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A B S T R A C T

The behaviour of ants has inspired various scientific disciplines due to their ability to solve even complex 
problems. During their movement, ants generate trail networks that share many characteristics with vehicular 
traffic on highways. This research aims to estimate the values of traffic flow variables (mean speed, density, and 
flow) in ant trails without intersections or branches that could alter the dynamics of each ant. A case study in an 
outdoor environment was analyzed. The macroscopic traffic flow variables of interest were estimated using the 
deep learning method and the YOLO detection algorithm. The results show that ants adopt specific traffic 
strategies (platoon formation, quasi-constant speed and no overtaking maneuvers) that help avoid jam phe-
nomena, even at high density. Emerging technologies, including smart roads, communication systems, and 
Cooperative and Automated Vehicles (CAVs), allow us to speculate on the use of traffic control systems inspired 
by ant behaviour to avoid the risk of congestion even at high traffic volumes, as demonstrated by the preliminary 
results of this research.

1. Introduction

Ants are the most common social insects, and their organization does 
not depend on a leader (Schadschneider and Chowdhury, 2011). The 
modelling of ant colony organization is used in various human fields, 
including computer science, communication engineering, artificial in-
telligence, micro-robotics, etc. (Schadschneider and Chowdhury, 2011). 
Ants belong to the class of eusocial insects and demonstrate a high de-
gree of cooperation in transport processes (Holldobler and Wilson, 1990; 
Bonabeau et al. 2000) where collective movements are predominantly 
bidirectional with some degree of trail separation (Dussutour, 2004, 
Fig. 1). These insects are central-place foragers, which involves a series 
of trips from their nest to their foraging site. Many ant species generate 
chemical trail networks to transport resources and for exploration, 
emigration and coordinating colony defence (Holldobler and Wilson, 
1990; Couzin and Franks, 2003). Each trail originates from a pheromone 
patch (Billen and Morgan, 1998) which creates a multi-component 
signal acting both as a recruitment and orientation signal (Fourcassié, 
et al. 2010). The flow rate of ants on a trail section can reach several 
hundred ants per minute (Poissonnier, et al., 2019). In terms of speed, 

ants move using a tripod gait with no more than three legs in the air at a 
time (Zollikofer, 1994; Reinhardt and Blickhan, 2014; Wang and Song, 
2016), their running speed is a function of species, body size and surface 
type. Typical speed values range from about 1 cm/s to 10 cm/s 
depending on ant species and running surface (Grevé et al., 2019). The 
results of laboratory experiments show that the maximum ant density 
can reach 0.60 ants/cm and 0.95 ants/cm or more for large and small 
size ants, respectively (Wang and Song, 2016). Research on the orga-
nization of ant traffic has provided new insights for the study of pe-
destrians (Nishinari et al., 2006) and vehicular traffic (Peters et al., 
2006). However, ants do not move like pedestrians or vehicles for the 
following reasons (Fourcassié, et al. 2010): i) ants moving along a 
foraging path come from the same colony, have a common goal, and 
work cooperatively to improve the group’s overall fitness, which is not 
the case for pedestrians or drivers; ii) due to their low mass, ants have 
low inertia and therefore do not sustain damage in collisions. Conse-
quently, some degree of mixing of opposing traffic streams on foraging 
trails is permissible. In general, the degree of lane separation of traffic 
streams is greater in ant groups characterized by large specimens than in 
those characterized by small specimens. Thus, ants can solve even 
difficult traffic regulation challenges through relatively simple rules that 
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are not imposed externally (as in vehicle traffic flow regulated by 
signalized, unsignalized intersections and roundabouts (Gallelli et al., 
2016; Gallelli and Vaiana, 2019; Guerrieri et al., 2015)) but result from 
direct interactions between specimens (i.e., direct contacts or phero-
mone trails). Nevertheless, ants generate trail systems during their 
motion that share many characteristics with traffic flows of highways 
and freeways. The main characteristics of traffic flows on ant trails have 
been empirically studied in previous research (Gallotti and Chialvo, 
2018; John et al., 2008; Poissonnier et al., 2019).

In this paper, we apply specific traffic engineering models to analyse 
traffic parameters on bidirectional ant trails, which show striking cor-
respondences with vehicle flows on highways under uninterrupted 
traffic conditions. The ant path considered is located in an outdoor 
environment and maintains a quasi-constant orientation over the 
observed time period, with no intersections or branches that could alter 

the dynamics of individual ants. Data were analysed in successive time 
intervals of 30 s each (ΔTj = 30 s), for a total observation period of 30 
min (T =

∑
jΔTj = 30 min). The length of the observed track section is L 

= 30 cm, which is approximately 100 times the mean body length l of an 
individual ant (l ≈ 3 mm).

