2
[
cos

(
θo +

π

n

)
− cos

(
π

n

)]2

h2
o + r2

[
cos

(
θo +

π

n

)
− cos

(
π

n

)]2 (6)

When the compressive load F is applied to the top of the Kresling cell, it produces an axial

displacement u and a twisting rotation ϕ between the upper and lower polygons, while the

final height of the Kresling cell becomes h, as shown in Fig. S.1A. Furthermore, the length of

the crease corresponding to the side length of the polygon ao remains constant with negligible

deformation, as it remains circumscribed within the polygon’s circle of radius r. At this stage,
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it can be considered that a = ao, and the lengths of the creases corresponding to the peaks, b,

and valleys, c with their respective dihedral angles δa, δb, and δc are defined as follows:

b =

√
4r2 sin2

(
ϕ

2

)
+ (ho − u)2 (7)

c =

√√√√√√√√
4r2 sin2


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− cos

(
π
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cos

(
ϕ +

π

n

)
− cos

(
π
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δc = π − arccos
(ho − u)2 cos (ϕ) − r2

[
cos

(
ϕ +

π
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(
π
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− cos

(
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During the compression process, the total elastic energy stored in the creases, denoted as

U, can be calculated as the sum of the deformation energy of the peaks and valleys, Ub,

and the contribution from the rotational springs of the creases, Us, as given by the following

expressions, which are defined by five parameters: b, c, δa, δb and δc.

Ub =
1
2

nKsb(b − bo)2 +
1
2

nKsc(c − co)2 (12)

Us =
1
2

nKa(δa − δao)2 +
1
2

nKb(δb − δbo)2 +
1
2

nKc(δc − δco)2 (13)

U = Ub + Us (14)

Here, Ksb and Ksc represent the stretching stiffness of the peaks and valleys, respectively,

while the rotational stiffness of the creases is represented by Ka for the side polygon, Kb for

the peaks, and Kc for the valleys. The total potential energy in the Kresling cell, Π(u) , can be

determined by the sum of the total elastic energy stored in the creases U, and the work done by
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the external force F that produces an axial displacement u:

Π(u) = U − Fu (15)

If we adhere to the principle of minimum total potential energy, we can identify an equilibrium

state [4]. Thus, we assume that:

δΠ/δu = 0 (16)

Then, we can define the applied axial force F, under the mentioned equilibrium conditions

and in terms of the total elastic energy stored energy in the creases, as follows:

F = δU/δu (17)

The previously mentioned equations enabled a preliminary evaluation of various geometrical

configurations to determine the initial sizing of a Kresling cell. The energy landscapes

calculated from Eq. 14, determined which initial geometrical parameters can be used to shape

Kresling cells prone to ensure a second local of energy minimum and satisfying the condition

δU/δu = 0, for further analyses. The geometrical configurations considered in this preliminary

assessment include: aspect ratios ho/r within the range of 0.4 to 2.25, polygons with a number of

sides equal to n=6 and initial rotational angles θo ranging from π/4n to 3π/n (7.5◦ ≤ θo ≤ 90◦).

The total elastic energy stored in the creases U, and axial displacement u, were normalized to

represent dimensionless quantities in the plots.

The stretching stiffness Ks is defined in terms of Young’s modulus E, and cross-sectional area

A as Ks = EA. By defining the stretching stiffness of the peaks and valleys per unit length,

we obtain Ksb = Ks/bo and Ksc = Ks/co, respectively. Similarly, the rotational stiffness K,

can be also expressed per unit length, with Kb = Kbo for the peaks and Kc = Kco for the

valleys. For this initial analysis, the contributions of both stiffness components to the total

elastic energy were introduced as three different ratios: K/Ks = 0, 0.5 × 10−4, 1.0 × 10−4. As a

result, two main scenarios were observed during the compression process of the Kresling cells:

Bistability (Bi) and Monostability (M), as illustrated in the plots of Fig. S.1B. When considering

a rotational stiffness K = 0, the results correspond to those obtained by the bar and truss model

defined by two parameters, (b,c).

Configurations with an initial rotational angle within the range 15◦ ≤ θo ≤ 60◦ and an

aspect ratio ho/r ≥ 1.5 exhibited an apparent bistability. Those Kresling cells showed
S5



Figure S.1: Initial sizing of the Kresling cell. (A) Kresling cell geometrical parameters during compression/expansion
process. (B) Initial assessment of monostable (M) and Bistable (Bi) configurations through a five-parameters model, by
considering their initial relative angle θo and aspect ratio ho/r and rotational versus stretching stiffness ratio K/Ks. (C)
Normalized Force (F) and Energy (U) plots versus normalized displacement u/r of the configuration θo = 30o and ho/r=1.75.

normalized energy landscapes with a second local of energy minimum (δU/δu = 0). In

addition, we observed that the majority of configurations with initial rotational angles lower

than θo = 40◦ and ho/r <1.5 tended to present a monostable behavior. While those with

higher values, θo > 60◦, allowed small rotational displacements limiting the folding process

and the panels tended to overlap prematurely. In contrast, Kresling cells with initial relative

angles θo < 7.5◦, were prone to buckle during the initial folding stages, displaying an almost

rigid behavior and higher energy values. Furthermore, Fig. S.1C presents the corresponding

normalized force and elastic energy landscapes obtained for the configuration: θo = π/6, and

ho/r=1.75. It exhibited a potential tendency towards bistability in all the evaluated scenarios
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(K/Ks = 0, 0.5 × 10−4, 1.0 × 10−4). Thus, we selected these geometrical parameters for the

initial sizing of the Kresling cells used in the subsequent analyses.

S.1.2 Parametric design of 3D Kresling cells

The 3D CAD parametric models were generated in Autodesk Inventor following the initial

geometrical configuration: polygons with n = 6 sides, initial relative angle θo = π/6, initial

height versus radius ratio ho/r=1.75, and panels thickness s ≈ 0.04ho. The parametric design

process is summarized in Fig. S.2. Firstly, the upper and lower polygons are defined in 2D

sketches and rotating with respect to each other in an angle equal to θo = 30◦. The panels

thickness s was defined through an offset to the polygons’ perimeter and the width limit of the

creases was determined by auxiliary circles with radius r′. Then, 3D sketches were constructed

to enable the 3D structure of the panels, and by using the command Boundary-surface their

profiles can be linked to form the surfaces of the panels. Next, the surfaces were merged with

the Patch command, and volumetric bodies were obtained to shape the panels and the creases.

As a result we obtained a 3D Kresling cell which represent the intact crease case.

The creases were designed with gradual reductions in their cross-sections, preserving a V

shape at the top and a variable circular shape at the bottom. A cutting radius sc = r′ · RF

is defined according to the imposed reduction factors from 0.25≤ RF ≤ 0.80, decreasing the

external thickness s and an internal thickness si is obtained. Afterwards, the 3D CAD model

were saved as *.step files for the Abaqus/CAE numerical simulations.

Bottom polygon 
sketch

0

O

O'
r'

r'

crease width limit

s 

r

3D sketch

0

0

0

Panel 3D sketch

Top-Bottom 
polygons

ho

 θo 

θo 

3D CAD File

V+Circular crease design

o

o'
r'

s

w

 si=s-sc 

A*Crease 
cutting 
radius
 limit

RF=sc/r'

ho

s

s 
sc

Figure S.2: Parametric design process of a 3D Kresling cell. Creation of former 2D and 3D sketches in Autodesk Inventor.
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S.1.3 Numerical simulations considerations

The entire modeling process for simulating the kinematics of Kresling cells and generating

the load paths for the parametric study is schematized in Fig. S.3. The input 3D CAD files for

the Kresling cells models were saved as *.step files to be imported from Abaqus/CAE Standard

for their assembly. Traditionally, 3D printed Kresling cells have been designed and modeled as

linear elastic shells. This is particularly applicable to polymeric sheets with thicknesses less than

1 mm, while also considering the use of rigid or flexible materials. However, employing rubbery

creases, which are treated as nearly incompressible material, requires the use of hyperelastic

models with 3D hybrid modified formulation elements to achieve more realistic results.

In addition, complex and irregular 3D geometries such as Kresling inspired structures, require

the use of tetrahedron elements besides the application of free mesh with partition strategies.

Thus, intricate shapes can be accurately modeled while maintaining computational efficiency at

the same time. Given the hyperelastic nature of the flexible Polyjet photopolymers, the selected

mesh was composed by 10 node quadratic tetrahedron with hybrid modified constant pressure

elements C3D10MH. An adaptive mesh refinement study determined a suitable mesh density

that enables the achievement of convergence within a balanced computational time.

Four types of tetra-mesh from a coarse to refined number of elements were analyzed

comparing their obtained maximum force, that leads to the highest stress concentrations on the

Kresling cell, as well as the CPU time and refinement error (RE(%)), as described in Fig. S.4.

