
International Journal of Mechanical Sciences 291–292 (2025) 110095 

A
0

 

Contents lists available at ScienceDirect

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci  

Closed-form solutions for wave propagation in hexagonal diatomic non-local 
lattices
F. Ongaro a,∗, P.H. Beoletto b, F. Bosia b, M. Miniaci c, N.M. Pugno a,d,∗∗
a Laboratory for Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of 
Trento, 38123 Trento, Italy
b Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
c Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN – Institut d’ Electronique de Microlectronique et de 
Nanotechnologie, F-59000 Lille, France
d School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

A R T I C L E  I N F O

Keywords:
Mass-spring systems
Elastic waves
Non-neighbouring interactions
Roton-like dispersion diagram
Topologically-protected waveguiding
Bound modes

 A B S T R A C T

Periodic mass–spring lattices are commonly used to investigate the propagation of waves in elastic systems, 
including wave localisation and topological protection in phononic crystals and metamaterials. Recent studies 
have shown that introducing non-neighbouring (i.e., beyond nearest neighbour) connections in these chains 
leads to multiple topologically localised modes, while generating roton-like dispersion relations. This paper 
focuses on the theoretical analysis of elastic wave propagation in hexagonal diatom mass–spring systems in 
which both neighbouring and non-neighbouring interactions occur through linear elastic springs. Closed-form 
expression for the dispersion equations are derived, up to an arbitrary order of beyond-the-nearest connections 
for both in-plane and out-of-plane mass displacements. This allows to explicitly determine the influence of 
the order of non-neighbouring interactions on the band gaps, the local minima and the slope inversions in 
the first Brillouin zone for the considered unit cell. All analytical solutions are numerically verified. Finally, 
examples are provided on how non-neighbouring connections can be exploited to enhance the localisation 
of topologically-protected edge modes in waveguides constructed using mirror symmetric diatomic lattices 
constituted by two regions with different unit cell orientations. The study provides further insight on how 
to design phononic crystals generating roton-like behaviour and to exploit them for topologically protected 
waveguiding.
1. Introduction

Over the past twenty years, there has been a surge of interest in 
the unique wave control properties of photonic and phononic crystals 
(PCs) and metamaterials (MMs) [1–8]. Originally explored in electro-
magnetism, their working principles were quickly extended to the field 
of elasticity [9–11], demonstrating great potential in a wide range of 
applications spanning different spatial and frequency ranges, i.e., from 
micro-scale surface acoustic waves [12] and microelectromechanical 
devices [13] to macro-scale systems for noise and vibration reduc-
tion [14,15], as well as large-scale seismic metamaterials for vibration 
shielding of buildings [16–19], and infrastructures [20].
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In more recent years, topological MMs [21,22] have emerged as a 
topic of particular interest, allowing to replicate in macroscopic sys-
tems well-known effects in condensed matter theory such as Quantum 
Hall [23], Quantum Spin Hall [24], and Quantum Valley Hall ef-
fects [25]. These topologically protected modes emerge from symmetry-
breaking in correspondence of Dirac cones and have been employed for 
applications such as waveguides with minimal backscattering through 
sharp corners or with resilience against defects [26], or for rainbow 
trapping of elastic waves [27,28].

In elasticity, the study of mass–spring lattices can provide fun-
damental insights into the dynamic behaviour of both discrete and 
continuous mechanical systems. Due to the simplicity of their building 
blocks, mass–spring lattices represent an ideal playground to explore 
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the unconventional dynamic properties of ideal PCs or MMs [29]. 
Based on the correspondence between continuous systems and their 
discrete counterparts, a bulk of literature has been devoted to ex-
amining a variety of dynamic behaviours of one-, two-, and three-
dimensional lattices, including band gaps in mono-atomic and diatom-
icackh chains [30], damping [31], negative refraction [32], waveg-
uiding [33], cloaking [34], nonlinearity [35,36] and topological ef-
fects [37–43], to cite a few. Regarding the latter, mass–spring systems 
with a hexagonal configuration constitute a model system for invoking 
topological phases. For example, based on this model, the Quantum 
Valley Hall effects have been realised in [44] by alternating the masses 
of the unit cell, while the Quantum Spin Hall effects have been explored 
in [45] in mechanical granular graphene systems. Starting from a 
hexagonal mass–spring lattice, Quantum Spin Hall effects have also 
been analysed in [46] by varying the masses and the relative spring 
constants. This strategy, in particular, has been used to create, tune 
and invert the band structure, while preserving time reversal symmetry 
and thus emulating the Quantum Spin Hall effect. However, in most of 
these works, the interaction between masses or unit cells is limited to 
the nearest neighbours, i.e., only interactions between adjacent cells 
are considered to derive the dispersion relations.

On the contrary, recent studies have shown that considering inter-
actions beyond the nearest neighbours leads to richer mechanics, both 
from the static and dynamic point of view.

In dynamics, non-nearest neighbour interactions can lead to the ex-
istence of multiple localised modes with a topological origin, identified 
by the number of Dirac points in the Brillouin zone or going beyond 
the conventional winding number in topological mechanics [37,47,48]. 
In [49], third-nearest neighbouring interactions were theoretically and 
numerically shown to induce topological phase transitions in one-
dimensional mass–spring chains, while in [50,51], active methods to 
manipulate topological states via non-local connections were proposed.

Moreover, beyond nearest neighbour interactions lead to roton-like 
dispersion relations [52–54]. Originally predicted by Landau [55] to 
explain the unusual thermodynamic properties of superfluid helium, 
rotons are quasiparticles which can be observed in a quantum conden-
sate with long-range dipolar interactions or spin–orbit coupling [56]. 
Their dispersion curves display both increasing and decreasing trends, 
included between a maximum (the maxon) and a minimum (the roton).

In the context of PCs and MMs, the slope inversion of the dis-
persion curves due to non-nearest neighbour interaction has been ex-
perimentally demonstrated in [57], where an acoustic MM including 
cube resonators and different types of connecting tubes mimicking 
non-neighbouring connections was manufactured: when increasing the 
order on long-range interactions, an larger number of slope inver-
sions can be obtained [57]. These findings, in accordance with the 
works in [56,58], were also numerically and experimentally confirmed 
in [59] for the case of a fully reconfigurable elastic MMs built with 
the popular construction kit Meccano. Starting with a simple one-
dimensional mass–spring model, non-neighbouring effects were also 
triggered in [60,61] by connecting the masses to their immediate neigh-
bours and to an increasing order of non-nearest ones: again, dispersion 
relations characterised by an increased number of frequency regions 
with alternating positive and negative slopes were found. In [60], 
the same concept was extended to three-dimensional MMs, where the 
masses and springs of the one-dimensional mass–spring chain were 
replaced, respectively, by small cubes connected by cylindrical rods 
with a variable radius: a three-dimensional tube-based metamaterial 
for airborne sound is then proposed, allowing the authors to explore 
the effects of adding non-neighbouring interactions in the context of 
acoustical wave dispersion. More recently, Kazemi et al. [58] proposed 
a detailed method based on Fourier series coefficients for tailoring 
the dispersion relations of PCs with non-neighbouring connections. 
Similarly, in [62], beyond-nearest-neighbour interactions are used to 
tailor the properties of higher phonon bands, and obtain topologi-
cal bandgaps. The effects of adding nonlinearity in conjunction with 
2 
non-neighbouring connections is explored in [63]: by focusing on a 
monoatomic mass–spring chain with up to third-neighbour interac-
tions, a roton-like configuration emerges in the dispersion curves, to-
gether with an enhancement of the tunability provided by non-locality. 
Additional contributions were discussed in [64,65], where authors 
considered second-neighbouring interactions in addition to the nearest-
neighbour ones. Farzbod et al. [64], in particular, established a force 
analysis for one-dimensional mass–spring chains, developing a theoret-
ical framework for vibrational analysis of structures in which interac-
tions are not limited to the nearest neighbours. An application of the 
developed method to a square mass–spring lattice was also illustrated, 
with special attention to structures with electromagnetic and/or elec-
trostatic forces. By focusing on a square mass–spring lattice with equal 
masses, Wang et al. [65] observed negative refraction and directional 
radiation of elastic waves due to the non-neighbouring connection 
of masses. Similarly, in [60,66], adding beyond-the-nearest neighbour 
interactions to the classical first-nearest ones leads to unusual acoustic 
wave dispersion relations, mimicking roton-like behaviour. Finally, 
non-neighbouring interactions up to the third order in two-dimensional 
mass–spring hexagonal lattices were numerically investigated in [67], 
where the topological modes of a two-dimensional mass–spring hexag-
onal lattice with connections between both nearest and third nearest 
neighbouring masses was examined.

From this overview, it appears that most of the works currently 
available in literature are based on numerical or experimental investi-
gations or, when an analytical approach is envisaged, it is often limited 
to one-dimensional mass–spring systems. To bridge this research gap, 
this paper investigates both analytically and numerically how elastic 
wave propagation in two-dimensional hexagonal diatomic mass–spring 
systems is affected by non-neighbouring interactions up to an arbitrary 
order, both for in-plane and out-of-plane displacements, and examines 
how this can be exploited for topologically protected waveguiding. 
Here, it is shown that non-nearest connections allow for (i) the for-
mation of additional Dirac cones and (ii) a migration in their location 
in the reciprocal space as a function of the relative stiffness between 
nearest and third nearest neighbouring connections. These additional 
Dirac cones are linked to a corresponding increase in the number of 
topological edge modes, which hybridise and result in bound modes at 
interfaces between lattices that are inverted copies of each other.

2. Theoretical model: lattice description and dispersion relations

In this section, we briefly describe the main steps of Bloch’s analysis 
allowing us to derive a closed-form expression for the dispersion equa-
tion of a 2D mass–spring system. A ‘‘local’’ (first-neighbouring) system 
is initially considered in Section 2.1. The theory is then extended to the 
case of not-neighbouring connections in Section 2.2, where a scenario 
with a general number of 𝑛th connections is proposed.