From ants walking on a pheromone trail to vehicles driving in a 
highway lane, the main challenge for all collective systems is to avoid 
congestion at high densities in crowded environments. Therefore, some 
of the key findings of this research on traffic ants could be applied to the 
development of traffic management and control systems for Cooperative 
Automated Vehicles (CAVs) on smart roads (Vidyarthi, et al., 2023). By 
self-organizing, the ants can maintain traffic flow close to the capacity of 
their trail without jamming. Similarly, on smart roads, the main chal-
lenge is to implement appropriate traffic control systems to maximize 
the capacity of traffic flows formed by CAVs and avoid congestion 
phenomena.

In short, the main novelties and contributions of this research are: 

- deduce the microscopic traffic variable in ant streams;
- analysed the collective strategies used by ants to avoid congestion;
- suggest traffic regulation strategies inspired by ants’ behaviour in 

smart roads used by CAVs to guarantee stable flow conditions even at 
high vehicle densities.

The structure of the paper is as follows. Section 2 describes the 
macroscopic flow variables of ant-traffic and the fundamentals of the 
car-following models and macroscopic traffic models derived from 
traffic engineering theory. Section 3 explains the related research on 
object detection and recognition systems based on the deep learning 
approach and the YOLOv4-Tiny detection algorithm, as well as the 
processes involved in ant detection and tracking. The experiments are 
presented in Section 4, along with the results and discussion. Finally, 
Section 5 provides conclusions, study limitations and research 
perspectives.

Nomenclature

Ac Accuracy
ai acceleration of the i-th ant
c theoretical stream capacity of CAVs
cT lane mean capacity value of a traditional highway
CAVs Cooperative Automated Vehicles
Cj

i confidence score of the j-th box in the i-th grid
Ds space domain in the time–space plane
Dt time domain in the time–space plane
Dts time/space domain in the time–space plane
ΔX segment length (path length)
ΔTj j-th time interval observation of ant flow
FN False Negative
FP False Positive
gsi space gap between the i-th and the (i + 1)-th ants
gti time gap between the i-th and the (i + 1)-th ants
hsi space headway between the i-th and the (i + 1)-th ants
hti time headway between the i-th and the (i + 1)-th ants
h*

ti minimum value of the mean headway between CAVs
HVs human-driving vehicles
IOUtruth

pred degree of overlap between the predicted result and the 
bounding box in the original image

kΔX(t) ant density
kc critical density
kmax maximum CAVs density
l mean body length of an individual ant

L observed track section of ants
li ant’s body length
Loss loss function of the detection algorithm
m(t) number of ants on the segment ΔX at the instant of time t
n(x) number of ants that pass the cross-section x
Pr precision
q(x) (or q) flow rate measured in the cross-section x
qmax maximum flow value of the traffic stream
Re recall
ρi occupation time
t time instant
TP True Positive
TN True Negative
tpr perception and reaction time of the driver
T total time period of observation of ant flow
vi speed of the i-th ant
vc vehicles mean speed value related to the stream capacity
vf free-flow speed
vmax maximum speed legally allowed on the highway
vs(x) (or v) space mean speed
V2I Vehicle-to-Infrastructure Communication Technology
V2V Vehicle-to-Vehicle Communication Technology
x cross-section of the ant’s path
xi abscissa of the i-th ant
YOLO object detection algorithm (acronym of You Only Look 

Once)

Fig. 1. Examples of the spatial organization of traffic flows. (a) the army ant 
Eciton burchelli (b) the leaf-cutting ant Atta Colombica
(adapted from Fourcassié et al., 2010)
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2. Ant-traffic: Macroscopic flow variables for and traffic models

The first assumption for analysing macroscopic traffic variables is the 
absence of overtaking manoeuvres among ants in a given traffic stream. 
Empirical data and previous research support this assumption which 
shows that ants may temporarily leave the initial path and be overtaken 
by subsequent ants but do not speed up to perform an overtaking 
manoeuvre (John et al., 2009) (see Section 4). Therefore, ants are 
individually identified by the order in which they cross a specific cross- 
section of the observed trail segment.

For a generic ant “i” the following variables can be defined (see 
Fig. 2a and Fig. 2b): 

• body-length: li;
• abscissa xi, (with respect to the x-axis coinciding with the axis of the 

trail);
• instantaneous speed: vi =

dxi
dt and longitudinal acceleration: ai =

dvi
dt = d2xi

dt2 .

With respect to the direction of motion, we denote the leader ant 
with “i” and the follower ant with “i + 1”. Therefore, between the two 
successive ants there is a space headway hsi and a time headway hti that 
can be defined as follows: 

hsi = xi − xi+1 = gsi + li (1) 

hti = gti + ρi (2) 

in which gsi, gti and ρi are the space gap, the time gap and the occupation 
time, respectively.