The latter was obtained by using the expression: 100 (FMi − FM4)/FM4, where FMi represents

the maximum force obtained in the numerical simulation with each mesh case i, FM4 is the

maximum force from the last attempt corresponding to the very refined mesh case M4. The

selected mesh corresponded to the case M3, which is formed by minimum three elements

assigned across the panels and creases cross-sections. This refined mesh fitted more accurately

to the Kresling cell geometry, reducing modeling errors and ensuring convergence.

Moreover, kinematic couplings were assigned between the reference points RP and the top

and bottom ring surfaces to effectively transmit the applied displacement, and the assigned

boundary conditions along the entire cylinder. The constitutive models used in the analyses

included an elasto-plastic model for the rigid photopolymers assigned to the panels, and a

visco-hyperelastic model for the flexible materials assigned to the creases. The material

characterization data necessary to define these constitutive models were obtained through

uniaxial tests, detailed in the following sections S.1.5 and S.1.6, and summarized in Tables 1
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MESH-MODEL

MESH-Panels

MESH-Creases

BC

Bottom: Fixed

Top: 
-Vertical Displacement (u)
-Rotation Free

# elements≥3

# elements≥3

Elements: 
C3D10MH

Tie constraints+uniform contact: 
-Master surfaces: Rigid panels/rings
-Slave surfaces: Flexible peaks/valleys 

Kinematic coupling: 
-RP 1-2 and bottom/top ring surfaces 

VM, Stress
15

10

5

0

u, Displ.
0

-5

-10

-20

RESULTS

Example: C8 RF=0.80 x3  
Creases: DM60 (Vi-Hyp)

RP2

u

FR

RP1

-15

Figure S.3: Numerical simulations process in Abaqus/ CAE Standard. Mesh generation, boundary conditions (BC) and
example of obtained results in terms of Von Mises stress in MPa, VM, and vertical displacement, u, in mm. *RP2 represents the
reference point where the vertical displacement is applied, generating a restoring force FR considered for the load path plots.

and 2.

Furthermore, tie constraints were used to create a uniform contact among the panels, creases,

top and bottom ring surfaces. Fixed boundary conditions were applied at the bottom of

the cylinder, specifically at reference point RP1, to restrict displacements and rotations in

all directions. A vertical displacement, u, approximately equal to one third of the initial

height of the Kresling cells (≈ 1/3 ho), was imposed at the top in the respective reference

point RP2 and the corresponding applied Force was computed to determine the respective

force/displacement curves. This target displacement prevents further overlapping of the panels

during the compression of the Kresling cell.

The rotation at the top was released to simulate the natural twisting plus compression motion

of Kresling cells. A VISCO step was used to perform quasi-static analyses, incorporating

time-dependent material behavior without inertia effects. The geometric nonlinearity option

(NLGEOM) was activated to consider large deformations in the analysis. We first focus on the

initial relaxation region of the analyzed rubbery materials within a time defined as τ∗i , during

which most of the stress decay occurs, as shown in Fig.4B, to observe the viscosity effects

during bistability achievement. Then, the total simulation duration tt was estimated to lie within
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0 0.5 1 1.5 2 2.5
# elements
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x105
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M1 (coarse) M4 (Very refined)

Mesh # elements Crs PAs CPUtime
 (s) RE (%)

M1 11816 1.10 1.00 731 3.85
M2 100877 0.30 0.60 23104 0.83
M3 167011 0.25 0.50 25318 -0.15
M4 230964 0.20 0.40 60982 -

Crs PAs Crs PAs

Figure S.4: Mesh refinement study parameters. Based on the maximum force achieved, Max(F), total number of elements,
including number of seeds along creases (crs) and panels (PAs), CPU time in seconds and refinement error percentage (RE(%)).

this initial relaxation region by using a velocity of 0.1 mm/s to reach the target displacement

u. The VISCO step was defined with a initial time size set to 0.01tt, while the maximum

and minimum increments were 0.1tt and 10−6, respectively. Thus, we can accurately capture the

viscosity effects and ensure the convergence by reducing the number of increments in the solver.

In addition, we performed simulations for each rubbery material over extended time periods to

predict whether bistability can also be achieved in both short- and long-term relaxation regions.

For instance, to determine the total simulation duration tt for the short-term relaxation region,

we considered a reference time τ equal to the highest τi term from the Prony series described in

Table 2. In this region, a lower stress decay in the relaxation curve of each rubbery material was

also observed. For long-term effects, when the material is fully relaxed and the stress relaxation

curve approaches a horizontal asymptote, we used total simulation durations tt of nτ, with n=6.

S.1.4 Design and Fabrication of samples for tensile tests

Polyjet photopolymers main groups can be classified into rigid thermoplastics, rubbers and

a hybrid types of composites, so called Digital Materials. The latter represent a combination

between glassy and flexible polymers, with various levels of shore hardness from A30 to A95.

In the present study, the selected rigid photopolymers were VeroYellow, VeroBlack and Digital

ABS. The tested rubbery Digital Materials were: AgilusClear 30 (Shore A30), FLXA-YT-S60

DM (Agilus30 + Vero Yellow, Shore A60), FLXA-9970 DM (Agilus30 + VeroClear, Shore

A70), FLXA-9985 DM (Agilus30 + VeroClear, Shore A85) and FLXA-YT-S95 DM (Agilus30

+ VeroYellow, Shore A95). In this study they are referred with the acronyms AG30, DM60,

DM70, DM85 and DM95, respectively.

All the samples were fabricated using a 3D printer Stratasys J750 with a layer resolution of

approximately 27 microns in High-Mix mode. The support material was first smoothed in a

soapy water solution bath for one hour and then, it was removed using water jetting.
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Figure S.5: Specimens made of photopolymers for uniaxial tests. (A) Fabrication via Polyjet technique with orientations
along the X,Y,Z axis of the build tray. (B) Experimental setup for uniaxial tests.

For the uniaxial tensile tests, dog-bone-shaped samples were designed following the ASTM

D638 standard for rigid polymers, and the ASTM D412 standard for rubbers. Five samples

were fabricated for each material type. They were printed in three directions: longitudinal (X),

transversal (Y) and perpendicular (Z) to the build tray, as shown in Fig. S.5A. For the stress

relaxation tensile tests conducted on the rubbery material, dog-bone sample design adhered

to the ISO 6914, ASTM E328, and ASTM D412 standards. Three samples were printed

longitudinally oriented to the build tray for each type of Digital Material.

S.1.5 Uniaxial tensile tests and constitutive models

The uniaxial tests were carried with a MIDI 10 testing machine by imposing a cross-head

velocity of 0.1 mm/sec, as shown in Fig. S.5B. The tests stopped when fracture occurred in

the sample. During the test both applied displacement and load were recorded. In particular,

two types of load cells with different capacities were used to measure the applied tensile load

during the experiments: 100 kN for rigid polymers, and 10 kN for rubbery materials. The data

rate acquisition was equal to 1 sample/sec. The constitutive models employed in the numerical

simulations, were obtained based on experimental data from the previously mentioned uniaxial

tests. The average among the different printing orientations, in X,Y and Z, was considered for

the mechanical properties estimation. In the case of rigid photopolymers, such as VeroBlack

(VB), an elasto-plastic model was selected. The average stress-strain curves and Young’s

modulus are shown in Fig. S.6A and B, respectively. The Young’s Modulus was estimated
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from the slope of the σ − ε curves within the elastic range. The latter is determined by fitting a

straight trendline to the experimental curve, which extends from the beginning of the curve to

the point where the R2 values approach closest to 1. The elasto-plastic behavior was modeled

in Abaqus/CAE standard, considering the experimental (σ − ε) curves by using the material

calibration utility.