2.1. First nearest connections (local interactions)

Let us focus on the infinite two-dimensional hexagonal diatom 
lattice, as the one illustrated in Fig.  1(a). The unit cell, identified 
by the light blue parallelogram, is made of two different masses, 𝑚𝑎
and 𝑚𝑏, periodically arranged in a hexagonal configuration of lattice 
constant 𝓁. The periodicity and infinite extent of the structure allow 
us to restrict the analysis to the basic unit cell (0,0) tessellating the 
entire structure when repeated along the lattice direct vectors d1 = 𝓁e1
and d2 = (𝓁∕2)e1 + (𝓁

√

3∕2)e2. With reference to the chosen base 
cell, any other cell obtained by 𝑛1 integer translations along d1 and 𝑛2
integer translations along d2, is defined by the two coordinates (𝑛1, 𝑛2). 
Similarly, denoting with r(0,0)j  the position vector of the general 𝑗th 
physical lattice point in the base cell (0,0), the corresponding point in 
the (𝑛1, 𝑛2) cell is identified by the position vector 
r(n1 ,n2)j = r(0,0)j + 𝑛1d1 + 𝑛2d2. (1)
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Fig. 1. The non-local mass–spring system: (a) the two-dimensional hexagonal configuration described by the lattice vectors (d1 ,d2) and reference unit cell (highlighted) composed 
by the pair of masses 𝑚𝑎 and 𝑚𝑏; (b), (c) non-local interactions up to the third order for mass (b) 𝑚𝑎 and (c) 𝑚𝑏. In both scenarios, elastic springs are represented by continuous 
lines while the coloured parallelograms denote the unit cells in the case of first- (blue), second- (yellow) and third- (magenta) level connections.
Finally, each mass of the lattice is connected to its immediate 
neighbouring mass by a linear elastic spring of stiffness 𝑘1 indicated, 
for simplicity, by the blue continuous lines in Figs.  1(b), 1(c). Note 
that, for sake of clarity, connections are only illustrated for the unit 
cell (0,0). Finally, each mass is assumed to have only one degree of 
freedom, corresponding to an out-of-plane displacement.

Imagine now to apply a time-harmonic vibration to the considered 
system. Indicating with 𝑢(0,0)𝑎  and 𝑢(0,0)𝑏  the displacements of the 𝑚𝑎 and 
𝑚𝑏 masses contained in the cell (0,0), the governing equations of motion 
for infinitesimal deformations read 

⎧

⎪

⎨

⎪

⎩

𝑚𝑎𝑢𝑎(0,0) = 𝑘1(𝑢
(0,0)
𝑏 − 𝑢(0,0)𝑎 ) + 𝑘1(𝑢

(−1,0)
𝑏 − 𝑢(0,0)𝑎 ) + 𝑘1(𝑢

(0,−1)
𝑏 − 𝑢(0,0)𝑎 )

𝑚𝑏𝑢𝑏(0,0) = 𝑘1(𝑢
(0,0)
𝑎 − 𝑢(0,0)𝑏 ) + 𝑘1(𝑢

(1,0)
𝑎 − 𝑢(0,0)𝑏 ) + 𝑘1(𝑢

(0,1)
𝑎 − 𝑢(0,0)𝑏 ),

(2)

with 

𝑢̈(0,0)(⋅) ∶=
𝜕2𝑢(0,0)(⋅)

𝜕𝑡2
(3)

and 𝑢(𝑛1 ,𝑛2)𝑖  the displacement of the 𝑖 = (𝑎, 𝑏) mass pertaining to the 
unit cell with coordinates (𝑛1, 𝑛2). For example, 𝑢(−1,0)𝑏  stands for the 
displacement of the 𝑚𝑏 mass contained in the cell (−1, 0), which is 
connected to the mass 𝑚𝑎 in (0, 0) according to the first neighbouring 
connection scheme (Figs.  1(b), 1(c)).

If a plane wave solution is assumed, the generalised displacement 
of the two masses in the reference cell (0, 0) can be written in terms of 
3 
their position and time dependence as 

𝑢(0,0)𝑗 ≡ 𝑢(0,0)𝑗

(

r(0,0)j , 𝑡
)

= 𝑢̂(0,0)𝑗

(

r(0,0)j

)

e−i𝜔𝑡 = 𝑢̂(0,0)𝑗 ei(q⋅r
(0,0)
j −𝜔𝑡), 𝑗 = 𝑎, 𝑏,

(4)

with i ∶=
√

−1 the imaginary unit, 𝜔 the circular frequency of the time-
harmonic wave propagating along the system, 𝑢̂(0,0)𝑗  the wave amplitude 
and q ∶= 𝑞𝑥e1 + 𝑞𝑦e2 the wave vector that defines the direction of 
propagation. Also, given the periodicity of the examined lattice, the 
displacement 𝑢(𝑛1 ,𝑛2)𝑗  can be obtained by applying Bloch’s theorem [68] 

𝑢(𝑛1 ,𝑛2)𝑗 ≡ 𝑢(𝑛1 ,𝑛2)𝑗

(

r(n1 ,n2)j , 𝑡
)

= 𝑢(0,0)𝑗

(

r(0,0)j , 𝑡
)

eiq⋅
(

r(n1 ,n2 )j −r(0,0)j

)

=

= 𝑢̂(0,0)𝑗

(

r(0,0)j

)

ei
(

q⋅
(

𝑛1d1+𝑛2d2
)

−𝜔𝑡
)

, 𝑗 = 𝑎, 𝑏.
(5)

Substituting Eqs. (4), (5) into Eq. (2) and omitting, for simplic-
ity, the dependence on the time-harmonic factor 𝑒−i𝜔𝑡, provides the 
homogeneous system 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑚𝑎𝜔2𝑢̂𝑎 = 𝑢̂𝑎
(

−3𝑘1
)

+ 𝑢̂𝑏
(

1 + e−iq⋅d1 + e−iq⋅d2
)

𝑘1

−𝑚𝑏𝜔2𝑢̂𝑏 = 𝑢̂𝑎
(

1 + e−iq⋅d1 + eiq⋅d2
)

𝑘1 + 𝑢̂𝑏
(

−3𝑘1
)

,

(6)

where the notation 𝑢̂(⋅) ∶= 𝑢̂(0,0)(⋅)

(

r(0,0)j

)

 is used to improve readability. 
Expressed in matrix form, Eq. (6) leads to the classical eigenproblem 
(

𝑘 K (q) − 𝜔2M
)

U = 0, (7)
1 1
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with

K1(q) =
⎡

⎢

⎢

⎣

3 −
(

1 + e−iq⋅d1 + e−iq⋅d2
)

−
(

1 + eiq⋅d1 + eiq⋅d2
)

3

⎤

⎥

⎥

⎦

,

M =
[

𝑚𝑎 0
0 𝑚𝑏

]

, U =
[

𝑢̂𝑎
𝑢̂𝑏

]

. (8)

The non-trivial solution of Eq.  (7), obtained by imposing the deter-
minant of the matrix of coefficients to vanish, i.e., 
det

(

𝑘1K1(q) − 𝜔2M
)

= 0, (9)

provides the dispersion relation 𝜔(q) of the investigated lattice system: 

𝜔4𝑚𝑎𝑚𝑏 − 3𝜔2𝑘1
(

𝑚𝑎 + 𝑚𝑏
)

+ 𝑘21
(

9 − 𝛹1 (q)
)

= 0, (10)

from which 

𝜔2(q) = 𝑘1
3
(

𝑚𝑎 + 𝑚𝑏
)

±
√

9
(

𝑚𝑎 + 𝑚𝑏
)2 − 4𝑚𝑎𝑚𝑏

(

9 − 𝛹1 (q)
)

2𝑚𝑎𝑚𝑏
. (11)

Here, for conciseness, 
𝛹1 (q) ∶= 3+eiq⋅d1+e−iq⋅d1+eiq⋅d2+e−iq⋅d2+eiq⋅(d1−d2)+e−iq⋅(d1−d2) (12)

or, expressing the exponential terms in trigonometric functions by the 
Euler’s equation 
e±i𝛼 = cos 𝛼 ± isin 𝛼 and ei𝛼 + e−i𝛼 = 2 cos 𝛼, (13)

𝛹1 (q) = 3+2cos
(

𝑞𝑥𝓁
)

+2cos
(

𝑞𝑥
𝓁
2
+ 𝑞𝑦

√

3
2

𝓁

)

+2cos
(

𝑞𝑥
𝓁
2
− 𝑞𝑦

√

3
2

𝓁

)

.

(14)

Clearly, when taking the square root on both sides of Eq.  (11), we 
obtain two signs for 𝜔(q). As usual, we adopt the convention to consider 
positive angular frequencies.

Before concluding, it is important to highlight the difference existing 
between the position vector and the displacement field. The position 
vector, which in our analysis is denoted with r(n1 ,n2)j , defines the 
position of a given mass pertaining to the cell (𝑛1, 𝑛2) as a function of 
the vector 𝒓(0,0)𝒋 , defining the position of the corresponding mass in the 
reference cell (0, 0). 𝒓(⋅,⋅)𝒋 , in particular, is a plane vector expressed in 
terms of the lattice vectors 𝒅𝟏 and 𝒅𝟐. According the Bloch theory, this 
allows us to analyse the entire lattice by focusing on a single unit cell. 
We have then introduced the displacement field 𝑢(⋅,⋅)𝑗 , corresponding to 
the out-of-plane displacement of the mass located at the position 𝒓(⋅,⋅)𝒋 , 
and wrote the equilibrium equations as a function of it. 𝒓(⋅,⋅)𝒋  and 𝑢(⋅,⋅)𝑗  are 
thus very different quantities: the first defines the position of the masses 
in the lattice plane, the second the displacement field (out-of-plane in 
this case) associated to them.

2.2. Beyond nearest-neighbour connections (non-local interactions): the 
general case of 𝑛th nearest connections

Consider again the hexagonal lattice in Fig.  1 and imagine to con-
nect each 𝑚𝑎 and 𝑚𝑏 mass to its 𝑛th nearest masses, with 𝑛 = 1, 2, 3,…
(𝑛 = 1 coincides with the nearest interactions in Section 1). Connections 
are realised by linear springs of stiffness 𝑘𝑛.