In addition, with respect to the time–space domain (cf. Fig. 2) the 
following macroscopic traffic variables can be estimated by means of 
counting processes: 

• The flow rate or simply flow q(x) is the number of ants n(x) that pass 
the cross-section x , during the generic time interval ΔT, expressed in 
ants per time unit:

q(x) =
n(x)
ΔT

(3) 

• Space mean speed vs(x) is the harmonic mean of the instantaneous ant 
speeds vi(x) measured at the cross-section x, during the generic in-
terval of time ΔT:

vs(x) =
1

1
n⋅
∑n

i=1
1

vi(x)
(4) 

• ant density, or simply, density kΔx(t), is the ant number m(t) on the 
segment ΔX long − expressed in ants per length unit- at the instant of 
time t:

kΔX(t) =
m(t)
ΔX

(5) 

For the sake of simplicity, in the next parts of this article, the 
macroscopic traffic flow variables are denoted as follows: flow q, space 
mean speed v and density k.

Strictly speaking, only in the case of steady-state traffic conditions 
(Mauro, 2014), the so-called fundamental flow relationship links the 
macroscopic flow variables (i.e. flow, density and space mean speed) to 
each other with the state equation: 

q = k⋅v (6) 

However, Eq. (6) is sometimes used in practical applications even in 
no steady-state traffic conditions.

To get an intuitive model for modelling ants’ traffic, we can assume a 
linear response relation between a cause and the corresponding effect (i. 
e. Response ∝ Stimulus). In other words, the dynamics of ants can be 
modelled by their physical interactions and stimuli, according to the so- 
called car-following models of vehicular streams in which a vehicle 
driver responds to the generic stimulus at time t, induced by the driving 
speed of the preceding vehicle, accelerating or decelerating after a delay 
time t + tpr (tpr is the perception and reaction time of the driver) and 
proportional to the result of the stimulus multiplied by the driver’s 
sensitivity [1]: 

Response
(
t + tpr

)
= sensitivity⋅stimulus(t) (7) 

In linear car-following models, the stimulus is a function of the speed 
difference between two vehicles in a platoon, whereas the sensitivity 
assumes a different form according to the selected model. Consider the 
lead vehicle “i” and the follower vehicle “i + 1”, and assuming for the 
sensitivity a coefficient λ (e.g. the reciprocal value of the perception- 

Fig. 2. Space and time headways between ants in a platoon.

Fig. 3. Ants trajectories − space taken up in function of time (x = x(t)), by a 
group of ants, and identification of potential domains (Dt, Ds, Dts) for analysing 
the flows.
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reaction time tpr of users), the linear car-following model is expressed as 
follows: 

ai+1(t + tpr) = λ⋅[vi(t) − vi+1(t)] (8) 

where ([vi(t)-vi+1(t)]) is the speed difference between the lead vehicle “i” 
and the follower vehicle “i + 1” and ai+1(t + tpr) is the acceleration of the 
follower vehicle.

In the non-linear car-following model, the sensitivity λ is a function 
of the speed and spacing between vehicles; the model is expressed by the 
following equation: 

ai+1(t + tpr) = λ0⋅vm
i+1(t + tpr)⋅

vi(t) − vi+1(t)
[xi(t) − xi+1(t)]l

(9) 

Several non-linear models are available in the literature (e.g. Helly, 
1961; Gabard et al., 1982; Gipps 1981; Bekey et al., 1977). It should be 
noted that macroscopic traffic models can be derived directly from the 
non-linear car-following model by assuming certain values of the co-
efficients m and l, as shown in Table 1 (Papageorgiou, 1991; Mauro, 
2014). This study used the Greenshields model (Table 1) to analyze ant 
flows because it is the most popular model in traffic engineering 
applications.

3. Ants’ detection and tracking in video sequences

In this research, we studied bidirectional ant traffic on a natural trail. 
A deep learning-based approach, utilizing the YOLOv4-Tiny algorithm, 
was applied to detect and track ants in an outdoor environment from 
recorded videos. In computer vision applications, the most commonly 
used Deep learning architectures are artificial neural networks (ANNs), 
convolutional networks (CNNs) and generative adversarial networks 
(GANs) (Elgendy, 2020). YOLO (You Only Look Once), SSD (single-shot 
detector) and Faster R-CNN are object detection methods capable of 
detecting, locating and classifying objects in images, including several 
object categories (Elgendy, 2020). YOLO is a powerful real-time object 
detection system first introduced by Redmon in 2016 (Redmon et al., 
2016). In YOLO, the network divides an image into different regions and 
predicts bounding boxes and probabilities for each object of interest. 
The YOLO variants (i.e., YOLOv1, YOLOv2, YOLOv3, YOLOv4, 
YOLOv5,.. YOLOX, YOLOR) have complex network structures and a 
large number of network parameters, so a powerful GPU (Graphic Pro-
cessing Unit) is required for real-time object detection. YOLO models 
play a key role in real-time object detection systems for robotics, driv-
erless cars, and video monitoring applications (Terven and Córdova- 
Esparza, 2024). In traffic engineering, YOLO models have been applied 
for tasks such as traffic signs, structural distress, vehicular and pedes-
trian flow recognition (Guerrieri et al., 2013a; Guerrieri et al., 2013b), 
thus promoting the development of novel intelligent transportation 
systems and traffic management techniques. Compared to other one- 

stage and two-stage object detection methods, YOLOv4 shows better 
inference speed and detection performance in bounding box classifica-
tion, prediction and generation (Liu et al., 2022; Zheng, et al., 2019; Li, 
et al. 2021).