First, the nominal (σ − ε) curves inputs get converted into true strains (εt) and true stresses

(σt) with the expressions: εt = ln(1 + ε) and σt = σ(1 + ε). The Young’s modulus is calculated

as previously explained and used as an input datum. Thus, the yield point can be identified and

the plastic strains, εPL, and stresses, σPL, are finally estimated to characterize the elasto-plastic

model: (ε = εEL + εPL). Moreover, we evaluated the loss of mechanical properties over time

of rigid photopolymers from the Vero group, such as VeroBlack (VB). Similarly, samples were

fabricated and tested one day, one and six months after, following the mentioned uniaxial test

procedure.
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Figure S.6: VeroBlack experimental data. (A) Average Stress-Strain (σ − ε) plots. (B) Average Young’s modulus E +/-
standard deviation obtained per each group of samples with a printing orientation in X, Y, and Z axis, and overall average (VB
Avg*). Loss of mechanical properties, including: (C) Young’s modulus, E, and (D) Ultimate tensile strength, σu, due to aging
effects analyzed using data obtained from tests conducted after 1 (E=100%), 30, and 180 days of sample fabrication.
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Rubbery materials are mostly defined by strain energy potential functions due to their

hyperelastic behavior. Their mechanical characterization requires a further step to find a model

that fits the nominal curves (σ − ε) with the tensile tests of the Digital materials group: AG30,

DM60, DM70, DM85 and DM95. Considering that the experimental data was obtained from

uniaxial tests, the material constants Ci j from linear hyperelastic polynomial models were

fitted to the nominal stresses. Thus, they were calculated through a least-squares method in

Abaqus/CAE material model calibration tool [5]. Then, the relative error (RE) of the stress

measure is minimized and it is defined by the expression:

RE =
n∑

i=1

(
1 −

σth
i

σ
exp
i

)2

, (18)

where σexp
i represents the experimental stress measures and σth

i is the nominal stress. In this

case, the latter is determined by the tensile uniaxial stress T1, which is derived from the strain

energy potential U and the stretch in the loading direction λ1, as follows:

T1 = 2(1 − λ−3
1 )

(
λ1
∂U

∂I1

+
∂U

∂I2

)
(19)

Thereby, a Neo-Hookean model fitted the nominal stresses of the tested digital materials group

from AG30, DM60 to DM95 as Fig. S.7A depicts. The fitting was obtained with relative

errors between the range 5% ≤ RE ≤ 10%. Moreover, this strain energy function is described

in Invariant base form as: UN = C10(I1 − 3), and its equivalent stretch base is written as:

UN =
µ10

2
(λ2

1 + λ
2
2 + λ

−2
1 .λ

−2
2 − 3), (20)

Additional mechanical properties, including average elongation at break (εb), were determined

from the experimental curves (σ − ε), as shown in Fig. S.7B. Other hyperelastic models, such

as Mooney-Rivlin and Polynomial N=1, showed higher relative error values ranging from

10%≤ RE ≤ 32%, and they also presented unstable strains during the calibration process.
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Figure S.7: Rubbery Digital materials (DM) experimental data. (A) Average stress-strain curves obtained during the
uniaxial tests (Exp) and hyperelastic models fitting with Neo-Hookean (NH-Fit) strain energy potential. (B) Average Elongation
at break, εb, +/- standard deviation. (*) Average obtained per each group of samples with a printing orientation in X and Y axis.

S.1.6 Stress Relaxation tests and Viscoelastic parameters

Rubbery materials present high sensitivity to strain rates and time-dependent behavior, which

can be further characterized by a visco-hyperelastic model. The time dependent constitutive

equations that define linear viscoelastic materials, are based on the stress and strain history,

loading-displacement rate and loading application time. Polyjet elastomers usually exhibit a

significant relaxation of their peak stresses in a short time span, some of them reaching it in 20

seconds [6].

The most common viscoelastic models are based on the combination in series or in parallel of

linear elastic (springs) and viscous components (dashpots). Then, the viscoelastic components

can be determined by conducting a stress relaxation test and therefrom, obtaining the subsequent

Prony parameters. The load and time data considered for determining the viscoelastic properties

are recorded once the imposed strain value ε0 is reached. The initial part of loading phase,

where the strain is rapidly increasing, is usually disregarded. After this initial phase, a time

t=0 is established as the starting point for analysis under a constant strain ε0, together with an

initial stress σ0 and the corresponding elastic instantaneous modulus Eo. Therefore, the time

dependent stress σ(t) is defined by:

σ(t) = E(t)εo (21)

Considering that the material behaves as a Maxwell solid, the time dependent relaxation

modulus Et can be expressed in terms of a Prony series expansion and calculated from Eo [7],
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as shown below:

E(t) = Eo

1 − N∑
i=1

Ei(1 − e−t/τi)

 (22)

where Ei corresponds to the ”i-th” Prony coefficient, N represents the total number of terms

of the Prony series, and τi is the relaxation time constant. Thereby, the Tensile relaxation

modulus E(t), can be determined by E(t) = σ(t)/ε0. Then, the Shear relaxation modulus G(t),

can be obtained by the expression: G(t) = E(t)/ [2(1 + ν)] and the corresponding values per

each analyzed rubbery photopolymer are illustrated in Fig. S.8A. Furthermore, the tensile

instantaneous relaxation modulus Eo, corresponding to the time t=0, is defined by Eo = σ0/ε0.

Similarly, the shear instantaneous relaxation modulus Go, is calculated by Go = Eo/[2(1 + ν)].

The Poisson’s ratio ν of elastomeric photopolymers and composites with shore hardness

between DM60 and DM95, can vary from 0.48 to 0.46, and 0.49 for the rubbery AG30 [8].

The rate-independent behavior of the material can be defined as hyperelastic under large

strains in Abaqus/CAE solvers and being described by the instantaneous relaxation tensile

modulus. After, we estimated a normalized shear relaxation modulus from the experimental

curve (G(t) − t) employing the expression: Gn = G(t)/G0. Thus, Eq. 22 can be re-written in

terms of the normalized shear relaxation modulus Gn(t), and the dimensionless Prony constants

gi, as follows:

Gn(t) = 1 −
N∑

i=1

gi(1 − e−t/τi) (23)

In addition, the long-term shear relaxation modulus G∞ is defined by the shear instantaneous

relaxation modulus Go and the dimensionless Prony constants gi, as given by Eq. 22:

G∞ = Go

1 − N∑
i=1

gi

 (24)

Assuming a linear viscosity and nearly incompressibility of the material, given that the

Poisson’s ratio of the studied rubbery materials ranges within 0.46 and 0.49, the long-term

tensile relaxation modulus can be estimated as: E∞ = G∞[2(1 + ν)].

The viscoelastic material properties, defined by the dimensionless Prony series parameters,

can be determined by fitting them to experimental relaxation test data. For this reason, a series

of stress relaxation tests in tension were performed by adapting the ISO 6914 and ASTM E328

standards. Three different constant strain values, ε0 = 10%, ε0 = 15%, and ε0 = 25%, were

imposed on each rubbery sample.
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The stress relaxation tests for rubbery materials were conducted with a MIDI 10 testing

machine by imposing a cross-head velocity of 0.1 mm/sec and at controlled room temperature

(23 ◦C). A 10 kN load cell measured the applied tensile load. When the displacement

corresponding to the target strain was reached, the machine stopped and the load relaxation

was monitored. At this point, an initial time t = 0 is established in the force-time curve (F − t),

along with its corresponding peak force Fo and a constant strain εo. The tests were considered

concluded when the force-time curve (F − t) approached an almost horizontal asymptotic line.

Subsequently, the stress depending on time σ(t) was calculated by dividing the force F(t) by

the cross-sectional area of the sample Ao. This conversion transformed the force-time (F − t)

curve into a stress-time (σ−t) curve, which begins at the peak stressσo. Next, the average (σ−t)

curves for each group of samples subjected to constant strain values, ε0 = 10%, ε0 = 15%,

and ε0 = 25%, were obtained. Since the Kresling creases are designed to overcome large

deformations, and ISO 6914 standards recommend the use of high strain values, we selected

the maximum strain value (εo=25%) for estimating the Relaxation modulus and the Prony

series parameters. The difference between the G(t) and Gn(t) curves obtained from the average

values and the selected maximum strain (εo=25%) was not significant. We then applied these

obtained Prony coefficients to the constants within the strain energy function UN(t) in order to

introduce the rate-dependent behavior associated with viscosity. Consequently, in the case of a

Neo-Hookean material model defined by an instantaneous constant Co
10, the visco-hyperelastic

relaxation function can be expressed as follows:

UN(t) = Co
10

1 − N∑
i=1

gi(1 − e−t/τi)

 (25)

These parameters are then incorporated into a visco-hyperelastic constitutive model described

by Eq. 25 for subsequent numerical simulations in Abaqus/CAE. Then, we fitted the

obtained Prony parameters to the experimental data (Gn − t) using a damped least squared

method (DLS). It was implemented using a Matlab optimization toolbox script based on the

Levenberg–Marquardt algorithm. As a result, the selected fitting coefficients correspond to the

lowest goodness of fit values, as shown in Fig. S.8B. The latter is obtained from the norm of

residuals, denoted as ∥e∥ and calculated as follows:

∥e∥ =

√√
n∑

i=1

e2
i , (26)
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where the residuals ei represent the sum of the differences between the observed yi and predicted

values f (xi), being defined as: ei = yi − f (xi).
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Figure S.8: Stress relaxation tests of the Rubbery Digital Materials AG30 to DM95. (A) Relaxation function G(t) with the
corresponding Instantaneous modulus Go. Units: MPa. (B) Experimental and fitted data of the Normalized shear relaxation
modulus Gn(t), in logarithmic scale with their respective goodness of fit in terms of the norm of residuals ∥e∥, where: AG30 ∥e∥ =
3.9 × 10−4, DM60 ∥e∥ = 4.0 × 10−4, DM70 ∥e∥ = 5.8 × 10−4, DM85 ∥e∥ = 3.1 × 10−3, DM95 ∥e∥ = 2.5 × 10−3.