The reasoning of Section 2.1 can be clearly extended to this general 
case. In particular, writing the equilibrium equations for the 𝑚𝑎 and 
𝑚𝑏 masses in the base cell (0,0) and solving the corresponding eigen-
problem, provides the dispersion relation for a time-harmonic vibration 
propagating within the system. This leads to 

𝜔2(q) = 𝑘𝑛
3
(

𝑚𝑎 + 𝑚𝑏
)

±
√

9
(

𝑚𝑎 + 𝑚𝑏
)2 − 4𝑚𝑎𝑚𝑏

(

9 − 𝛹𝑛 (q)
)

, (15)

2𝑚𝑎𝑚𝑏

4 
with 
𝛹𝑛 (q) ≡ 𝛹1

(

2𝑛−1q
)

, 𝑛 = 1, 2,… (16)

such that 𝛹𝑛 (q) ≡ 𝛹𝑛−1 (2q).
It is interesting to note that the dispersion relations obtained in the 

case of first- (Eq. (11)) and 𝑛th (Eq. (15)) neighbouring interactions 
have the same form. The only difference is the replacement of the 
quantities 𝑘1 and 𝛹1 (q) with 𝑘𝑛 and 𝛹𝑛 (q). This determines the pos-
sibility of establishing a rule of thumb to easily derive the dispersion 
equation, and corresponding properties like bandgaps, in the general 
case of 𝑛th nearest connections by just solving the simplest case of first 
nearest interactions. For the interested reader, this is demonstrated in
Appendix  A, where the extended calculations for deriving the disper-
sion relation for the cases of second- (𝑛 = 2) and third- (𝑛 = 3) nearest 
connections are reported.

An important comment concerns the configuration of the non-local 
interactions illustrated in Fig.  1. We know that, when non-local in-
teractions are assumed periodic, two-dimensional regular lattices with 
a given topology (hexagonal in the examined case), are characterised 
by a non-univocal choice in passing from local to non-local configu-
rations. That is, a prescribed level of non-locality does not imply one 
possible configuration of the periodic non-local interactions. In the 
examined case, in particular, non-local connections copy the hexagonal 
pattern of the fundamental lattice, whereas both neighbouring and 
non-neighbouring masses could be connected without following the 
hexagonal symmetry as well. Even if sharing the same level of non-
locality, any differently arranged non-local interactions mounted on the 
same fundamental hexagonal lattice would be associated to completely 
different dynamics and dispersion relations. However, the family of 
generated non-local lattices could be not so trivial to describe from 
a dynamical point of view, even with the application of the Bloch’s 
theory. It is thus important to highlight that the dynamic equations pre-
sented in this and the following sections are referred to the particular 
choice of tracing a hexagonal pattern for the non-local connections.

2.3. Local plus non-local interactions: simultaneous nearest and 𝑛th beyond 
nearest neighbour connections

The model presented in the previous sections can be easily ex-
tended to contain not only nearest (or 𝑛th nearest) connections but 
also multiple orders of beyond-nearest connections in addition to the 
nearest ones. In particular, let us consider the case of nearest-neighbour 
connections (𝑛 = 1) together with 𝑛-orders of beyond-nearest-neighbour 
interactions. In this configuration, obtained by ‘‘superimposing’’ the 
configurations described in Sections 2.1 and 2.2, the 𝑚𝑎 and 𝑚𝑏 masses 
interact with nearest neighbours via linear springs of stiffness 𝑘1 and 
with the 𝑛th non-nearest neighbours via linear springs of stiffness 𝑘𝑛.

As usual, the dispersion relation for a time-harmonic vibration prop-
agating within the lattice can be obtained by writing the equilibrium 
equations for the 𝑚𝑎 and 𝑚𝑏 masses in the (0,0) cell and solving the 
eigenproblem that emerges 
( 𝑛
∑

𝑖=1
𝑘𝑖Kj(q) − 𝜔2M

)

U = 0, (17)

with M and U derived from Eq.  (8) and Ki(q) the stiffness matrix 
corresponding to the 𝑖th neighbouring connections (cf. Eq. (8) and 
Appendix  A). Finally, imposing 

det
( 𝑛
∑

𝑖=1
𝑘𝑖Kj(q) − 𝜔2M

)

= 0, (18)

provides

𝜔4𝑚𝑎𝑚𝑏 − 3𝜔2
𝑛
∑

𝑖=1
𝑘𝑖

(

𝑚𝑎 + 𝑚𝑏
)

+
𝑛
∑

𝑖=1
𝑘2𝑖

(

9 − 𝛹𝑖 (q)
)

+ 2
𝑛−1
∑

( 𝑛
∑

𝑘𝑖𝑘𝑗
(

9 − 𝛹𝑖𝑗 (q)
)

)

= 0, (19)

𝑖=1 𝑗=𝑖+1
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where 𝛹𝑖 (q) ≡ 𝛹1
(

2𝑛−1q
)

, 𝑖 = 1, 2,… , 𝑛 (cf. Eq. (16)), 

𝛹𝑖𝑗 (q) =
Ki (2, 1)Kj (1, 2) + Kj (2, 1)Ki (1, 2)

2
, 𝑖, 𝑗 = 1, 2,… , 𝑛 (20)

and Ke (𝑚, 𝑛) the (𝑚, 𝑛)th component of the stiffness matrix describing 
the 𝑒th order of neighbouring connections. The latter are obtained by 
considering the 𝑚𝑎 and 𝑚𝑏 masses connected with their 𝑒th neighbours 
only. This provides a quicker way to obtain the coupling terms 𝛹𝑖𝑗 (q)
in Eq.  (19).

As can be expected for linear elastic systems, from Eq.  (19) it also 
emerges that the examined configuration can be seen as a superimposi-
tion of multiple 𝑛th neighbouring connections (second and third terms) 
plus their mutual interactions (last term), expressed as a function of the 
corresponding spring stiffness.

More details about the derivation of the listed equations can be 
found in Appendix  B, where the calculations for the case of first- (𝑛 = 1) 
plus second- (𝑛 = 2) and third- (𝑛 = 3) neighbouring connections are 
reported.

3. Generalising the theory to the case of in-plane displacements

We now wish to extend the analysis presented in the previous 
sections, based on the assumption of transverse displacements of the 
masses, to the case of in-plane mass motion. In particular, the equi-
librium equations and dispersion relations that we obtain in the two 
situations have exactly the same form, thus revealing the equiva-
lence existing between the two cases in terms of wave dispersion 
characteristics.

This can be demonstrated by focusing on Fig.  2(a), illustrating the 
simplest case of two masses, 𝑚𝑎 and 𝑚𝑏, connected by an elastic spring 
of stiffness 𝑘.

Denoting with 𝛥𝑥 and 𝛥𝑦 the elongation of the spring in the e1 and 
e2 direction and with ua = 𝑢𝑥,𝑎e1 + 𝑢𝑦,𝑎e2 and ub = 𝑢𝑥,𝑏e1 + 𝑢𝑦,𝑏e2 the 
in-plane displacements of the two masses, the elastic force Fa acting on 
the mass 𝑚𝑎 is given by 

|Fa| = 𝑘
√

𝛥𝑥2 + 𝛥𝑦2 = 𝑘
√

(

𝑢𝑥,𝑏 − 𝑢𝑥,𝑎
)2 +

(

𝑢𝑦,𝑏 − 𝑢𝑦,𝑎
)2. (21)

Its components along the 𝑥 and 𝑦 directions are, respectively, 
𝐹𝑎,𝑥 = |Fa|cos𝜃, 𝐹𝑎,𝑦 = |Fa|sin𝜃, (22)

being 𝜃, the spring inclination angle illustrated in Fig.  2(a), such that 

sin𝜃 =
𝛥𝑦

√

𝛥𝑥2 + 𝛥𝑦2
, cos𝜃 = 𝛥𝑥

√

𝛥𝑥2 + 𝛥𝑦2
. (23)

Substituting Eq. (23) into Eq. (22) leads to 
𝐹𝑎,𝑥 = 𝑘𝛥𝑥 = 𝑘

(

𝑢𝑥,𝑏 − 𝑢𝑥,𝑎
)

, 𝐹𝑎,𝑦 = 𝑘𝛥𝑦 = 𝑘
(

𝑢𝑦,𝑏 − 𝑢𝑦,𝑎
)

. (24)

Finally, writing the equilibrium equations for the mass 𝑚𝑎 in the 𝑥
and 𝑦 directions, provides 
{

𝑚𝑎𝑢̈𝑥,𝑎 = 𝑘
(

𝑢𝑥,𝑏 − 𝑢𝑥,𝑎
)

𝑚𝑎𝑢̈𝑦,𝑎 = 𝑘
(

𝑢𝑦,𝑏 − 𝑢𝑦,𝑎
)

.
(25)

Consider now Fig.  2(b), which more closely resembles the theoreti-
cal model described in Section 2: a central mass 𝑚𝑎 connected by elastic 
springs of stiffness 𝑘 to the three 𝑚𝑏 masses 𝑚𝑏1, 𝑚𝑏2, 𝑚𝑏3. Again, it 
emerges that the 𝑥 and 𝑦 components of the elastic forces 𝐹𝑎1, 𝐹𝑎2, 𝐹𝑎3
acting on 𝑚𝑎 due to the springs elongation, take the form 
𝐹𝑎𝑖,𝑥 = 𝑘

(

𝑢𝑥,𝑏𝑖 − 𝑢𝑥,𝑎
)

, 𝐹𝑎𝑖,𝑦 = 𝑘
(

𝑢𝑦,𝑏𝑖 − 𝑢𝑦,𝑎
)

, 𝑖 = 1, 2, 3, (26)

from which the following equilibrium equations can be established 
{

𝑚𝑎𝑢̈𝑥,𝑎 = 𝑘
(

𝑢𝑥,𝑏1 − 𝑢𝑥,𝑎
)

+ 𝑘
(

𝑢𝑥,𝑏2 − 𝑢𝑥,𝑎
)

+ 𝑘
(

𝑢𝑥,𝑏3 − 𝑢𝑥,𝑎
)

𝑚𝑎𝑢̈𝑦,𝑎 = 𝑘
(

𝑢𝑦,𝑏1 − 𝑢𝑦,𝑎
)

+ 𝑘
(

𝑢𝑦,𝑏2 − 𝑢𝑦,𝑎
)

+ 𝑘
(

𝑢𝑦,𝑏3 − 𝑢𝑦,𝑎
)

.
(27)

Let us now apply these general concepts to the hexagonal lattice 
presented in Section 2 and, in particular, let us focus on the two 
masses 𝑚𝑎 and 𝑚𝑏 pertaining to the reference cell (0,0) highlighted in
Fig.  1. Even if, for simplicity, the case of first-neighbouring connections 
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is considered in the following (Figs.  1(b), 1(c)), analogous considera-
tions apply for the 𝑛th neighbouring ones.