The YOLOv4-tiny algorithm (Fig. 4) is created based on the YOLOv4 
structure to achieve faster object detection performance. It uses the 
CSPDarknet53-tiny network as a backbone network. In the YOLOv4-tiny 
algorithm, the prediction process can be briefly described as follows 
(Jiang et al., 2020; Zhang et al., 2022; Wang et al., 2021; Wang et al. 
2022): 

- The input images are adjusted in terms of size;
- The images are subdivided into grids of size S × S;
- Each grid uses B bounding boxes to detect objects;
- The algorithm generates S × S × B bounding boxes, which cover the 

entire input image;
- If the centre of some object falls in some gird, the bounding boxes in 

that grid will predict the object;
- To decrease the redundancy of bounding boxes during the prediction 

process, the confidence threshold is estimated and compared with 
the confidence score. When the confidence score of a certain 
bounding box is greater than the confidence threshold, the bounding 
box is retained; otherwise, it is removed. The confidence score of a 
bounding box is calculated as follows:

Cj
i = Pj

i × IOUtruth
pred (10) 

Pj
i =

{
0 no target in the cell

1 there are targets in the cell (11) 

IOUtruth
pred =

Bground truth ∩ Bpredicted

Bground truth ∪ Bpredicted
(12) 

in which Cj
i is the confidence score of the j-th box in the i-th grid, Pj

i is a 
function of the object, and IOUtruth

pred is the so-called intersection over 
union (IOU). IOUtruth

pred represents the degree of overlap between the 
predicted result and the bounding box in the original image. It is the 
most common indicator in object detection.

When the confidence score is high, the predicted box is close to the 
ground truth box.

The loss function of YOLOv4-Tiny comprises the confidence loss 
function (loss1), the classification loss function (loss2) and the bounding 
box regression loss function (loss3), which can be calculated as follows 
(Jiang et al., 2020; Zhang et al., 2022): 

Loss = loss1 + loss2 + loss3 (13) 

- confidence loss function, loss1:

loss1 = -
∑S2

i=0

∑B

j=0
Wobj

ij

[
Dj

ilog
(

Cj
i

)
+
(

1-Dj
i

)
log

(
1-Cj

i

) ]

-λnoobj

∑S2

i=0

∑B

j=0
(1-Wobj

ij )[Dj
ilog(Cj

i) + (1-Dj
i) log(1-Cj

i)] (14) 

in which S2 is the number of grids in the input image, B is the number of 
the bounding boxes in a grid, and Wobj

ij is a function of the object. If the j- 
th bounding box of the i-th grid is responsible for detecting the current 
object Wobj

ij = 1 otherwise Wobj
ij = 0. In addition, Dj

i and Cj
i are the 

confidence scores of the predicted box and the confidence score of the 
truth box respectively and λnoobj is a weight parameter. 

- Classification loss function, loss2:

Table 1 
Some macroscopic flow models obtained from Eq. (9) through particular values 
of the coefficients m and l.

Coefficient values − Eq.(9) Traffic law Denomination
m l

0 1
q = vc⋅k⋅ln

(
kjam

k

)
Gazis et al. (1959)

0 1.5
q = vf ⋅k⋅

[

1-
(

k
kjam

)1
2
] Drew (1968)

0 2
q = vf ⋅k⋅

(

1-
k

kjam

)
Greenshields (1935)

1 2
q = vf ⋅k⋅exp⋅

(
k
kc

)
Edie (1961)

1 3

q = vf ⋅k⋅e
-12

(
k
kc

)2 Drake et al. (1967)
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loss2 = -
∑S2

i=0

∑B

j=0
Wobj

ij

∑C

c=1

[
Qj

i(c)log
(

Pj
i(c)

)
-(1-Qj

i(c)log
(

1-Pj
i(c)

) ]


(15) 

where Pj
i(c) and Qj

i(c) are the predicted probability and the truth prob-
ability to which the object belongs to classification in the bounding box 
of the grid. 

- bounding box regression loss function, loss3:

loss3 = 1 − IOU +
ρ2
(
b, bgt)

c2 +
16
π4 ⋅

(

arctanwgt

hgt − arctanw
h

)4

1 − IOU + 4
π2⋅
(

arctanwgt

hgt − arctanw
h

)2

(16) 

ρ2(b, bgt
) denotes the Euclidean distance between the center points of 

the prediction box and the ground truth box, c is the minimum diagonal 
distance of the smallest enclosing box covering two boxes, wgt and hgt 

are the truth width and height of the bounding box, respectively, w and 
h denote the predicted width and height of the bounding box.