Material E (MPa) σy (MPa) εb (%) σu (MPa)
VeroBlack 1543.58 19.79 15.75 44.89
UTL Resin (BMF) 567.00 10.00 40.80 14.10
Origin 402 42.00 - 230 5.5
IP-PDMS 15.30 - 240 -

Table 1: Elastic and Elasto-plastic materials mechanical properties.

AG30 DM60 DM70 DM85 DM95
C10 = 0.111 C10 = 0.157 C10 = 0.163 C10 = 0.237 C10 = 0.457
Eo = 0.545 Eo = 0.782 Eo = 1.398 Eo = 3.200 Eo = 6.621
E∞ = 0.459 E∞ = 0.651 E∞ = 0.938 E∞ = 1.676 E∞ = 2.498
Go = 0.183 Go = 0.268 Go = 0.479 Go = 1.095 Go = 2.267
G∞ = 0.154 G∞ = 0.220 G∞ = 0.317 G∞ = 0.570 G∞ = 0.855

gi τi gi τi gi τi gi τi gi τi

0.030 7.612 0.035 10.350 0.060 10.717 0.071 10.787 0.143 11.435
0.052 64.359 0.055 98.390 0.099 93.980 0.132 78.847 0.189 93.977
0.045 333.610 0.048 547.863 0.090 498.890 0.131 404.112 0.154 520.646
0.030 2310.2422 0.041 4151.017 0.089 3632.445 0.146 3116.457 0.137 3697.450

Table 2: Flexible materials mechanical properties and Prony series parameters. *Eo, E∞, Go, G∞ units in MPa
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S.1.7 Fabrication protocol via Polyjet 3D printing technique

The 3D printed Kresling unit cell fabrication process contemplates three main stages:

Design, 3D printing and Post-processing. During the design stage, the 3D CAD parametric

models were generated in Autodesk Inventor. The selected geometrical configuration for

the experimental validation of the Kresling cells is: C8 case, polygons with n = 6 sides,

θo = π/6, ho/r=1.75, t ≈ 0.04ho, creases width/thickness ratio w/s =1.50 and RF ≤ 0.66.

The Kresling cell dimensions ho=17.5 mm and r=10 mm, were scaled three times in order to

make feasible their printing and to avoid the dimensional limitations regarding manufacturing.

The other geometrical parameters and ratios were maintained to keep the proportions of

the analyzed Kresling cells. The parametric design process was previously summarized in

Fig. S.22, section S.1.2. The 3D CAD model were saved as Parasolid files (∗.xb) to facilitate

the exportation of the assembled components in a unique file for 3D printing. At the same time,

it enables to identify separately the different components of the Kresling cells, such as panels,

peaks, valleys and rings, for the assignation of different materials.

For the printing process, the GrabCAD software was used for the preparation of the printing

files to be send to a Stratasys J750 printer series, including automatic slicing. Once the files

are imported, the respective dimensions and position along the build tray are controlled. Since

the panels were conceived to be made of rigid materials, the VeroBlack photopolymers was

selected. In the case of the creases, the following flexible materials were employed in different

Kresling cells: AG30, DM60, DM70, DM85 and DM95. The selected support material was

SUP706B with the standard grid density mode. It is important to remark that supports were

also assigned to the panels during the printing process, because of the presence of inclined

faces with respect to the build tray. The printing setting was the following: High-Mix mode

with a layer resolution thickness of 27 microns and matte surface finishing.

The post-processing operations include mostly the supports removal, which demands to be

meticulously carried on specially considering the small dimensions of the Kresling cells creases

being at the edge of Polyjet manufacturing limitation ≤ 1.0 mm. The prolonged contact with

water or alkaline solutions of small elements and multi-material interfaces lower than 1.0 mm

cross-section, lead to a premature breakage and detachment. For this reason, the exposure of

the 3D multi-material sample to humidity should be controlled. As an alternative, the support

residues were carefully removed mostly by hand and briefly rinsed in water for less than five

minutes.
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Figure S.9: Fabrication of multi-material Kresling cells. (A) Polyjet printing process and multi-material deposition of rigid
(VB), flexible (DM60) and support grid (SUP706B). (B) Support material distribution along the samples with matte surface
finishing. (C) 3D printed Kresling cell from case C8 (RF=0.80) used in the experiments, with the following dimensions: r=30,
hR=3, ho=52.50, and thickness of the panels s=2.25. Units: mm. Scale bar: 10 mm.

S.1.8 Experimental setup

A further experimental validation was carried on to involve quasi-static tests on the 3D

printed Kresling cells to validate the numerical simulations results. A compression load was

applied at the top of the Kresling cell with a Messphysik µ-strain loading frame machine (from

ZwickRoell, 0.01 µm stroke measurement resolution). The experiments were performed at a

testing speed of 0.1 mm/sec. The applied Load F and displacement u were measured with a AEP

TYPE F1-1kN load cell and with a displacement transducer mounted internally to the testing

machine, respectively. The tests were stopped once a displacement u = 1/3ho was applied the

sample. The experimental setups, shown in Fig. S.10, consists of two fixtures. The top fixture

guarantees free rotation, ϕ, during the folding of the Kresling (allowing the natural twist under

compression inherent to Kresling patterns kinematics), while the bottom fixture prevent both

displacements and rotations [3].

The free rotational fixture is formed by a rotating plate coupled to a ball bearing (SKF 608

SKF 8x22x7) and a rotational fastener. The Kresling cell samples are directly linked to the

top and bottom plates through two different systems. The first one consisted in a female-male

connection system used for the Kresling cells with thicker creases, as shown in Fig. S.10A. Pins

were created on the surfaces of the samples rings and distributed to coincide with the vertices

of the hexagonal polygons. These pins were then inserted into the corresponding holes located

in the plates. However, in this system, when using Kresling cells with thinner creases, the

samples tended to slide. To prevent this problem, we implemented a second connection system
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based on magnets applied to the top and bottom of the samples and the plates, as described in

Fig. S.10B. The components of the first setup were 3D printed using the PolyJet technique on

a Stratasys J750 3D printer, with tolerances of ±0.2 mm for holes and insertions. In contrast,

the second setup was printed using the DLP technique through an Origin-One printer, with

tolerances between ±0.1-0.25 mm for the magnet holes and insertions.
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Ball bearing

Rotating fastener
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Figure S.10: Experimental setup for compression test with an applied Load F and displacement u. Exploded schemes of
the experimental setups with a fixture at the top, enabling a free rotation ϕ, and a fixed support fixture at the bottom with the
following connection systems: (A) Pins and (B) Magnets.

S.1.9 Hands-on experimental validation of Bistability

A manual compressive force was applied to the top of the Kresling cells, allowing free

rotation at the top while constraining all displacements and rotations at the bottom. This action

enabled us to recreate their spontaneous rotation, reflecting the characteristic kinematics during

compression. Thus, we conducted a hands-on validation of bistability to determine which

Kresling cells remained in the folded configuration after the manual force was applied. The

applied compressive force generated an axial displacement u of approximately one third of the

initial height ho of the Kresling cell.
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For example, we compared the behavior of Kresling cells with creases made of the rubbery

material DM60 generated with gradual reductions (C8 RF=0.80) versus its corresponding intact

creases cell, as shown in Fig. S.11A. We also observed the effects of viscosity in Kresling

cells (C8 RF=0.80) with creases made of different rubbery photo-polymers AG30, DM60,

DM70, DM85 and DM95, as illustrated in Fig. S.11B. In these hands-on experiments, we

confirmed that all Kresling cells with creases generated with RF=0.80 remained in the folded

configuration for over 180 seconds after the application of the manual compressive force,

thus validating the achieved bistability in the experiments conducted with the testing machine.

Conversely, the Kresling cells with creases made of the highly viscous DM95 or the intact cell

immediately returned to their original configuration, exhibiting a monostable behavior. The

complete hands-on experimental validation is further described in videos S2 and S4.

Figure S.11: Hands-on experimental investigation demonstrating the achievement of bistability (Bi) in 3D-printed
multi-material Kresling cells of Case 8, by comparing their folding process. (A) RF=0.80 versus Intact creases cell (Int).
(B) Different RF=0.80 cells with creases made of rubbery photopolymers: AG30, DM60, DM70, DM85, and DM95. *Note:
The Kresling cells were fabricated with an initial height ho=52.5 mm, and rigid panels made of VB. The applied force aimed
to achieve an axial displacement u≈1/3ho.

S.1.10 Microscopic characterization of 3D printed creases results

The dimensional accuracy of the printing process affects the real dimensions of the 3D

printed Kresling cells. The measurements of the peaks and valleys creases from the case

C8, with gradual reductions between 0.25 ≤ RF ≤ 0.80, were analyzed. We established a

comparison between those obtained in reality after the Polyjet process and the corresponding

exact measurements in the CAD models. A transversal section passing through the half of the

Kresling cell was considered to design the sample for the characterization of the geometry of
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both types of creases, peaks and valleys. This sample replicates the intermediate substrates of

the 3D printed Kresling cell.