By adopting the same notation of Section 2, writing the equilibrium 
equations for the 𝑚𝑎 and 𝑚𝑏 masses in the 𝑥 and 𝑦 directions provides 

⎧

⎪

⎨

⎪

⎩

𝑚𝑎𝑢̈
(0,0)
𝑗,𝑎 = 𝑘1(𝑢

(0,0)
𝑗,𝑏 − 𝑢(0,0)𝑗,𝑎 ) + 𝑘1(𝑢

(−1,0)
𝑗,𝑏 − 𝑢(0,0)𝑗,𝑎 ) + 𝑘1(𝑢

(0,−1)
𝑗,𝑏 − 𝑢(0,0)𝑗,𝑎 )

𝑚𝑏𝑢̈
(0,0)
𝑗,𝑏 = 𝑘1(𝑢

(0,0)
𝑗,𝑎 − 𝑢(0,0)𝑗,𝑏 ) + 𝑘1(𝑢

(1,0)
𝑗,𝑎 − 𝑢(0,0)𝑗,𝑏 ) + 𝑘1(𝑢

(0,1)
𝑗,𝑎 − 𝑢(0,0)𝑗,𝑏 ), 𝑗 = 𝑥, 𝑦,

(28)

with 𝑢(𝑛1 ,𝑛2)𝑥,𝑖 , 𝑢(𝑛1 ,𝑛2)𝑦,𝑖  the in-plane displacements of the 𝑖 = (𝑎, 𝑏) mass 
pertaining to the (𝑛1, 𝑛2) cell. Again, if a plane wave is assumed, 
applying the Bloch’s theorem (cf. Eq. (5)) leads to the homogeneous 
system 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑚𝑎𝜔2𝑢̂𝑗,𝑎 = 𝑢̂𝑗,𝑎
(

−3𝑘1
)

+ 𝑢̂𝑗,𝑏
(

1 + e−iq⋅d1 + e−iq⋅d2
)

𝑘1

−𝑚𝑏𝜔2𝑢̂𝑗,𝑏 = 𝑢̂𝑗,𝑎
(

1 + e−iq⋅d1 + eiq⋅d2
)

𝑘1 + 𝑢̂𝑏
(

−3𝑘1
)

, 𝑗 = 𝑥, 𝑦,

(29)

where 𝑢̂(⋅) ∶= 𝑢̂(0,0)(⋅)

(

r(0,0)j

)

 (cf. Section 2.1).
Expressed in matrix form, Eq. (29) yields 

(

𝑘1K1(q) − 𝜔2M
)

Uj = 0, 𝑗 = 𝑥, 𝑦, (30)

with K1(q) and M the matrices defined in Eq.  (8) and 

Uj =
[

𝑢̂𝑗,𝑎
𝑢̂𝑗,𝑏

]

, 𝑗 = 𝑥, 𝑦. (31)

Finally, imposing the determinant of the matrix of coefficients to 
vanish, provides the corresponding dispersion relation. It emerges that 
the latter has exactly the same form of Eq.  (11), given the equiva-
lence between Eqs. (7) and (30). This result, revealing the equiva-
lence existing between the in-plane and out-of-plane wave dispersion 
characteristics, is numerically confirmed in Section 5.

In the above calculations note that no particular values of the 
angle 𝜃 and/or lattice configuration have been assumed. The proposed 
method has thus general applicability.

4. Band diagrams

The dispersion equations obtained in the previous Sections allow the 
computation of the so-called band diagrams, illustrating the relation be-
tween wavevectors and wave propagation frequencies and highlighting 
negative refraction effects. Bandgap opening and closing frequencies 
can also be determined.

In this section, we investigate how the introduction of non-local 
effects influences the dispersion curves and frequency bandgaps of a 
traditional locally interacting mass–spring system. Different scenarios 
are considered, involving a hexagonal mass–spring system with first-
neighbour connections having springs of stiffness 𝑘1, second-neighbour 
connections with springs stiffness 𝑘2, third-neighbour connections with 
springs stiffness 𝑘3, first- plus second- plus third-neighbour connections 
with spring stiffnesses of respectively 𝑘1, 𝑘2, 𝑘3 (Figs.  1(b), 1(c)). In 
all cases, 𝑚𝑎 = 0.001 kg and 𝑘1 = 106 N∕m while, to understand how 
the system characteristics, i.e., mass and stiffness, affect the disper-
sion behaviour, the parameters 𝑚𝑏, 𝑘2 and 𝑘3 are taken as variable. 
Specifically, denoting with 𝛼 ∶= 𝑚𝑏∕𝑚𝑎, 𝛽 ∶= 𝑘2∕𝑘1 and 𝛾 ∶= 𝑘3∕𝑘1, 
the following values are considered: 𝛼 = (0.5, 1, 1.5), 𝛽 = (0.1, 1, 10), 
𝛾 = (0.1, 1, 10).

It should be noted that different possibilities exist to define the 
springs stiffness of the various order connections. One solution, adopted 
in the present work, is to introduce two scaling parameters, 𝛽 and 𝛾, 
and express the stiffness of non-local connections as a function of the 
stiffness of the local ones: 𝑘 = 𝛽𝑘 , 𝑘 = 𝛾𝑘 . Changing the value of 
2 1 3 1
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Fig. 2. Theory for the case of in-plane displacements: (a) masses 𝑚𝑎 and 𝑚𝑏 connected by a linear elastic spring of stiffness 𝑘 experiencing the elongation 𝛥𝑥 (e1 direction) 
and 𝛥𝑦 (e2 direction) and corresponding elastic force Fa acting on 𝑚𝑎, (b) central mass 𝑚𝑎 connected to the three masses 𝑚𝑏1 , 𝑚𝑏2 , 𝑚𝑏3 by linear elastic springs of stiffness 𝑘 and 
corresponding elastic forces 𝐹𝑎1, 𝐹𝑎2, 𝐹𝑎3.
𝛽 and 𝛾 allows us to tailor the strength of the 𝑖th order connection. 
Clearly, this can also be done when higher order connections are 
introduced, like the 4th, 5th, . . . A second possibility, probably more 
convenient to use when a larger number of non-local interactions is 
present, is to define the spring stiffness according to a law of the type 
𝑘𝑖 = 𝑘1𝑖𝛼𝑠  or 𝑘𝑖 = 𝑘1∕𝑖𝛼𝑠 , with 𝛼𝑠 a scaling parameter.

Given the periodicity of the examined lattice, the usual procedure 
for the analysis of wave propagation consists in defining the wavevector 
q constrained to the first Brillouin zone (FBZ) [68], illustrated in
Fig.  3(d) together with the components of the wavevector 𝑞𝑥, 𝑞𝑦. How-
ever, once symmetry is maintained, to determine the band diagrams, it 
is sufficient only to scan the contour of the irreducible Brillouin zone 
(IBZ) instead of considering every wavevector inside the FBZ [69]. If 
a bandgap is detected on the contour of the IBZ, it is also present in 
its interior and, by symmetry, in the whole FBZ. This can be seen in 
Fig.  3(d) where the IBZ, defined by the points 𝐾 ≡

(

2𝜋∕3𝓁, 2𝜋∕
√

3𝓁
)

, 
𝛤 ≡ (0, 0) and 𝑀 ≡

(

0, 2𝜋∕
√

3𝓁
)

 is highlighted.
The study can be clearly extended to 𝑛-orders of beyond-nearest 

neighbour connections (cf. Sections 3, 4). Here, for simplicity, non-local 
interactions only up to 𝑛 = 3 are considered since, as shown below, the 
resulting behaviour is already rich and complex.

4.1. Nearest and beyond-nearest neighbour connections: analysis of the 
influencing parameters on the bandgap formation

Let us consider the case of nearest-neighbour connections (𝑛 =
1). The corresponding dispersion diagrams are illustrated in Fig.  3 as 
a function of the non-dimensional frequency 𝜔̂ ∶= 𝜔∕

√

𝑘1∕𝑚𝑎 and 
wavenumber 𝑞 ∶= 𝑞𝓁∕𝜋.

Different values of the ratio 𝛼 between masses 𝑚𝑎 and 𝑚𝑏, are 
considered: 𝛼 = 0.5 in Fig.  3a, 𝛼 = 1 in Fig.  3b, 𝛼 = 1.5 in Fig.  3(c). As 
can be seen, for 𝛼 = 1, i.e., when the two masses 𝑚𝑎 and 𝑚𝑏 are equal, 
the investigated configuration exhibits no complete bandgaps since, at 
any given frequency, there is always at least one propagating wave. 
Conversely, for 𝛼 = 0.5 and 𝛼 = 1.5 one complete bandgap appears, 
spanning the range 𝜔̂ = [1.73, 2.45] and 𝜔̂ = [1.41, 1.73], respectively 
in the two cases. Similar considerations apply for second- and third-
neighbouring connections, as reported in Fig.  3. Again, there are no 
complete bandgaps for 𝛼 = 1 and one complete bandgap for 𝛼 = 0.5
and 𝛼 = 1.5, located, respectively, at 𝜔̂ = [1.73, 2.45] and 𝜔̂ = [1.41, 1.73]
for second-neighbouring connections and at 𝜔̂ = [1.73, 2.45] and 𝜔̂ =
[1.41, 1.73] for the third-neighbouring ones.

Considering non-local effects provides a more complex behaviour 
of the dispersion curves, which display multiple slope inversions inside 
the 𝛤 − 𝑀 , 𝑀 − 𝐾 and 𝐾 − 𝛤  boundaries. More and more local 
minima are also observed by increasing the order of non-locality 𝑛. 
For second-order connections, the lowest dispersion curve goes to zero 
6 
in the symmetry point as well as in 𝛤 . For third-order connections, 
other zeros occur between 𝛤 − 𝑀 and 𝐾 − 𝛤 . Conversely, the Dirac 
cone in K is always conserved, independently of the order of non-
nearest interactions. Interestingly, by tuning the order of non-local 
effects, the position of the negative-slope regions can be controlled, 
so that they occur at a desired frequency and wavenumber. This is 
particularly evident by comparing the yellow and green curves in Fig.  3, 
corresponding, in turn, to the second- and third-neighbour connections. 
Note that this slope inversion does not occur without beyond-nearest 
neighbour interactions, which are enabled by the addition of the 𝑘2
and 𝑘3 springs. Regarding this aspect, varying the parameters 𝛽 and 𝛾, 
i.e., the stiffness of the 𝑘2 and 𝑘3 springs, for a fixed value of 𝛼 = 0.5, 
i.e., 𝑚𝑏 = 0.5𝑚𝑎, dramatically changes the frequency width and position 
of the dispersion curves, as reported in Fig.  4. For example, in the case 
of second-neighbour connections, increasing 𝛽 from 0.1 (Fig.  4(a)) to 
1 (Fig.  4(b)) and 10 (Fig.  4(c)) leads to an increase of the bandgap 
width of approximately 300% and 1000%. A shift to higher frequencies 
also emerges. A comparison with the dispersion curves of first-nearest 
connections is also established in Fig.  4, from which it emerges that for 
𝛽 = 1 (Fig.  4(b)) and 𝛾 = 1 (Fig.  4(e)) both the bandgap amplitude and 
position are exactly the same, regardless of the order of non-locality 𝑛.