To evaluate the detection performance of the model, numerous 
metrics, including Precision, Recall, Accuracy and F1 score, can be used: 

Pr =
TP

TP + FP
(17) 

Re =
TP

TP + FN
(18) 

Ac =
TP + TN

TP + TN + FP + FN
(19) 

F1 =
2

1
Pr

+ 1
Re

=
2⋅TP

2TP + FP + FN
(20) 

In Eqs. (17)-(20), the symbols TP, FN, TN, and FP are the main 
prediction outcomes and define the True Positive, the False Negative, 

the True negative and the False Positive, respectively. Table 2 shows the 
definitions of the four categories.

As for the tracking of ants, any ant that enters an image of the ana-
lysed video is considered as a new tracking object, so the method assigns 
it an identification number and initializes the bounding box for this ant. 
The linear Kalman filter (Kalman, 1960) is used in this study to reduce 
noise caused by false detections (Welch and Bishop, 2006). The inter-
ested reader can find more details about the Kalman filter and its 
application in object tracking in (Guerrieri and Parla, 2022). Fig. 5 il-
lustrates the main steps for tracking an ant in successive frames in a 
video sequence.

3.1. Model training and outcomes

Since no public datasets are available for the studied ant species 
(Ochetellus), a new dataset named “Ant Italy“ was created for this 
research. First, we selected 11,820 ant images from the recorded videos. 
From this large dataset, a final dataset was created consisting of 8274 
images (i.e. 70 % of 11820) for neural network training (with a total of 
32,378 annotated bounding boxes of ants) and 3546 images (i.e. 30 % of 
11,820) for testing and validation. In this way, the neural network 
learned a wide range of ant images. The training epoch was set to 180. 
Fig. 6 illustrates the training epoch loss curve, which indicates a sharp 
decrease in the first 3 epochs and stabilization after 20 epochs. The 
values of the metrics (Loss, Precision and Log-average Miss Rate) prove 
that the training process can detect ants with high accuracy and preci-
sion (Fig. 7 and Fig. 8).

Fig. 4. YOLO v4-tiny structure
(adapted from Wang et al., 2022).

Table 2 
Metrics and symbols of Eqs. (17)-(20).

Confusion matrix Ground truth

Positive Negative

Prediction Positive TP FP
Negative FN TN
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4. Experiments, results and discussion

The experiments refer to a natural trail connecting the nesting site to 
a lawn with a quasi-smooth surface in an outdoor environment in Italy. 
We collected qualitative and quantitative traffic data for a single 

bidirectional traffic stream. The 30 cm section of the trail studied (Fig. 9) 
has a quasi-constant horizontal alignment during the data collection 
interval, similar to a static highway section. To reduce complexity, in-
tersections and junctions were excluded from the experiments, as these 
would be comparable to freeway sections without entrances and exits, 

Fig. 5. Steps to tracking an ant in successive frames of a video.

Fig. 6. Loss curve.

Fig. 7. Precision-Recall curve.
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which are known to affect traffic density and level of service negatively. 
We recorded video sequences of oncoming traffic, each lasting 30 s with 
a resolution of 1334 × 750 pixels at 326 ppi (frame rate of 60 Hz). The 
time interval between two consecutive videos was 30 s. In total, more 
than 110 videos of traffic ants were collected (55 for each traffic di-
rection). The ant species under consideration is the Ochetellus (body 
length: l ≈ 3 mm). This choice guaranteed that all ants have very similar 
body lengths and perform the same behavioural reactions. Fig. 9 shows 
photos of the analysed trail section at three different instants of time.

By applying detection and tracking algorithms (cf. Sect. 3), the tra-
jectories, speeds, and accelerations of numerous individuals were esti-
mated along with macroscopic traffic variables (mean speed, density, 
and flow, cf. Sect. 2) under both undisturbed conditions and disturbed 
environments created with a repellent substance (citronella oil). Starting 
from the videos’ analysis, each ant’s detection was achieved by applying 
the YOLOv4-Tiny detection algorithm according to the procedure 
described in the previous sections. The Kalman filter was applied for the 
tracking processes (Fig. 10) (Meihong et al., 2020).

Fig. 11 shows an example of the temporal-spatial diagram for the 

studied trail, created using the proposed detection and tracking algo-
rithms (cf. Sect. 3).

We found that when two ants encounter each other, their antennas 
are often in contact with each other for a certain time interval. In this 
study, speed reduction during head-on encounters was only analysed 
qualitatively. However, it is evident that the head-on encounter process 
between ants involves three distinct phases of motion: the deceleration 
phase due to encountering each other (from free speed to zero), the stop 
phase for information exchange, and the acceleration phase back to free 
speed. In general, the time loss during the deceleration phase is less than 
that during the acceleration phase (Wang et al., 2018).