The real dimensions of 3D printed samples were determined via a stereo microscope (Nikon

SMZ800) equipped with an ED Plan 1.5x lens and with a DS-Ri2 camera. The mean values and

the corresponding standard deviations (SD) were obtained from three real measurements (n=3)

of the geometrical parameters characterizing the creases, as illustrated in Fig. S.12 and Fig. S.13

for both creases, peaks and valleys. We determined the corresponding mean percentage error,

MPE (%) between the dimensions from printed samples (Real) and those used from the CAD

models, as follows:

MPE(%) =
100

n

n∑
n=1

(
MCAD − MReal

MReal

)
(27)

The obtained real and exact measurements of the analyzed creases, with the respective

MPE (%) error are described in Fig. S.14, in Fig. S.15, Fig. S.16 and Fig. S.17, including

peaks and valleys. The measurements taken along the multi-material interface between the

rigid and the rubbery photopolymer show differences with an error between 2 ≤ MPE (%) ≤ 8.

The transition zone where the two materials are merging is not homogeneous. For this reason,

the dimensions along the edges of the 3D printed creases were not easily measured, potentially

leading to an error. Since the internal thickness si is a crucial parameter for generating gradual

reductions along the creases, we have selected this control parameter to evaluate the impact

of differences between the exact and real measurements on the resulting experimental load

paths and compare them to the numerical results. Subsequently, an updated CAD model of

Kresling cells may be created by adjusting the internal thickness si according to the mean real

measurements of the analyzed 3D printed creases.

Furthermore, we also observed that when the exact dimensions were designed less than

1.20 mm, the obtained real dimensions in the 3D printing process led to greater values

exhibiting a negative error between -1 ≤ MPE (%) ≤ -25. Specifically, in the cases related to

creases with smaller internal thickness si generated with the reduction factors ranging within

0.57 ≤ RF ≤ 0.80. In contrast, a positive error within 3 ≤ MPE (%) ≤ 10, is achieved when the

exact dimensions from the CAD files are above 1.20 mm, such as the cases with reduction

factors between 0.25 ≤ RF ≤ 0.50. It means that the resulting creases exhibited smaller real

dimensions. This fact can be attributed to the printing limitation of fabricating defective

load bearing elements with cross-sections around 1 mm, besides the characteristic dimensional

accuracy of Polyjet J750 printers. In the case of printing with High-Mix mode, where the layer
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height reaches 13-16 microns, the exhibited dimensional accuracy ranges within ±0.06-0.1% for

part lengths under ≈100 mm [9], even grasping values around ±0.10 mm in real applications.

Figure S.12: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D printed
Kresling cells from case C8 with gradual reduction factors ranging between 0.57 ≤ RF ≤ 0.80 (scale 3:1). Comparison between
the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C) Valleys. Units: microns. Scale
bar:1 mm.
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Figure S.13: Microscope characterization of 3D printed creases. (A) Intermediate transversal section of the 3D printed
Kresling cells from case C8 with gradual reduction factors ranging between 0.25 ≤ RF ≤ 0.50 (scale 3:1). Comparison between
the real (3DP) and the exact (CAD) measurements of the corresponding: (B) Peaks and (C) Valleys. Units: microns. Scale
bar:1 mm.
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Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

REAL 1 1805.42 1977.77 786.63 2336.39 2323.52 1842.47 1701.28 3843.36 421.35 487.45
2 2049.90 2123.95 743.41 2567.10 2559.89 1840.53 1753.66 3947.92 335.62 347.94
3 1797.31 1897.40 734.76 2350.34 2249.66 1856.68 1751.66 3913.40 549.37 538.36

Mean 1884.21 1999.71 754.93 2417.94 2377.69 1846.56 1735.53 3901.56 435.45 457.92
SD 143.55 114.86 27.79 129.36 162.05 8.82 29.68 53.28 107.57 98.59

CAD 1 2173.78 2173.14 710.08 2512.84 2508.53 1815.27 1732.96 3773.05 368.96 373.54
MPE (%) 13.32 7.98 -6.32 3.78 5.22 -1.72 -0.15 -3.41 -18.02 -22.59

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

REAL 1 2095.18 1666.30 639.68 1868.19 1894.55 1851.63 1900.95 3814.28 792.53 656.45
2 2079.31 1987.27 639.68 1893.64 1732.67 1909.83 1733.86 3800.96 727.67 638.99
3 2393.20 2258.65 553.23 1876.31 1821.23 1861.73 1793.39 3626.94 986.39 889.77

Mean 2189.23 1970.74 610.86 1879.38 1816.15 1874.40 1809.40 3747.39 835.53 728.40
SD 176.82 296.52 49.91 13.00 81.06 31.10 84.69 104.53 134.61 140.02

CAD 1 2453.70 2455.58 577.80 1857.34 1869.41 1815.27 1732.61 3653.10 844.40 824.90
MPE (%) 10.78 19.74 -5.72 -1.19 2.85 -3.26 -4.43 -2.58 1.05 11.70

REAL 1 2044.80 1999.25 829.85 2481.65 2331.27 1913.83 1727.26 3460.71 448.72 518.83
2 1956.78 1980.91 829.85 2453.26 2460.88 1864.04 1748.99 3423.04 610.22 702.65
3 1843.65 1930.68 899.85 2406.09 2390.02 1827.35 1756.54 3427.05 609.43 707.45

Mean 1948.41 1970.28 853.18 2447.00 2394.06 1868.41 1744.26 3436.93 556.12 642.98
SD 100.84 35.50 40.41 38.17 64.90 43.41 15.20 20.69 93.01 107.54

CAD 1 2173.78 2173.14 843.42 2512.84 2508.53 1815.27 1732.96 3494.55 502.29 506.87
MPE (%) 10.37 9.33 -1.16 2.62 4.56 -2.93 -0.65 1.65 -10.72 -26.85

REAL 1 2064.31 2149.35 899.01 1870.29 1712.57 1885.14 1682.04 3703.44 877.00 801.23
2 2457.63 2458.85 622.39 1894.36 1911.09 1839.71 1799.86 3562.02 872.50 885.46
3 2277.95 2257.50 855.78 1962.17 1809.93 1856.07 1739.69 3725.26 899.96 807.23

Mean 2266.63 2288.57 792.39 1908.94 1811.20 1860.31 1740.53 3663.57 883.15 831.31
SD 196.90 157.07 148.81 47.64 99.27 23.01 58.91 88.62 14.73 46.99

CAD 1 2453.70 2455.58 674.91 1857.34 1869.41 1815.27 1732.61 3652.71 958.31 940.19
MPE (%) 7.62 6.80 -17.41 -2.78 3.11 -2.48 -0.46 -0.30 7.84 11.58

Geometrical Parameters RF=0.80
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.74
Peaks measurements

Valleys measurements

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S.14: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.74 ≤ RF ≤ 0.80.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error MPE(%) with respect to
the exact (CAD) measurements. Units: microns.
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REAL 1 1925.05 1952.67 1089.18 2355.76 2441.13 1882.14 1701.58 3306.21 592.87 661.01
2 1762.63 1897.89 1097.82 2367.57 2346.68 1840.89 1818.57 3144.04 656.89 707.30
3 2076.20 2037.56 976.80 2358.92 2403.50 1846.38 1773.73 2918.37 746.48 754.29

Mean 1921.29 1962.71 1054.60 2360.75 2397.10 1856.47 1764.63 3122.87 665.41 707.53
SD 156.82 70.37 67.52 6.11 47.55 22.40 59.02 194.78 77.16 46.64

CAD 1 2173.78 2173.14 843.42 2512.84 2508.53 1815.27 1732.96 3494.55 502.29 506.87
MPE (%) 11.61 9.68 -25.04 6.05 4.44 -2.27 -1.83 10.64 -32.48 -39.59

REAL 1 2276.31 2216.95 812.56 1870.04 1810.70 1858.39 1766.07 3234.99 987.65 735.99
2 2200.04 2255.46 924.94 1816.62 1842.53 1738.40 1790.08 3205.89 914.09 880.13
3 2299.29 2135.98 726.12 1771.06 1696.32 1777.74 1736.65 3083.61 1163.36 1060.41

Mean 2258.55 2202.80 821.21 1819.24 1783.18 1791.51 1764.27 3174.83 1021.70 892.18
SD 51.95 60.98 99.69 49.54 76.89 61.17 26.76 80.33 128.08 162.55

CAD 1 2453.70 2455.58 791.14 1857.33 1869.41 1815.27 1732.61 3044.68 1100.72 1084.35
MPE (%) 7.95 10.29 -3.80 2.05 4.61 1.31 -1.83 -4.27 7.18 17.72