4.2. Local plus non-local interactions: effects of changing parameters on the 
bandgap formation

To further characterise the dynamic response of the proposed mass–
spring system, we extend the study in Section 4.1 to the combined 
action of local plus non-local interactions.

In the investigated scenario, the 𝑚𝑎 and 𝑚𝑏 masses, disposed in 
a hexagonal configuration, are connected to their first-, second- and 
third-neighbours by springs having stiffness 𝑘1, 𝑘2 and 𝑘3, respectively. 
As in Section 4.1, 𝑚𝑎 = 0.001 kg and 𝑘1 = 106 N∕m while, to explore the 
effects of changing the mass and stiffness characteristics of the system, 
the parameters 𝛼 ∶= 𝑚𝑏∕𝑚𝑎, 𝛽 ∶= 𝑘2∕𝑘1 and 𝛾 ∶= 𝑘3∕𝑘1 are set to vary 
so that 𝛼 = (0.5, 1, 1.5), 𝛽 = (0.1, 1, 10), 𝛾 = (0.1, 1, 10).

Results are presented in Figs.  5 and 6 where, in accordance with Sec-
tion 4.1, non-dimensional frequency 𝜔̂ ∶= 𝜔∕

√

𝑘1∕𝑚𝑎 and wavenumber 
𝑞 ∶= 𝑞𝓁∕𝜋 are used.

Let us initially focus on Fig.  5, where the dispersion curves cor-
responding to first-, second-, third- and first- plus second- plus third-
neighbouring interactions are compared for a fixed value of 𝛼 = 0.5
and varying values of the parameters 𝛽 and 𝛾. In general, a complex 
configuration of the dispersion curves emerges that, similarly to Sec-
tion 4.1, display multiple slope inversions inside the 𝛤 − 𝑀 , 𝑀 − 𝐾
and 𝐾 − 𝛤  boundaries. However, some peculiarities can be observed. 
The first can be seen in Fig.  5(a), where 𝛽 = 𝛾 = 0.1, i.e., springs 
𝑘1 stiff, springs 𝑘2 and 𝑘3 soft. The dispersion curves corresponding 
to the first- plus second- plus third-order connections (the red curve) 
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Fig. 3. Dispersion curves corresponding to first-, second- and third-neighbouring interactions for varying values of 𝛼. Comparison of the obtained dispersion curves in the case of 
𝑚𝑎 = 0.001 kg, 𝑘1 = 106 N∕m, 𝛽 = 𝛾 = 1 and: (a) 𝛼 = 0.5, (b) 𝛼 = 1, (c) 𝛼 = 1.5. (d) The irreducible Brillouin zone for a hexagonal lattice highlighting the high-symmetry points 
𝐾,𝑀,𝛤 .

Fig. 4. Dispersion curves obtained in the case of local and non-local effects for varying values of 𝛽 and 𝛾. Comparison of the dispersion curves corresponding to 𝑚𝑎 = 0.001 kg, 
𝑘1 = 106 N∕m, 𝛼 = 0.5 and: (a) 𝛽 = 0.1, (b) 𝛽 = 1, (c) 𝛽 = 10; (d) 𝛾 = 0.1, (e) 𝛾 = 1, (f) 𝛾 = 10.
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closely resemble those corresponding to the first-order ones (the blue 
line). Conversely, when 𝛽 = 0.1 and 𝛾 = 10, i.e., spring 𝑘2 is soft 
and spring 𝑘3 is stiff (Fig.  5(c)), the dispersion curves of the first- 
plus second- plus third-neighbouring connections resemble those of the 
third-neighbouring ones (green line). Finally, for 𝛽 = 0.1 and 𝛾 = 1, a 
sort of ‘mixed’ behaviour can be observed, in which the configuration of 
the dispersion curves corresponding to the first- plus second- plus third-
order interactions are a sort of superposition of those corresponding to 
the first- (blue curve), second- (yellow curve) and third-order (green 
curve) ones. That is, the red curves in Fig.  5(b) are more complex than 
those in Fig.  5(a), i.e., multiple slope inversions and local minima occur, 
but they are smoother than those of Fig.  5(c), with a higher number of 
slope inversions and an higher difference between local minima and 
maxima.

Clearly, the stiffer the springs 𝑘𝑖, the stronger the influence of the 
𝑖th non-local effect will be.

These results are confirmed in Figs.  5(d-f), based on a fixed value 
of 𝛽 = 1 and a variable value of 𝛾: 𝛾 = 0.1 in Fig.  5(d), 𝛾 = 1 in 
Fig.  5(e), 𝛾 = 10 in Fig.  5(f). Again, a sort of mitigation effect can be 
seen for the dispersion curves of the first- plus second- plus third-order 
connections even if, in this case, the influence of the second-neighbour 
ones if higher than that in Figs.  5(a-c).

Consider now Fig.  6, where the dispersion curves corresponding to 
the first- plus second- plus third-order interactions are depicted for a 
fixed value of 𝛽 = 10 and variable values of 𝛾 and 𝛼. Here, no complete 
bandgaps emerge for 𝛼 = 1, that is 𝑚𝑎 = 𝑚𝑏 (Fig.  6(b)), regardless 
of the values of 𝑘2 and 𝑘3, i.e., the parameters 𝛽 and 𝛾. Conversely, 
for 𝛼 = 0.5 (Fig.  6(a)) and 𝛼 = 1.5 (Fig.  6(c)), one complete bandgap 
appears. However, a decreasing bandgap width of approximately 55% 
can be identified for increasing values of 𝛼, together with a shift to 
lower frequencies of 𝜔̂.

Similar results corresponding to the cases with 𝛽 = 0.1 and 𝛽 = 1
are reported in Appendix  C, for which similar considerations still apply. 
The illustrated examples, in particular, confirm that, when 𝛼 = 1, ad-
justing the parameters 𝛽 and 𝛾 does not open the bandgap. Specifically, 
no bandgaps are opened by changing the parameters 𝛽, from 0.1 to 1, 
and 𝛾, taken in the range [0.1, 1, 10], when 𝛼 = 1. Conversely, a more 
significant influence of 𝛽 and 𝛾 is observed in the bandgap width and 
position for 𝛼 ≠ 1.

4.3. Discussion

The results presented above show that, in terms of dispersion prop-
erties, including non-local interactions in addition to local ones leads to 
roton-like dispersion curves displaying multiple slope inversions inside 
the first Brillouin zone. A shift in the bandgaps is also observed. From 
our analysis, it emerges that these effects are more and more significant, 
and thus not negligible, for large values of the parameter 𝑛, i.e., the 
non-locality order. In this case, in particular, an increasing number 
of slope inversions is observed, independently of the parameters 𝛼 ∶=
𝑚𝑏∕𝑚𝑎, 𝛽 ∶= 𝑘2∕𝑘1 and 𝛾 ∶= 𝑘3∕𝑘1. We also found that non-local effects 
are not-negligible in terms of bandgap width and position when the 
stiffness of the non-local springs, 𝑘2 and 𝑘3, becomes larger, i.e., for in-
creasing values of the parameters 𝛾 and 𝛽. Conversely, in the particular 
case 𝛽 = 𝛾 = 1, configurations with 2nd and 3rd order connections 
provide a bandgap width coinciding with that of the 1st order one. 
Regarding the parameter 𝛼, we observed that in the limit situation 
of 𝛼 = 1, i.e., equal masses, no frequency bandgaps occur by adding 
non-local effects, independently of the strength of the interactions. For 
𝛼 ≠ 1, non-local effects are not negligible, especially for large values of 
the non-locality order 𝑛.
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5. Numerical validation of the model

Finite Element simulations using Comsol Multiphysics 6.2 are now 
presented to verify the analytical relations previously obtained. Differ-
ent scenarios are investigated in which the planar system is simulated in 
an eigenfrequency study in three dimensions. Bloch-Floquet boundary 
conditions are applied to the unit cells with first-, second- and third-
neighbouring interactions, illustrated in Fig.  7. The mass–spring model 
is reproduced using the solid mechanics interface. The masses are 
defined as circles with rigid material properties, avoiding compression 
and rotation in order to consider only their inertia. In particular, the 
value of 𝑚1 is set to be equal to 1 g, while 𝑚2 depends on the value 
of the parameter 𝛼. The circles have depth 𝑑 = 0.1mm and the radius 
is set so that 𝑟 =

√

𝑚1
𝜌1𝜋𝑑

, with 𝜌1 = 1 kgm−3. The lattice constant is 
𝓁 = 20𝑟1. The springs are modelled with a spring-damper in matrix 
form, with translational isotropic coupling 𝑘𝑛, depending on the order 
𝑛 of the neighbours. The constant 𝑘1 =1 kNm−1 defines the values of 
𝑘2 = 𝛽𝑘2 and 𝑘3 = 𝛾𝑘1. The boundary conditions allow to define the 
wavevector and obtain the desired eigenfrequencies of the systems. 
The first Brillouin zone is explored along the same path chosen in the 
previous sections (i.e., 𝛤 − 𝑀 − 𝐾 − 𝛤 ) in order to verify the closed 
form solution. The three orders of coupling are studied with values of 
𝛼 equal to 0.5, 1 and 1.5.

Results of the eigenfrequency study are shown in Fig.  8, showing 
the relation between non-dimensional wavenumber and frequency. All 
the conditions lead to results that agree perfectly with the analytical 
predictions of the dispersion diagrams, showing that the closed-form 
solutions for this system are exact. The analytical prediction in Sec-
tion 3 highlights an equivalence between in-plane and out-of-plane 
wave dispersion: this is confirmed numerically as the eigenfrequency 
study indicates triple degeneracy for each mode. The polarisation of the 
wave is well defined close to 𝛤 , allowing discrimination between the 
degenerate solutions in two in-plane and one out-of-plane eigenmodes. 
On the contrary, the modes hybridise when moving away from 𝛤 , 
leading to coupled in-plane and out-of-plane polarisation. The same 
curves are obtained for a planar two-dimensional system: removing the 
out-of-plane degree of freedom simply results in reducing the level of 
degeneracy to two.