As shown in Fig. 3, the temporal-spatial diagram (i.e., the trajectories 
of the ants, cf. Fig. 11) allows us to estimate the macroscopic traffic 
variables of flow q, density k, and mean speed v.

In traffic engineering, the relationship between flow and density is 
the so-called fundamental diagram. In this study, this diagram was 
estimated from the analysis of videos and plotted in Fig. 12 and the 
temporal-spatial diagrams (Fig. 11). Instead, Fig. 13 shows the re-
lationships between mean speed-density and flow-density. Scatter plots 

Fig. 8. Miss Rate in function of False Positive per Image.

Fig. 9. Snapshots of the observed trail section whose length L ≈ 100⋅l in the units of the body length of a single ant (l ≈ 3 mm).
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were obtained from successive time intervals ΔTj = 30 s; the cross sec-
tion is located at 15 cm (Fig. 9). For each interval of time ΔTj, flow (q), 
mean speed (v), and density (k) were calculated using Equations (3), (4), 

and (5), respectively. A total of 110 pairs of (v; k), (q; k), (v; q) were 
estimated, as follows: 55 pairs for the flow stream in the direction 1 
(from the cross-section located at 0 cm to the cross-section located at 30 

Fig. 10. Examples of ant tracking in four frames of one video.

Fig. 11. Examples of temporal-spatial diagrams: a) from cross-section placed at 18 cm to cross-section placed at 30 cm; b) from cross-section placed at 30 cm to cross- 
section placed at 18 cm (cf. Fig. 9 and Fig. 3).

Fig. 12. Speed-flow v = v(q) and Flow-density q = q(k) relationships. Experimental points and theoretical Greenshields model (ant-flow in the direction 1: from the 
cross-section located at 0 cm to the section located at 30 cm, cf. Fig. 9).
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cm) and 55 pairs for the opposite direction.
From Figs. 12 and 13, it can be deduced that the mean speed is 

almost independent of density, and the flow increases almost linearly 
with the density up to a certain value, k*.

In general, the theoretical fundamental diagrams for a given cross- 
section of a highway can be estimated using serval models (Table 1). 
Most traffic-flow models (Greenshields et al., 1935; Pipes, 1953; Un-
derwood, 1960) show that the mean speed of vehicles decreases non-
linearly with density. In particular, in the case of Greenshields’ model 
(cf. Table 1), the relationships between flow (q), speed (v) and density 
(k) are given by the following equations: 

v = vf ⋅e
-1
2⋅

(
k

kjam

)2

(21) 

q = v⋅

̅̅̅̅̅̅̅̅̅̅

ln vf
v

0.5
kjam

2

√
√
√
√ (22) 

q = vf ⋅k⋅e
-1
2

(
k

kjam

)2

(23) 

In which vf is the free-flow speed and kjam is the jam density.
It is important to note from Fig. 14a that for ant-traffic, the Green-

shields model does not fit the experimental data when k > kc, where kc is 

the critical density (kc ≈ 0.6 ants/cm) related to the capacity c of the 
traffic stream (c = qmax ≈ 3 ants/s). In addition, the analysis of the 
experimental data in terms of flow rate q and density k revealed no 
evidence of jamming (flow does not tend to zero and does not even 
decrease; after the critical density, it just remains nearly constant), un-
like vehicular traffic streams on highways. In fact, the empirical 
fundamental diagram shows no transition to a jammed phase (John, 
et al., 2007). In contrast to typical fundamental diagrams observed on 
highways and other road infrastructures under uninterrupted traffic 
conditions, we experimented that ant speed appears to be quasi-constant 
with density (Fig. 13a). This phenomenon is caused by the fact that ants 
walk within platoons, which reduces the effect of density on the mean 
speed. As a matter of fact, ants inside a platoon move with almost equal 
speeds, keeping small time headways hsi (cf. Eq. (1), whereas solitary 
ants can move faster if they perceive an intense pheromone mark pro-
duced by a preceding platoon (John et al., 2009). Another way for ants 
to prevent overcrowding and jamming on a trail is to choose one or more 
alternative routes. Finally, no overtaking manoeuvres were detected; 
only occasionally, some ants temporarily left the track and were over-
taken by the others.

Given these considerations, a two-phase flow diagram is proposed as 
depicted in Fig. 14b. In fact, for low-density values, the flow q increases 
linearly with the density k. In contrast, at high density the flow reaches 
the maximum value (i.e. the capacity c = qmax) and remains constant. 
The diagram can be described as follows: 

Fig. 13. Speed-flow v = v(q) and Flow-density q = q(k) relationships. Experimental points and theoretical Greenshields model (ant-flow in the direction 2: from the 
cross-section located at 30 cm to the section located at 0 cm, cf. Fig. 9).

Fig. 14. Experimental flow density data (a) and proposed flow-density diagram (b).
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- Phase 1 (k ≤ kc ≈ 0.6 ants/cm): q increases linearly with k, ants move 
freely at speed v = vf (free-flow speed);

- Phase 2 (k > kc ≈ 0.6 ants/cm): q stops increasing with k but does not 
decay as in the case of Greenshields model for vehicular traffic.