REAL 1 1843.58 1878.57 1262.07 2383.19 2311.19 1788.05 1730.54 2845.25 843.64 920.16
2 1951.89 2039.94 1244.78 2474.39 2412.00 1804.26 1770.34 2813.76 815.30 898.31
3 2072.20 2191.38 1236.13 2409.32 2481.15 1818.14 1762.74 2531.63 910.13 947.11

Mean 1955.89 2036.63 1247.66 2422.30 2401.45 1803.48 1754.54 2730.21 856.36 921.86
SD 114.36 156.43 13.21 46.97 85.47 15.06 21.13 172.70 48.68 24.44

CAD 1 2173.78 2173.14 1224.37 2512.84 2508.53 1815.27 1732.96 2697.78 883.24 887.84
MPE (%) 10.02 6.28 -1.90 3.60 4.27 0.65 -1.25 -1.20 3.04 -3.83

REAL 1 2430.01 2413.36 847.14 1888.91 1806.66 1823.66 1801.08 2723.95 1423.84 1265.66
2 2266.27 2237.62 847.14 1888.21 1807.67 1846.33 1794.40 2855.89 1149.21 1090.58
3 2438.34 2431.34 838.50 1886.06 1764.47 1839.21 1766.05 2811.48 1354.00 1246.38

Mean 2378.21 2360.77 844.26 1887.73 1792.93 1836.40 1787.18 2797.11 1309.02 1200.87
SD 97.03 107.03 4.99 1.49 24.66 11.59 18.60 67.13 142.73 96.00

CAD 1 2453.70 2455.58 946.48 1857.34 1869.41 1815.27 1732.61 2609.96 1283.88 1269.77
MPE (%) 3.08 3.86 10.80 -1.64 4.09 -1.16 -3.15 -7.17 -1.96 5.43

Geometrical Parameters RF=0.57
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.66
Peaks measurements

Valleys measurements

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S.15: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.57 ≤ RF ≤ 0.66.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error MPE(%) with respect to
the exact (CAD) measurements. Units: microns.

S26



s PA1,
P

r' 2,P

s2,P

r'1,P

si,P

s1,P

l 2,Pl1,P arcP

s P
A

1,
V r'2,V

s2,V

r'1,V

si,V
s1,V

l2,Vl1,V arcV

s
P

A
2,V

s
PA2,P

1

2

3

1

2

3
Peaks Valleys

REAL 1 1938.23 1904.66 1296.64 2318.11 2340.35 1784.59 1781.64 2361.64 987.28 1017.38
2 1975.79 2093.31 1297.49 2412.80 2448.53 1837.37 1773.89 2472.90 978.77 1082.89
3 2038.33 2035.59 1327.49 2436.15 2402.00 1904.94 1810.34 2531.46 942.40 1078.77

Mean 1984.12 2011.19 1307.21 2389.02 2396.96 1842.30 1788.62 2455.33 969.48 1059.68
SD 50.57 96.66 17.57 62.51 54.27 60.33 19.20 86.26 23.84 36.69

CAD 1 2173.78 2173.14 1434.00 2512.84 2508.53 1815.27 1732.95 2361.35 1043.96 1048.55
MPE (%) 8.72 7.45 8.84 4.93 4.45 -1.49 -3.21 -3.98 7.13 -1.06

REAL 1 2322.80 2075.29 985.45 1767.51 1769.52 1807.56 1783.69 2401.85 1563.69 1661.65
2 2324.10 2312.17 1100.89 1826.11 1806.05 1837.07 1812.26 2260.21 1538.72 1469.46
3 2152.60 2078.57 950.87 1866.78 1746.68 1827.55 1724.35 2407.22 1193.45 1197.10

Mean 2266.50 2155.34 1012.40 1820.13 1774.08 1824.06 1773.43 2356.43 1431.95 1442.74
SD 98.64 135.83 78.56 49.90 29.95 15.06 44.84 83.37 206.93 233.43

CAD 1 2453.70 2455.58 1058.19 1857.34 1869.41 1815.27 1732.61 2283.87 1421.29 1408.90
MPE (%) 7.63 12.23 4.33 2.00 5.10 -0.48 -2.36 -3.18 -0.75 -2.40

REAL 1 1825.07 1936.91 1547.33 2324.26 2263.44 1799.77 1714.02 2053.97 1205.87 1207.09
2 2018.29 2079.35 1538.68 2382.63 2377.57 1818.97 1730.74 2040.43 1236.40 1260.02
3 1992.82 1978.89 1555.97 2281.62 2336.26 1842.91 1790.18 1869.76 1337.59 1353.99

Mean 1945.39 1998.38 1547.33 2329.50 2325.76 1820.55 1744.98 1988.05 1259.95 1273.70
SD 104.98 73.19 8.65 50.71 57.79 21.61 40.03 102.67 68.95 74.40

CAD 1 2173.78 2173.14 1610.08 2512.84 2508.53 1815.27 1732.96 1889.97 1268.96 1273.56
MPE (%) 10.51 8.04 3.90 7.30 7.29 -0.29 -0.69 -5.19 0.71 -0.01

REAL 1 2408.36 2429.37 1296.64 1822.79 1793.45 1820.92 1740.57 2044.27 1532.16 1569.42
2 2276.83 2280.70 1262.07 1798.03 1792.89 1799.84 1740.85 1797.87 1433.65 1416.88
3 2267.32 2228.39 1322.58 1807.67 1799.34 1788.70 1746.69 1589.70 1479.77 1414.80

Mean 2317.50 2312.82 1293.76 1809.50 1795.23 1803.15 1742.70 1810.61 1481.86 1467.03
SD 78.83 104.27 30.36 12.48 3.57 16.36 3.46 227.55 49.29 88.68

CAD 1 2453.70 2455.58 1214.91 1857.34 1869.41 1815.27 1732.61 1827.24 1613.72 1603.74
MPE (%) 5.55 5.81 -6.49 2.58 3.97 0.67 -0.58 0.91 8.17 8.52

Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.40
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.50

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S.16: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.40 ≤ RF ≤0.50.
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error MPE(%) with respect to
the exact (CAD) measurements. Units: microns.
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REAL 1 2007.90 2155.04 1590.55 2333.07 2430.29 1859.66 1726.92 1846.22 1322.36 1490.03
2 2028.15 2180.96 1694.28 2323.11 2403.11 1828.61 1707.10 1693.91 1380.78 1442.26
3 2092.83 2118.11 1633.77 2312.08 2334.74 1848.64 1697.99 1580.72 1468.83 1542.94

Mean 2042.96 2151.37 1639.53 2322.75 2389.38 1845.64 1710.67 1706.95 1390.66 1491.74
SD 44.36 31.59 52.10 10.50 49.23 15.74 14.79 133.23 73.73 50.36

CAD 1 2173.78 2173.14 1760.09 2512.84 2508.53 1815.27 1732.96 1575.47 1418.96 1423.56
MPE (%) 6.02 1.00 6.85 7.56 4.75 -1.67 1.29 -8.35 1.99 -4.79

REAL 1 2342.48 2213.98 1495.46 1748.28 1824.03 1720.14 1731.25 1467.53 1701.94 1518.26
2 2245.91 2181.91 1538.68 1837.17 1711.47 1798.85 1711.47 1433.87 1951.36 1710.22
3 2350.44 2343.54 1495.46 1730.69 1711.92 1750.96 1664.61 1075.60 1941.09 1873.85

Mean 2312.94 2246.48 1509.87 1772.05 1749.14 1756.65 1702.44 1325.67 1864.80 1700.78
SD 58.19 85.58 24.95 57.08 64.86 39.66 34.22 217.22 141.13 177.98

CAD 1 2453.70 2455.58 1318.87 1857.34 1869.41 1815.27 1732.61 1522.77 1742.04 1733.69
MPE (%) 5.74 8.52 -14.48 4.59 6.43 3.23 1.74 12.94 -7.05 1.90

REAL 1 2090.82 2177.36 1970.90 2370.55 2333.97 1846.06 1729.49 805.27 1798.33 1948.19
2 2136.14 2273.04 1823.94 2385.47 2560.47 1860.38 1773.35 1032.96 1676.56 1690.60
3 2012.82 2091.49 1875.81 2412.80 2424.35 1807.23 1716.87 1280.27 1580.28 1665.81

Mean 2079.93 2180.63 1890.22 2389.61 2439.60 1837.89 1739.90 1039.50 1685.06 1768.20
SD 62.38 90.82 74.53 21.43 114.02 37.50 29.64 237.57 109.27 156.37

CAD 1 2173.78 2173.14 1947.58 2512.84 2508.53 1815.27 1732.96 1182.07 1606.46 1611.07
MPE (%) 4.32 -0.34 2.95 4.90 2.75 -1.25 -0.40 12.06 -4.89 -9.75

REAL 1 2381.80 2225.93 1504.11 1817.79 1776.20 1804.06 1740.32 1346.03 1662.17 1605.54
2 2244.79 2173.83 1513.93 1691.98 1675.51 1732.54 1718.32 1351.15 1855.47 1924.44
3 2293.10 2291.09 1555.97 1758.96 1720.56 1808.49 1714.21 1307.83 1803.89 1740.83