6. Edge modes in the presence of beyond-nearest neighbour con-
nections

As mentioned in Section 1, the excellent wave-control properties 
of MMs make them ideal candidates in the field of topological protec-
tion [70–73]. Originally introduced in quantum mechanics [74], topo-
logical protection provides new possibilities for wave guiding through 
symmetry and topology properties of dispersion surfaces [75–77]. Two 
possibilities exist for achieving topological protection in elasticity. The 
first consists in using active components, like fluids [78] or rotating 
gyroscopes [79,80], to break the time-reversal symmetry, while the 
second employs possible strategies in which the spatial symmetry of the 
unit cell needs to be broken [81,82]. In the literature, these phenomena 
have been largely investigated by using local mass–spring systems [83–
89] even though the great potential of non-local lattices in this field has 
been recently demonstrated (cf. Section 1).

It is well known that two-dimensional elastic hexagonal lattices 
support topologically protected edge modes at the interface between 
regions of the lattice realised with mirror symmetry. This has been 
demonstrated in [90] by adding unequal masses at the vertices of an 
hexagonal lattice and in [44] in the case of a plate-like structure with 
a hexagonal configuration of mass–spring resonators. A 2D hexagonal 
lattice model including non-local interactions among masses is investi-
gated in [91] to capture the aforementioned topological effects. Here, 
similarly to [90], symmetry is broken by setting unequal values of 
the vertex masses, resulting in the localisation of waves at the corner 
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Fig. 5. Dispersion curves corresponding to first-, second-, third- and first- plus second- plus third-neighbouring connections for varying values of 𝛽 and 𝛾. Comparison of the 
dispersion curves obtained in the case of 𝑚𝑎 = 0.001 kg, 𝑘1 = 106 N∕m, 𝛼 = 0.5 and: (a) 𝛾 = 0.1, 𝛽 = 0.1; (b) 𝛾 = 1, 𝛽 = 0.1; (c) 𝛾 = 10, 𝛽 = 0.1; (d) 𝛾 = 0.1, 𝛽 = 1; (e) 𝛾 = 1, 𝛽 = 1; (f) 
𝛾 = 10, 𝛽 = 1.
Fig. 6. Dispersion curves for the case of first- plus second- plus third-neighbouring connections for varying values of 𝛼. Comparison of the dispersion curves obtained for 𝑚𝑎 = 0.001
kg, 𝑘1 = 106 N∕m, 𝛽 = 10 and: (a) 𝛼 = 0.5, (b) 𝛼 = 1, (c) 𝛼 = 1.5.
regions. The existence of this anti-symmetric corner state is experi-
mentally confirmed via local pump-probe measurements. Non-trivial 
topologically protected bandgaps are finally developed in [92] after 
breaking the mirror symmetry of a piezoelectric metamaterial compris-
ing a reconfigurable hexagonal-like honeycomb structure with periodic 
bonded piezoelectric beams by means of a negative capacitance circuit. 
Specifically, when all piezoelectric circuits are consistent, a symmetric 
configuration is obtained, while when the external circuits of two 
adjacent piezoelectric beams become inconsistent, the spatial symmetry 
is broken. After calculating the Chern number in the system, authors 
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discover the existence of the interface between different topological 
microstructures.

As a final demonstration of how the derived closed-form equations 
can be useful to describe wave propagation in more complex systems, 
we consider the case of a mass–spring lattice with non-local connections 
based on that considered in previous sections, introducing a mirror 
symmetry. A first numerical study is related to the band diagram of 
supercells of systems with first-, second- and third-neighbour interac-
tions. In particular, all the systems are studied both in standard single 
crystal form and in presence of an edge between regions with mirror 
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Fig. 7. Unit cells used to model the system in Comsol Multiphysics FEM simulations. Bloch-Floquet boundary conditions are used to obtain the dispersion diagrams of the system 
with (a) first-, (b) second- and (c) third-order neighbour interactions. Rigid material conditions are applied to the masses and the connections are modelled as spring-dampers.
Fig. 8. Comparison of the dispersion curves obtained with the closed-form analytical solutions (solid line) and the triply degenerate ones obtained with eigenfrequency study with 
Comsol in FEM simulations (black squares). 𝛽 = 1 and 𝛾 = 1 for all the graphs reported in the figure. Plots are displayed for first connections (solid line in blue) and with (a) 
𝛼 = 0.5, (b) 𝛼 = 1, (c) 𝛼 = 1.5; second connections (solid line in yellow) and with (d) 𝛼 = 0.5, (e) 𝛼 = 1, (f) 𝛼 = 1.5; third connections (solid line in green) and with (g) 𝛼 = 0.5, (h) 
𝛼 = 1, (i) 𝛼 = 1.5.
symmetry. As shown in Fig.  9.a-b-c, all three systems are characterised 
by the presence of two modes inside the band-gap.

The advantage of the model developed here is that it allows to 
investigate of the impact of beyond-nearest-neighbour connections on 
the localisation of edge waves. By introducing second and third levels 
of interaction within the lattice, we add more degrees of freedom com-
pared to the standard ‘‘local’’ configuration, which could potentially 
be optimised for specific objectives. Here, the approach is numerical, 
based on the band analysis presented previously. The FEM model 
consists in a finite lattice composed of two regions with different 
orientations (Fig.  10(a)). Numerical band diagrams of a supercell, with 
𝛼 = 0.5 in the presence of symmetry breaking are compared to the 
ones for a single crystal structure in Fig.  9, for networks with first-, 
second- and third-neighbour connections: the presence of the interface 
between the two phases leads to the appearance of edge modes inside 
the band-gap, characterised by an oscillation localised at the edge. The 
10 
interface, characterised by symmetry breaking at the unit cell level, 
creates an interface along which a topologically protected mode can 
propagate at frequencies that are forbidden for the original structure. 
We compare results for a lattice with local interactions only and one 
with first, second, and third-order springs (mixed configuration) in 
frequency domain simulations. A signal with unit amplitude applied 
to the left side of the lattice, with frequencies within the band gap for 
both structures, allows us to analyse the displacement of masses on the 
opposite end, and to assess localisation properties. Fig.  10(b) shows the 
obtained waveguiding effect at the interface for a lattice with 𝛼 = 0.5, 
𝛽 = 0.1, 𝛾 = 0.1: the topologically protected mode propagates with 
normalised frequency 𝜔0 = 2.21 (in the band gap for this configuration), 
from left to right in the finite system. Analysis of the displacement 
profile of masses on the right end reveals that in the presence of non-
local springs, with the chosen parameters, the elastic wave decays more 
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Fig. 9. Numerical band diagrams of supercells with single crystal symmetry (black dots) compared to crystals with an edge between two regions with inverted symmetry (red 
dots). The band gap opening is obtained with the parameter 𝛼 = 0.5. (a) First-neighbour interactions. (b) Second-neighbour interaction. (c) Third-neighbour interaction.
Fig. 10. (a) Lattice configuration: two realisations of the same lattice with a rotation of 30 deg are joined, and a topologically waveguiding interface is formed. (b) Displacement 
magnitude distribution obtained with a FEM frequency domain simulation. The normalised frequency 𝜔0 = 2.21 occurs in the band gap for the mixed spring configuration (1st, 2nd 
and 3rd neighbour connections) with 𝛼 = 0.5, 𝛽 = 0.1, 𝛾 = 0.1. The load is imposed on the left end of the waveguide. (c) Comparison of the displacement field at the right end of 
the waveguide for the local and the mixed configurations: the localisation effect is stronger for the considered mixed configuration. (d) Lattice configuration with z-like interface. 
(e) Displacement field for the topologically protected mode in presence of a z-like interface.
rapidly away from the interface, resulting in improved localisation at 
the edge (Fig.  10(c)).

Additionally, we examine the topologically protected mode for an 
angled waveguide at the interface between the two lattice sections. Fig. 
10(d) illustrates the test configuration, featuring a z-shaped interface 
between sublattices. Fig.  10(e) confirms the robustness of the topolog-
ical waveguiding, since scatter-free wave propagation is observed.

7. Conclusions

In conclusion, elastic wave propagation in hexagonal diatomic mass-
spring lattices, including non-local interactions up to a generic 𝑛th 
11 
order has been investigated. Closed-form analytical solutions for the 
dispersion curves has been obtained as a function of the model pa-
rameters, i.e., non-locality order, mass and stiffness characteristics. 
Results confirm the presence of roton-like behaviour when non-local 
interactions are present, with the number of local minima reflected in 
the order of non-locality. Combining first-, second- and third-nearest 
neighbouring interactions, it is possible to tune the system to obtain the 
desired complex dispersion characteristics. Numerical FEM simulations 
are used to validate the analytical solutions and to study the influence 
of nonlocal interactions on the presence and localisation of edge modes 
in a mirror symmetric diatomic lattice constituted by two regions with 
different unit cell orientations. Inclusion of beyond-nearest neighbour 
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interaction with appropriately chosen spring constants allows to im-
prove the localisation of the edge modes compared to the case where 
only nearest neighbour interactions are present.

Despite the ideal nature of a mass–spring system, results obtained 
in our study can be of use to guide the design of more realistic and 
complex 2D and 3D mechanical structures based on resonating ele-
ments, as has been shown in previous studies in the past. In particular, 
lattices with non-local interactions have been realised experimentally 
in various systems, for example in an elastic waveguide using simple 
connecting beams (Meccano elements) for beyond nearest neighbour 
connections [59], or in an acoustic system using an array of cavities 
connected beyond nearest neighbour [93]. Our approach provides a 
simple tool to choose appropriate parameters for the achievement of 
such experimental systems. Finally, the study of edge mode locali-
sation and topological protection in lattices endowed with nonlocal, 
roton-like interactions can add a rich new phenomenology to currently 
extensively studied systems.
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Appendix A

A.1. Second nearest connections

Consider the hexagonal lattice depicted in Fig.  1 and imagine to 
connect each mass to its second neighbouring masses by linear springs 
of constant 𝑘2. The resulting system is illustrated in Figs.  1 (b), 1(c), 
where, for simplicity, the springs are represented by straight yellow 
lines. Again, connections are shown only for the unit cell (0,0).