A key factor determining the difference between traffic streams on 
highways and traffic of ants is due to the number of contacts faced with 
nestmates, which causes several ants to stop and consequently cause the 
reduction of their average speed, which remains quasi-constant or 
slightly decreases in the range 0 < q ≤ qmax = c (cfr. Fig. 13a).

In summary, from a macroscopic point of view, in contrast to what is 
observed in vehicular traffic, in ant-traffic, the flow always increases 
monotonically with density until the capacity is reached and no jam 
phenomena are exhibited.

The case study illustrated in this article demonstrates that ants are 
capable of solving complex traffic regulation problems via relatively 
simple rules that are not imposed externally and arbitrarily (as in traffic 
on traditional roads) but that emerge from local direct (ant contacts) or 
indirect (through a chemical signal) collaborations between individuals. 
Thus, ants behave more cooperatively than vehicles on conventional 
roads.

However, from a macroscopic perspective, ants’ strategies to maxi-
mize traffic flows and prevent jamming can be applied to novel digita-
lized road infrastructures thanks to emerging technologies such as smart 
roads and CAVs. Smart roads essentially adopt cooperative technologies 
of intelligent transport systems (C-ITS) to enable communication and 
cooperation between all vehicles and between them and the road 
infrastructure.

Smart roads may employ one or more of the following traffic control 
systems and devices (Guerrieri, 2021; Ioannou, 2024): 

- Lanes for AVs and CAVs;
- Internet of Things (IOT);
- Sensors for monitoring traffic flows, structures (bridges, viaducts 

etc.), road pavements (Al-Qadi et al., 2004; Praticò et al. 2023), 
weather and air pollutants;

- Ramp-metering systems;
- Hard Shoulder Running (HSR) systems;
- Variable Speed limits (VSL) (Isaenko et al. 2024) and Variable 

Message Signs (VMS) (Wu, et al. 2024);
- Green Islands (GIs);
- Electric priority lanes;
- Piezoelectric devices to generate electrical energy;
- Smart street lights (Yoshiura et al., 2013);
- Safety barriers equipped with an accident monitoring system 

(Dinnella et al., 2020).

Several studies have examined the theoretical impact of CAVs on 
highway capacity. Using microscopic traffic simulations or analytical 
models, some studies have estimated an increase in highway lane ca-
pacity from 180 % to 500 % (Guerrieri, 2021). However, these studies 
assumed the fluctuation of vehicle speeds and a confined trial of vehicles 
inside the carriageway lanes.

Based on the main results of the present research and to avoid 
congestion, we can assume a very similar traffic regulation process to 
that of ants for smart roads travelled by CAVs (Fig. 15).

In fact, the communication and cooperation systems of CAVs (i.e. 
V2V and V2I technologies) enable the exchange of information about the 
movement between vehicles within the traffic stream, similarly to the 
exchange of information between ants on a certain chemical trail 
created by the pheromone which, as mentioned earlier, implies the 
avoidance of traffic jams.

Therefore, in the case of smart roads and automated highways 
(Ioannou, 1997), a proper management area (MA) could be used to set a 
constant speed value for each CAV, corresponding to the maximum 
speed legally allowed on the highway (vi = vmax = const.). With this 
hypothesis, one finds that the vehicular flow is increasingly mono-
tonically with the density k of CAVs (Fig. 15): 

q = v⋅k = vmax⋅k (24) 

Eq. (24) substantially corresponds to Phase 1 of the two-phase flow 
diagram represented in Fig. 14b estimated for ant-traffic.

Fig. 15. Scheme of the proposed analogy between the flow of ants (a) and the flow of CAVs on smart roads (b).
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Starting from a reasonable lane mean capacity value cT = 2000 veh/ 
h of a traditional highway with traffic steams composed by only human- 
driving vehicles (HVs), we have estimated the relationships v = v(q), q 
= q(k) and v = v(k) in the case of a smart road with traffic formed only 
by CAVs imposing a theoretical stream capacity c = α⋅cT = α⋅2000 veh/h 
with α = 1.8–3.2 (Ioannou, 1997; Guerrieri, 2021) and with three 
different maximum speed values (vmax = 130 km/h, vmax = 140 km/h, 
vmax = 150 km/h). Specifically, new communication technologies and 
cooperative systems applied to infrastructures and vehicles will ensure 
the maintenance of short headways between CAVS, which will have a 
remarkable effect in terms of capacity. For instance, with a minimum 
mean headway h*

ti = 0.563 s, the corresponding capacity is c = 3600/ h*
ti 

= 3600/0.563 ≈ 6400 CAVS/h (i.e. the lane capacity obtained by 
imposing α = 3.2 in the previous relation c = α⋅cT). A total of nine 
scenarios were analysed, as shown in Table 3. The outcomes of the 
theoretical model do not show congestion phenomena (Fig. 16) in each 
traffic stream of the carriageway.