Mean 2306.56 2230.28 1524.67 1756.24 1724.09 1781.70 1724.28 1335.00 1773.84 1756.94
SD 69.49 58.75   27.55 62.95 50.44 42.63 14.04 23.67 100.09 160.06

CAD 1 2453.70 2455.58 1449.74 1857.33 1869.41 1815.27 1732.61 1142.11 1902.48 1896.18
MPE (%) 6.00 9.17 -5.17 5.44 7.77 1.85 0.48 -16.89 6.76 7.34

Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.33
Peaks measurements

Valleys measurements

Geometrical Parameters RF=0.25

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Meas# r'1,P r'2,P si,P s1.P s2,P sPA1,P sPA2,P arcP l1,P l2,P

Meas# r'1,V r'2,V si,V s1.V s2,V sPA1,V sPA2,V arcV l1,V l2,V

Figure S.17: Microscope characterization of 3D printed peaks and valleys from case C8 (scale 3:1) with 0.25 ≤ RF ≤0.33
Mean values, and standard deviation (SD) of the real measurements, besides the mean percentage error MPE(%) with respect to
the exact (CAD) measurements. Units: microns.
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S.2 Supplementary Text

S.2.1 Intact Kresling cell 3D analysis

Based on the initial geometrical configuration that leads to bistability, we parametrically

designed the 3D Kresling cells, as further detailed in S.1.2. The analyzed group of intact cases

was conformed by Kresling cells with a variable width of the creases. This term is expressed

in terms of the width versus thickness ratio, denoted as w/s. Thus, the number of intact cases

analyzed ranged within (0.50≤ w/s ≤ 2.00) with their respective notation: Int 1 to Int 11, as

shown in Fig. S.18A.
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Figure S.18: Kresling cells with intact creases analysis (A) Geometrical details of Intact creases cases, from Int 1 to Int 11,
defined in terms of the ratio w/s. Load paths within the ranges: (B) 0.50 ≤ w/s ≤ 2.00 and (C) 1.50 ≤ w/s ≤ 2.00.

The load paths obtained from the numerical simulations, depicted in Fig. S.18B, reveal that

despite the utilization of flexible creases, the intact cases did not achieved the theoretical

bistability as predicted by the preliminary five-parameters model assessment. Specifically, the

force values did not reached values below zero, preventing a second local minimum energy

state. We have observed that the intact cases with narrower creases (Int 1 to 4) ranging
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between (0.50≤ w/s ≤ 0.90), tended towards monostability and become highly stiff instead.

In contrast, the intact cases (Int 5 to 11) with wider width creases (1.07≤ w/s ≤ 2.00), exhibited

a monostable behavior. Although using flexible creases facilitates the folding process, the

Kresling cell quickly reverts to its initial configuration once the axial load is applied, and second

stable state is still not achieved, as evidenced by the load paths in Fig. S.2C. This behavior can be

attributed to the restoring force related to the viscoelastic nature of photopolymers. Therefore,

these initial results indicate that utilizing elastomeric creases requires further design strategies

to potentially achieve a bistable configuration in practice.

S.2.2 Creases design: Complementary results

The parametric study of the Kresling cells with the creases design, results from the numerical

simulations in Abaqus/CAE Standard, shown in Fig. S.19. We assessed how the gradual

reductions creases affected the energy landscape and the transition form a bistable (Bi) to a

monostable (M) behavior. As narrower the internal thickness si, the Kresling cell tends to

achieve bistability.

This is especially observed in wider creases with a ratio w/s ≥ 1.20, with an internal thickness

si and reduction factors between 0.66 ≤ RF ≤ 0.80, taking values between 0.58 ≥ si/s ≥ 0.05.

It is evidenced in the load paths with their corresponding stored energy landscapes, U, from

Fig. S.20 to Fig. S.23. Moreover, the sequential experiments conducted on the Kresling cells

within the range potentially exhibiting bistability (0.66 ≤ RF ≤ 0.80) are presented in Fig. S.24.

The results reveal a loss of load capacity of approximately 50% due to the degradation of the

thin rubbery creases (RF=0.80). In contrast, thicker creases (RF=0.66) appeared more resistant,

losing around 30% of load capacity. The analyzed Kresling cell cases were designed according

to the geometrical parameters detailed in Fig. S.25 for a 1:1 scale.
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Figure S.19: Parametric study of the creases geometry. Geometrical parameters with their attained Rotational Stiffness (K̃),
that lead to monostability (M) or bistability (Bi). ’Limit Bi’: boundary between (Bi) and (M) determined experimentally. *The
crease edge limit determines the range of reduction radius factors, RF, to maintain a Circular shape at the lower part of the
crease. Results from Kresling cells at 1:1 scale.
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Figure S.20: Load paths and stored energy (U) landscapes variation according to the crease internal thickness (si)
decrement based on the reduction factors RF. (A) C1 (w/s = 0.50), (B) C2 (w/s = 0.60) and (C) C3 (w/s = 0.75). The
corresponding curves were generated until the panels started to be in contact during the numerical simulations.

S31



0 2 4 6
u (mm)

0

5

10

15

U
 (

m
J)

0 2 4 6
u (mm)

0

5

10

15

U
 (

m
J)

0 2 4 6
u (mm)

0

5

10

15

U
 (

m
J)

0 2 4 6
u (mm)

0

2

4

6

F
 (

N
)

0 2 4 6
u (mm)

0

2

4

6

F
 (

N
)

0 2 4 6
u (mm)

0

5

10

F
 (

N
)

C4

C4

RF=0.80

C5

C5 C6

(A) (B) (C)

RF=0.33

RF=0.80

RF=0.33

RF=0.80

RF=0.25

RF=0.80

RF=0.25

RF=0.80

RF=0.33

RF=0.80

RF=0.33

2nd Local 
energy min.

C6

2nd Local 
energy min.

Figure S.21: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A) C4
(w/s = 0.90), (B) C5 (w/s = 1.07), and (C) C6 (w/s = 1.20). The corresponding curves are presented in the following order
RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.

0 2 4 6
u (mm)

0

5

10

U
 (

m
J)

0 2 4 6
u (mm)

0

5

10

U
 (

m
J)

0 2 4 6
u (mm)

0

5

10

U
 (

m
J)

0 2 4 6
u (mm)

-0.5
0

2

4

F
 (

N
)

0 2 4 6
u (mm)

-0.5
0

2

4

F
 (

N
)

0 2 4 6
u (mm)

-0.5
0

2

4

F
 (

N
)

C7

C7

C8

C8

C9

C9

(A) (B) (C)

RF=0.25

RF=0.80

RF=0.25

RF=0.80

RF=0.25

2nd Local 
energy min.

2nd Local 
energy min.

RF=0.80

RF=0.80

RF=0.25

RF=0.80

RF=0.25

RF=0.80

RF=0.25

2nd Local 
energy min.

Figure S.22: Load paths and stored energy (U) landscapes variation according to the reduction factors RF. (A) C7
(w/s = 1.35), (B) C8 (w/s = 1.50) and (C) C9 (w/s = 1.65). The corresponding curves are presented in the following order
RF: 0.25, 0.33, 0.40, 0.50, 0.57, 0.66, 0.74, and 0.80.

S32



0 2 4 6
u (mm)

0

2

4

6

8

U
 (

m
J)

0 2 4 6
u (mm)

0

2

4

6

8

U
 (

m
J)

0 2 4 6
u (mm)

-0.5

0

1

2

3

F
 (

N
)

0 2 4 6
u (mm)

-0.5

0

1

2

3
F

 (
N

)
C10

C10

C11

C11

(A) (B)

RF=0.25

RF=0.80

RF=0.25

2nd Local 
energy min.

2nd Local 
energy min.

RF=0.80

RF=0.25

RF=0.80

RF=0.25

RF=0.80

Figure S.23: Load paths and stored energy (U) landscapes variation according to the reduction factors. (A) C10 (w/s =
1.80), and (B) C11 (w/s = 2.00). The corresponding curves are presented in the following order RF: 0.80, 0.74, 0.66, 0.57,
0.50, 0.40, 0.33, and 0.25.

0 5 10 15 20
u (mm)

-5

0

5

10

15

F
 (

N
)

0 5 10 15 20
u (mm)

-5

0

10

20

F
 (

N
)

0 5 10 15 20
u (mm)

-5

0

10

20

F
 (

N
)

(A)

EXP
FEARF=0.80

 1 2

 3

(B) (C)

EXP
FEA

RF=0.74

 1
 2

 3

EXP
FEARF=0.66

 1

 2

 3
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Figure S.25: Geometrical Parameters of creases with gradual reductions. Dimensions taken from the top of the Kresling
cells. Units: mm, scale: 1:1.
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S.2.3 Estimation of Rotational Stiffness in Creases

Whether a rubbery material is considered for the design of the creases, large deformations are

expected to be developed. The V-shape+Circular cross-section of the creases can be simplified

into an equivalent rectangular strip that delimits the zone predominantly under bending. Its

dimensions are the width w and the internal thickness si, where the latter varies according to

a reduction factor RF. Thereby, we assessed the effects of the decrement of cross-sections on

the rotational stiffness, K̃, of the designed creases. The angular rotation ψ, corresponding to

a given bending moment M applied on the equivalent section, can be estimated considering

the formulations of bending of a incompressible elastic Neo-Hookean block proposed by [10].