As in Section 1, if a time-harmonic vibration is applied to the 
considered model, writing the equations governing the small-amplitude 
motion of masses 𝑚𝑎 and 𝑚𝑏 in the reference cell (0,0) provides 

⎧

⎪

⎨

⎪

⎩

𝑚𝑎𝑢𝑎(0,0) = 𝑘2
(

𝑢(−1,1)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘2
(

𝑢(−1,−1)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘2
(

𝑢(1,−1)𝑏 − 𝑢(0,0)𝑎

)

𝑚𝑏𝑢𝑏(0,0) = 𝑘2
(

𝑢(1,−1)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘2
(

𝑢(1,1)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘2
(

𝑢(−1,1)𝑎 − 𝑢(0,0)𝑏

)

.

(32)
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Replacing Eqs. (4), (5) into Eq. (32) yields 

⎧

⎪

⎨

⎪

⎩

−𝑚𝑎𝜔2𝑢̂𝑎 = 𝑢̂𝑎
(

−3𝑘2
)

+ 𝑢̂𝑏
(

eiq⋅
(

d2−d1
)

+ e−iq⋅
(

d2+d1
)

+ eiq⋅
(

d1−d2
)

)

𝑘2

−𝑚𝑏𝜔2𝑢̂𝑏 = 𝑢̂𝑎
(

eiq⋅
(

d1−d2
)

+ eiq⋅
(

d2+d1
)

+ eiq⋅
(

d2−d1
)

)

𝑘2 + 𝑢̂𝑏
(

−3𝑘2
)

(33)

that, in matrix form, leads to the eigenproblem stated as 
(

𝑘2K2(q) − 𝜔2M
)

U = 0, (34)

with (See Box  I) with M and U defined in Eq.  (8). Again, in Eq.  (33), 
the factor 𝑒−i𝜔𝑡 is omitted and the more compact notation 𝑢̂(⋅) ∶=
𝑢̂(0,0)(⋅)

(

r(0,0)j

)

 is used for simplicity.
The dispersion equation for the case of second-neighbouring con-

nections can be obtained by imposing 
det

(

𝑘2K2(q) − 𝜔2M
)

= 0, (36)

from which 
𝜔4𝑚𝑎𝑚𝑏 − 3𝜔2𝑘2

(

𝑚𝑎 + 𝑚𝑏
)

+ 𝑘22
(

9 − 𝛹2 (q)
)

= 0, (37)

leading to 

𝜔2(q) = 𝑘2
3
(

𝑚𝑎 + 𝑚𝑏
)

±
√

9
(

𝑚𝑎 + 𝑚𝑏
)2 − 4𝑚𝑎𝑚𝑏

(

9 − 𝛹2 (q)
)

2𝑚𝑎𝑚𝑏
, (38)

with 

𝛹2 (q) ∶= 3+eiq⋅2d1+e−iq⋅2d1+eiq⋅2d2+e−iq⋅2d2+eiq⋅2(d1−d2)+e−iq⋅2(d1−d2)

(39)

or, in trigonometric form, 

𝛹2 (q) = 3 + 2cos
(

𝑞𝑥𝓁 + 𝑞𝑦𝓁
√

3
)

+ 2cos
(

2𝑞𝑥𝓁
)

+ 2cos
(

𝑞𝑥𝓁 − 𝑞𝑦𝓁
√

3
)

.

(40)

It clearly emerges that the dispersion relations obtained in the case 
of first- (Eq. (11)) and second- (Eq. (38)) neighbouring interactions 
have the same form. The only difference is the replacement of the 
quantities 𝑘1 and 𝛹1 (q) with 𝑘2 and 𝛹2 (q). Regarding the latter, note 
that 
𝛹2 (q) ≡ 𝛹1 (2q) , (41)

which opened the way to the possibility of establishing a rule of thumb 
to easily derive the dispersion equation in the general case of 𝑛th 
neighbouring connections. However, before doing so, let us proceed 
to the case of third neighbouring connections and let us verify if the 
previous considerations still apply.

A.2. Third nearest connections

As in section A.1, let us start with the hexagonal lattice in Fig.  1 and 
let us connect each 𝑚𝑎 and 𝑚𝑏 mass to its third neighbouring masses by 
linear springs with stiffness 𝑘3. This leads to the mass–spring system 
represented in Figs.  1(b), 1(c), where the 𝑘3 springs are only illustrated 
for the unit cell (0,0) by blue straight lines.

Applying a time-harmonic vibration to the mass–spring model with 
third neighbouring interactions and writing the corresponding govern-
ing equations of motion for the 𝑚𝑎 and 𝑚𝑏 masses at the cell (0,0) yields 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝑎𝑢𝑎(0,0) = 𝑘3
(

𝑢(1,−3)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘3
(

𝑢(1,1)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘3
(

𝑢(−3,1)𝑏 − 𝑢(0,0)𝑎

)

𝑚𝑏𝑢𝑏(0,0) = 𝑘3
(

𝑢(−1,3)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘3
(

𝑢(−1,−1)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘3
(

𝑢(3,−1)𝑎 − 𝑢(0,0)𝑏

)

.

(42)
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K2(q) =
⎡

⎢

⎢

⎣

3 −
(

eiq⋅
(

d2−d1
)

+ e−iq⋅
(

d2+d1
)

+ eiq⋅
(

d1−d2
)
)

−
(

eiq⋅
(

d2−d1
)

+ eiq⋅
(

d2+d1
)

+ eiq⋅
(

d1−d2
)
)

3

⎤

⎥

⎥

⎦

, (35)

Box I. 
K3(q) =
⎡

⎢

⎢

⎣

3 −
(

eiq⋅
(

d1−3d2
)

+ eiq⋅
(

d2+d1
)

+ e−iq⋅
(

3d1−d2
)
)

−
(

e−iq⋅
(

d1−3d2
)

+ e−iq⋅
(

d2+d1
)

+ eiq⋅
(

3d1−d2
)
)

3

⎤

⎥

⎥

⎦

, (45)

Box II. 
Similarly to the previous sections, introducing Eqs. (4), (5) into 
Eq. (42) yields the homogeneous system 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑚𝑎𝜔2𝑢̂𝑎 = 𝑢̂𝑎
(

−3𝑘3
)

+ 𝑢̂𝑏
(

eiq⋅
(

d1−3d2
)

+ eiq⋅
(

d2+d1
)

+ e−iq⋅
(

3d1−d2
)

)

𝑘3

−𝑚𝑏𝜔2𝑢̂𝑏 = 𝑢̂𝑎
(

e−iq⋅
(

d1−3d2
)

+ e−iq⋅
(

d2+d1
)

+ eiq⋅
(

3d1−d2
)

)

𝑘3 + 𝑢̂𝑏
(

−3𝑘3
)

,

(43)

which can be expressed in matrix form by the following eigenproblem 
(See Box  II) 
(

𝑘3K3(q) − 𝜔2M
)

U = 0, (44)

being M and U the matrices in Eq.  (8) and 𝑢̂(⋅) ∶= 𝑢̂(0,0)(⋅)

(

r(0,0)j

)

 for 
brevity.

Imposing 

det
(

𝑘3K3(q) − 𝜔2M
)

= 0, (46)

gives the dispersion equation 

𝜔4𝑚𝑎𝑚𝑏 − 3𝜔2𝑘3
(

𝑚𝑎 + 𝑚𝑏
)

+ 𝑘23
(

9 − 𝛹3 (q)
)

= 0 (47)

resulting in 

𝜔2(q) = 𝑘3
3
(

𝑚𝑎 + 𝑚𝑏
)

±
√

9
(

𝑚𝑎 + 𝑚𝑏
)2 − 4𝑚𝑎𝑚𝑏

(

9 − 𝛹3 (q)
)

2𝑚𝑎𝑚𝑏
, (48)

with 

𝛹3 (q) ∶= 3 + eiq⋅4a1 + e−iq⋅4a1 + eiq⋅4a2 + e−iq⋅4a2 + eiq⋅4(a1−a2) + e−iq⋅4(a1−a2)

= 3 + 2cos
(

2𝑞𝑥𝓁 + 2𝑞𝑦𝓁
√

3
)

+ 2cos
(

4𝑞𝑥𝓁
)

+ 2cos
(

4𝑞𝑥𝓁 − 2𝑞𝑦𝓁
√

3
)

.

(49)

Thus, we obtain a dispersion relation having the same form of 
Eqs. (11) and (38) describing, respectively, the case of first- and second-
nearest neighbouring connections. Again, Eq. (48) can be derived by 
substituting 𝑘1 and 𝛹1 (q) with 𝑘3 and 𝛹3 (q) in Eq.  (11). Also, by 
comparing Eqs. (39) and (49), we have 

𝛹3 (q) ≡ 𝛹2 (2q) . (50)

This relation, coupled with the observation 𝛹2 (q) ≡ 𝛹1 (2q) (cf. Section 
A.1), allowed us to naturally generalise the discussion to the general 
case of 𝑛 neighbouring connections. Regarding the latter, it can be said 
that solving the simplest case of first nearest interactions and deriving, 
in particular, the corresponding 𝛹1 (q) function, is thus sufficient to 
quickly obtain the dispersion properties of the lattice with general 𝑛th 
nearest connections.
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Appendix B

Nearest and beyond-the-nearest interactions: simultaneous first-, second- 
and third-neighbour connections

Let us consider the case of nearest neighbours (𝑛 = 1) together with 
neighbours with 𝑛 = 2 and 𝑛 = 3, i.e., first-, second- and third-neighbour 
interactions. In this configuration, obtained by ‘superimposing’ the 
three configurations described in Sections 2 and 3, connections between 
nearest neighbours are realised by linear springs of stiffness 𝑘1 and 
between non-nearest neighbours by linear springs of stiffness 𝑘2 (second 
neighbours) and 𝑘3 (third neighbours).