This method assumes that the deformed configuration of the block follows the shape of a planar

sector of a cylindrical tube with a thickness s f , an initial angle ψi and a radius r, as shown in

Fig. S.26A. The last two terms define the cylindrical coordinates of the system, thus: rϵ[r f , r f +

s f ] and ψϵ f [−ψi, ψi], being the out of plane terms neglected. The term r can be calculated by

fulfilling the impressibility constraint, where the deformed section is equal to the initial area

defined by si and w. Then, the following relation can be established:

r f =
w si

2 ψi s f
−

s f

2
(28)

Considering a Neo-Hookean response of the section, one of the principal stress components Tψ

in cylindrical form is defined as:

Tψ(r) = Go

− w2

8ψ2
i r2 +

6ψ2
i

w2 r2
− 1

 − Go

2

(
−

w2

4ψ2
i (r f + s f )2

+
4ψ2

i (r f + s f )2

w2 − 2
)
. (29)

where, Go is the initial shear modulus and the thickness s f of the deformed configuration can

be obtained by the following expression:

s f =
w

ψi
√

2

√√√
−1 +

√
1 + 4ψ2

i

s2
i

w
(30)

The bending moment M, corresponding to the stress on the deformed configuration, is

calculated by the following integration in the interval [r f , r f + s f ]:

M =
∫ r f+s f

r f

rTψ(r) d r (31)
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Using Eq.31, we calculated the bending moment M of the equivalent cross- sections, M,

obtained at a given rotational angle ranging within 0 ≤ ψ ≤ π/2. The analytical results of the

creases from cases C8 (w/s = 1.50) and C11 (w/s = 2.00) were selected for validation against

numerical simulations in Abaqus/CAE-Standard, as indicated in Fig. S.26B and C, respectively.

The thicknesses of the equivalent rectangular blocks correspond to the variable internal

thickness si generated by reduction factors ranging from 0.25 ≤ RF ≤ 0.80. Moreover, the

corresponding mesh was created using biquadratic hybrid elements (CPE8RH). The equivalent

rectangular blocks were subjected to bending until reaching a rotational angle of ψ = π/2

allowing us to obtain the corresponding bending moment M. This demonstrated the close

alignment between the FEA calculations and the analytical formulation. Furthermore, the plots

from Fig. S.27 depict the bending moment values obtained in Eq.31 at a given rotational angle

0 ≤ ψ ≤ π/2, applied to the equivalent cross-sections corresponding to crease cases C1 to C11,

along with their respective reduction factors RF, as well as the related intact crease cases.
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Figure S.26: Rotational stiffness calculation. (A) Bending of an incompressible rectangular block equivalent to the crease
cross-section. Comparison of analytical and FEA results for the bending moment, M, and angular rotation, ψ, in cases: (B)
C8 (w/s = 1.50) and (C) C11 (w/s = 2.00). *Note: Results are presented in the order reduction factors ranging from
0.25 ≤ RF ≤ 0.80, representing a variable si

Then, the rotational stiffness was obtained using the expression: K̃= M/ψ. We observed

that rotational stiffness depends on the variation of internal thicknesses si, their associated

reduction factors RF, and the width of the creases w. For instance, bistable creases with

thinner internal thicknesses, generated by reduction factors 0.66 ≤ RF ≤ 0.80 and ranges of

0.40 ≥ si/s ≥ 0.30 (C8) and 0.21 ≥ si/s ≥ 0.05 (C11), achieved the highest angular rotation

value ψ = π/2 ≈1.57 rad at lower bending moments. Consequently, they exhibited higher

flexibility and lower rotational stiffness than their thicker creases counterparts, which fall within

the ranges si/s ≥ 0.57 (C8) and si/s ≥ 0.37 (C11), as previously shown in Fig. S.19.
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S.2.4 Effects of creases viscosity on bistability: Complementary Results

The assessment of bistability in Kresling cells with creases made from different rubbery

materials is presented in Fig. S.28, which is constructed from the load paths and energy

landscapes illustrated in Figs. S.29-S.32, based on analyses of Kreling cells at 1:1 scale (x1).

We determined whether creases with varying viscosity and relaxation moduli can still achieve

bistability, as explored in the parametric study in section 2.1. The numerical simulations were

conducted for a time duration corresponding to the limits of the initial (τ∗i ), short- (τ), and

long-term (nτ) relaxation regions to predict whether viscosity effects influence the achievement

of bistability at different time scales. Moreover, we conducted experiments on Kresling cells

(C8 RF=0.80, fabricated at a 3:1 scale) with creases made of AG30, DM60, DM70, DM85,

and DM95, as shown in Fig. S.33. An average load capacity loss of approximately 50% was

observed due to degradation of the crease cross-sections, with lower peak load decrements in

softer photopolymers (AG30, DM60, and DM70) which have lower viscosity and relaxation

moduli.
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Figure S.31: Load paths and energy landscapes of case C11 RF=0.80. Creases: AG30, DM60, DM70, DM85 and DM95.
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Figure S.32: Load paths and energy landscapes of case C11 RF=0.66. Creases: AG30, DM60, DM70, DM85 and DM95.
Results for C11 RF=0.66 cells at a 1:1 scale (×1). Filled regions include FEA simulations within the range τ∗i ≤ τ ≤ nτ.
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Figure S.33: Effect of the degradation of the rubbery crease cross-sections on the load path. Experimental results after
performing three sequential tests on Kresling cells C8 RF=0.80 with creases made of: (A) AG30, (B) DM60, (C) DM70,
(D) DM85 and (E) DM95. Kresling cells fabricated at a 3:1 scale. Filled regions include FEA simulations within the
range τ∗i ≤ τ ≤ nτ. (F) Experimental relaxation curve. Times τ∗i , τ and nτ, respectively considered for the numerical analysis
of viscosity effects. Experiments were performed at a test speed which correspond to a relaxation time τ∗i=180 s.
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S.2.5 Monomaterial Kresling cells: Complementary Results

The load paths and stored energy landscapes of the rubbery photopolymers DM60, DM70

and DM85 are shown in Fig. S.34. They exhibited monostability and complement the analyses

presented for monomaterial Kresling cells, as described in section 2.5.
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Figure S.34: Load paths and energy landscapes of Monomaterial Kresling cells. Cases with variable void inclusions along
the creases: (A) M-1 and (B) M-2. Results of Kresling cells at a 1:1 scale.
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S.3 Captions for Supplementary Videos

Caption for Video S1. Experimental validation of the parametric study on crease

geometry of 3D printed Kresling cells. Comparison between Numerical (FEA) and

Experimental (Exp) load path results from compressive tests on the C8 case. Kresling cell

creases, generated with reduction factors RF = 0.80, 0.66, and 0.50, exhibited bistable or

monostable behavior.

Caption for Video S2. Hands-on Experimental validation of Bistability in 3D printed

Kresling cells. Evidence of bistable or monostable behavior in various Kresling cells with

creases made of DM60. The creases were generated with reduction factors in the range

of 0.25≤RF≤0.80 and an intact crease case (INT).

Caption for Video S3. Experimental validation of the crease degradation in 3D printed

Kresling cells. Effect of rubbery crease cross-section degradation on the load path, observed

after three sequential experiments on the same sample (C8, RF=0.80, creases made of DM60).

Caption for Video S4. Effects of viscosity on bistable Kresling cells: Hands-on

experimental validation. Evidence of bistable or monostable behavior in Kresling

cells (C8, RF = 0.80) with creases made of rubbery materials that have different

viscosity and relaxation modulus compared to DM60 (G60=0.220 MPa):AG30 (G∞=0.7G60),

DM70 (G∞=1.4G60), DM85 (G∞=2.6G60), and DM95 (G∞=3.9G60).

Caption for Video S5. Programmable Monostable Kresling Assemblies. Compression

test, folding process, and load paths from numerical (FEA) and experimental (EXP) analysis

for the following cases: (i) all creases made of DM60, (ii) stiffer creases (DM95) in the even

layers, and (iii) stiffer creases (DM95) in the odd layers. Numerical simulations stopped at the

first contact between panels.

Caption for Video S6. Prototyping of 3D printed Kresling cells via Polyjet technique.

Different stages of fabrication and post-processing for multi-material 3D-printed Kresling cells

using a Stratasys J750 printer within the PolyJet framework.
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