Applying a time-harmonic vibration to the system and writing the 
small-amplitude motion equations for the 𝑚𝑎 and 𝑚𝑏 masses in the cell 
(0,0) (Fig.  1) leads to 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑚𝑎𝑢𝑎
(0,0) = 𝑘1(𝑢

(0,0)
𝑏 − 𝑢(0,0)𝑎 ) + 𝑘1

(

𝑢(−1,0)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘1
(

𝑢(0,−1)𝑏 − 𝑢(0,0)𝑎

)

+

+ 𝑘2
(

𝑢(−1,1)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘2
(

𝑢(−1,−1)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘2
(

𝑢(1,−1)𝑏 − 𝑢(0,0)𝑎

)

+

+ 𝑘3
(

𝑢(1,−3)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘3
(

𝑢(1,1)𝑏 − 𝑢(0,0)𝑎

)

+ 𝑘3
(

𝑢(−3,1)𝑏 − 𝑢(0,0)𝑎

)

𝑚𝑏𝑢𝑏
(0,0) = 𝑘1

(

𝑢(0,0)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘1
(

𝑢(1,0)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘1
(

𝑢(0,1)𝑎 − 𝑢(0,0)𝑏

)

+

+ 𝑘2
(

𝑢(1,−1)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘2
(

𝑢(1,1)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘2
(

𝑢(−1,1)𝑎 − 𝑢(0,0)𝑏

)

+

+ 𝑘3
(

𝑢(−1,3)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘3
(

𝑢(−1,−1)𝑎 − 𝑢(0,0)𝑏

)

+ 𝑘3
(

𝑢(3,−1)𝑎 − 𝑢(0,0)𝑏

)

.

(51)

The generalised displacement 𝑢𝑎(⋅,⋅) and 𝑢𝑏(⋅,⋅) of the two masses can 
be expressed as a Bloch solution having the form of Eqs. (4) and (5). 
The latter, substituted into Eq. (51), gives 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−𝑚𝑎𝜔
2𝑢̂𝑎 = 𝑢̂𝑎

(

−3𝑘1
)

+ 𝑢̂𝑏
(

1 + e−iq⋅d1 + e−iq⋅d2
)

𝑘1+

+ 𝑢̂𝑎
(

−3𝑘2
)

+ 𝑢̂𝑏
(

eiq⋅
(

d2−d1
)

+ e−iq⋅
(

d2+d1
)

+ eiq⋅
(

d1−d2
)

)

𝑘2+

+ 𝑢̂𝑎
(

−3𝑘3
)

+ 𝑢̂𝑏
(

eiq⋅
(

d1−3d2
)

+ eiq⋅
(

d2+d1
)

+ e−iq⋅
(

3d1−d2
)

)

𝑘3

−𝑚𝑏𝜔
2𝑢̂𝑏 = 𝑢̂𝑎

(

1 + eiq⋅d1 + eiq⋅d2
)

𝑘1 + 𝑢̂𝑏
(

−3𝑘1
)

+

+ 𝑢̂𝑎
(

eiq⋅
(

d1−d2
)

+ eiq⋅
(

d2+d1
)

+ eiq⋅
(

d2−d1
)

)

𝑘2 + 𝑢̂𝑏
(

−3𝑘2
)

+

+ 𝑢̂𝑎
(

e−iq⋅
(

d1−3d2
)

+ e−iq⋅
(

d2+d1
)

+ eiq⋅
(

3d1−d2
)

)

𝑘3 + 𝑢̂𝑏
(

−3𝑘3
)

,

(52)

with 𝑢̂(⋅), q and dj, 𝑗 = 1, 2, the quantities previously introduced (cf. 
Section 1).



F. Ongaro et al. International Journal of Mechanical Sciences 291–292 (2025) 110095 
Fig. 11. Local plus non-local interactions: dispersion curves for first- plus second- plus third-neighbouring connections with 𝑚𝑎 = 0.001 kg, 𝑘1 = 106 N∕m, 𝛽 = 0.1 and varying 
values of 𝛼: (a) 𝛼 = 0.5, (b) 𝛼 = 1, (c) 𝛼 = 1.5.
Fig. 12. Comparison of the dispersion curves obtained for first- plus second- plus third-neighbouring connections with 𝑚𝑎 = 0.001 kg, 𝑘1 = 106 N∕m, 𝛽 = 1 and varying values of 
𝛼 and 𝛾: (a) 𝛼 = 0.5, (b) 𝛼 = 1, (c) 𝛼 = 1.5.
Eq. (52) can be written in matrix form, thus leading to the eigen-
problem 
(

𝑘1K1(q) + 𝑘2K2(q) + 𝑘3K3(q) − 𝜔2M
)

U = 0, (53)

being the matrices M, U, Ki(q), 𝑖 = 1, 2, 3, defined in Eqs. (8), (35) and 
(45). Imposing 
det

(

𝑘1K1(q) + 𝑘2K2(q) + 𝑘3K3(q) − 𝜔2M
)

= 0, (54)

yields the dispersion relation of the investigated system 

𝜔4𝑚𝑎𝑚𝑏 − 3𝜔2 (𝑘1 + 𝑘2 + 𝑘3
) (

𝑚𝑎 + 𝑚𝑏
)

+ 𝑘21
(

9 − 𝛹1 (q)
)

+ 𝑘22
(

9 − 𝛹2 (q)
)

+ 𝑘23
(

9 − 𝛹3 (q)
)

+

+ 2𝑘1𝑘2
(

9 − 𝛹12 (q)
)

+ 2𝑘1𝑘3
(

9 − 𝛹13 (q)
)

+ 2𝑘2𝑘3
(

9 − 𝛹23 (q)
)

= 0,

(55)

with 𝛹1, 𝛹2, 𝛹3 the functions in Eqs. (12), (39), (49), 

𝛹12 (q) ∶=
𝑒𝑏 + 𝑎𝑓

2
, 𝛹13 (q) ∶=

𝑒𝑑 + 𝑐𝑓
2

, 𝛹23 (q) ∶=
𝑎𝑑 + 𝑏𝑐

2
,

(56)
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and 
𝑎 ∶= 𝑎 (q) = −

(

eiq⋅(a1−a2) + eiq⋅(a1+a2) + eiq⋅(a2−a1)
)

= K2 (2, 1) , (57)

𝑏 ∶= 𝑏 (q) = −
(

eiq⋅(a2−a1) + e−iq⋅(a1+a2) + eiq⋅(a1−a2)
)

= K2 (1, 2) , (58)

𝑐 ∶= 𝑐 (q) = −
(

e−iq⋅(a1−3a2) + e−iq⋅(a1+a2) + eiq⋅(3a1−a2)
)

= K3 (2, 1) ,

(59)

𝑑 ∶= 𝑑 (q) = −
(

eiq⋅(a1−3a2) + eiq⋅(a1+a2) + e−iq⋅(3a1−a2)
)

= K3 (1, 2) , (60)

𝑒 ∶= 𝑒 (q) = −
(

1 + eiq⋅a1 + eiq⋅a2
)

= K1 (2, 1) , (61)

𝑓 ∶= 𝑓 (q) = −
(

1 + e−iq⋅a1 + e−iq⋅a2
)

= K1 (1, 2) . (62)

By adopting a more compact notation, Eq. (55) can be expressed by

𝜔4𝑚𝑎𝑚𝑏 − 3𝜔2
3
∑

𝑘𝑖
(

𝑚𝑎 + 𝑚𝑏
)

+
3
∑

𝑘2𝑖
(

9 − 𝛹𝑖 (q)
)

𝑖=1 𝑖=1
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Fig. 13. Study of the effect of 𝛽 on crystals with simultaneous first- and second-neighbour interaction. (a-b-c) Analytical dispersion curves of the system with 𝛼 = 1 and values of 
𝛽 = 0.1, 1, 10 respectively. The level 𝜔𝑚𝑎𝑥 corresponds to the maximum frequency of the lowest eigenmodes in the 𝛤 −M path while 𝜔𝑀 is the frequency of this eigenmode in the 
𝛤 point. (d) Trend of the ratio 𝜔𝑀

𝜔max
 for increasing values of 𝛽. (e) Lowest eigenmode of the system for values of 𝛽 ranging from 10−2 to 105.
+ 2
2
∑

𝑖=1

( 3
∑

𝑗=𝑖+1
𝑘𝑖𝑘𝑗

(

9 − 𝛹𝑖𝑗 (q)
)

)

= 0, (63)

from which 

𝜔2(q) =
3
∑3

𝑖=1 𝑘𝑖
(

𝑚𝑎 + 𝑚𝑏
)

±
√

9
(

∑3
𝑖=1 𝑘𝑖

(

𝑚𝑎 + 𝑚𝑏
)

)2
− 4𝑚𝑎𝑚𝑏

(

𝛬𝑖 + 2𝛬𝑖𝑗
)

2𝑚𝑎𝑚𝑏
,

(64)

where 

𝛬𝑖 ∶=
3
∑

𝑖=1
𝑘2𝑖

(

9 − 𝛹𝑖 (q)
)

, 𝛬𝑖𝑗 ∶=
2
∑

𝑖=1

( 3
∑

𝑗=𝑖+1
𝑘𝑖𝑘𝑗

(

9 − 𝛹𝑖𝑗 (q)
)

)

. (65)

Appendix C

See Figs.  11 and 12.

Appendix D

Following the analytical approach presented in Appendix  B and 
limiting the study to the simultaneous presence of first and second 
neighbour connections, it is possible to evaluate the effect of the param-
eter 𝛽 = 𝑘2

𝑘1
 on the dispersion relation. In Fig.  13.a-b-c the dispersion 

curves for values of 𝛽 = 0.1, 1, 10 are presented, for a crystal with 𝛼 = 1: 
it is clear that for increasing value of 𝛽 the non-local effects have a 
more relevant impact as the springs related to the second-neighbour 
connections prevail. While for 𝛽 = 0.1 the curves resemble the ones 
of the crystal with local connections, when the ratio 𝑘1

𝑘2
 increases it 

is possible to observe the roton-like slope inversion at the M point 
together with the appearance of a second Dirac cone.

A quantitative analysis of the roton behaviour is proposed by ex-
amining the ratio 𝜔𝑀

𝜔max
, which represents the frequency of the lowest 

eigenmode at the M point relative to the maximum frequency of the 
15 
same eigenmode along the 𝛤–M path. In a purely local system, this 
ratio equals 1, as the frequency trend in this region of the irreducible 
Brillouin zone (IBZ) is monotonic. However, the onset of slope inversion 
reduces the value of 𝜔𝑀 , thereby lowering the ratio. As illustrated in 
Fig.  13.d, the roton emerges for values of 𝛽 approaching 1, with the 
ratio decreasing further and approaching 0 as 𝛽 tends towards infinity.

Fig.  13.e shows the lowest eigenmode for the whole set of values 
of 𝛽 that were considered for this study: it is possible to observe that, 
while the system it is very similar to the local crystal for 𝛽 ≪ 1, if 
𝛽 tends to infinity the dispersion curves reproduce the ones of the 
structure whith only second-neighbour connections.

Data availability

No data was used for the research described in the article.
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