For kc ≤ k ≤ kmax (Phase 2) q = c = const., v decreases as shown, for 
example, in Fig. 16 in the case of scenario S 9. Empirical studies on 
conventional highways have shown maximum densities in the range 
kmax = 120–160 veh/km/lane, and these values can also be considered 
plausible for smart roads. However, to maximize the benefits in terms of 
travel times, the smart road operator should ensure that the infrastruc-
ture preferably operates in phase 1, as this phase determines the 
maximum permitted speed and consequently reduced travel times. 
Conversely, in Phase 2 high density values can produce significant and 
unacceptable mean speeds, even below 60 km/h for k≈kmax.

However, unlike conventional highways, where the capacity c =
qmax is reached at a vehicles mean speed vc lower than the free-flow 
speed vf = vmax (e.g. in the Greenshield model vc = 0.5 vf), followed 
by a drastic speed and flow reduction at increasing density, the appli-
cation of ANTi-JAM solutions, inspired by the ants’ behaviour, would 
allow smart roads to reach capacity c and maximum speed vmax simul-
taneously (final point of phase 1) followed by a unavoidable but mod-
erate speed reduction at constant flow at increasing density (for k ≪ kmax 
in Phase 2), with enormous benefits for the transportation system and 
avoiding congestion phenomena.

It is worth underlining that motorists often choose to follow other 
vehicles on traditional roads, even at the risk of being stuck in traffic 
jams. Therefore, to increase the carriageway capacity, lane separation 
by horizontal lane markings should not be used (Fig. 15b), as in ant 
trails. The reason is that the traffic management system could prescribe 
safe vehicle trajectories (Monteiro and Ioannou, 2023) and a variable 
number of parallel traffic streams depending on traffic demand level to 
limit the risk of flow instability and congestion.

5. Conclusions

Ants are social insects that communicate with each other primarily 
through pheromone signals emitted by one ant and that can be picked up 
by another. Contact is another common method for communicating in-
formation of different types. This research uses some traffic engineering 
methods to analyse traffic flow variables on a bidirectional ant trail in a 
natural environment. The ant species studied was Ochetellus, whose 
body length is around 3 mm. We recorded several video sequences of 

ant-traffic that were 30 s in duration. A Deep learning-based approach 
and the YOLOv4-tiny detection algorithm were applied to detect and 
track ants from videos. The estimation of the ant trajectories (space-
–time diagrams) allowed us to calculate the values of the main macro-
scopic traffic variables (mean speed v, flow q and density k) for 
subsequent time intervals, each 30 s long.

From direct observations and traffic datasets related to each unidi-
rectional single-lane trail, several qualitative and quantitative insights 
were derived, including: 

- ants can solve complex traffic control problems by simple rules;
- the relationship between the flow rate q and density k revealed no 

evidence of jam phenomena;
- in contrast to the typical shape of fundamental diagrams of highways 

and other road infrastructures under uninterrupted traffic condi-
tions, the mean speed of ants appeared to be quasi-constant with 
density. In particular, at low ant density, the flow q increases linearly 
with the density k, whereas at high density, it reaches the maximum 
value (i.e. the capacity) and remains constant;

- spatial distribution of individuals along the trail shows that ants 
move predominantly in platoons;

- within each platoon, ants maintain almost equal speed, keeping 
small time headways;

- no overtaking maneuvers are performed.

Major findings of the study

We formulate a set of rules and potential analogies between the 
future traffic regulation of cooperative and automated vehicles (CAVs) 
on smart roads and the organization of ant traffic. These analogies arise 
from the consideration that in smart roads, communication and coop-
eration systems (i.e. V2V and V2I), will allow CAVs to exchange infor-
mation about the movement within traffic streams in a very similar way 
to the information exchange adopted by ants within a given pheromone 
trail. Therefore, a traffic management area (MA) could be used to set the 
speed of each CAV to a value equal to the maximum speed allowed on 
the highway, and platoons could be artificially formed by setting small 
mean headways (h*ti) between vehicles.

To estimate the effect of a traffic regulation inspired by the ants’ 
behaviour, this research considered numerous traffic scenarios that 
differ from each other in the following characteristics: maximum speed 
(vmax = 130 km/h, vmax = 140 km/h, vmax = 150 km/h) and lane ca-
pacity values obtained by varying the h*ti values.

The first results of the proposed theoretical model reveal that, as in 
ant-traffic, in smart roads, the traffic flows increasingly monotonically 
with the density k without apparent congestion phenomena, up to a 
nearly constant/maximal value. To maximize the benefits in terms of 
travel times and, therefore, transport users’ satisfaction, the smart road 
should preferably operate in phase 1 of the fundamental diagram – with 
density values less than the critical density kc − because this traffic 
condition produces the maximum permitted speed.

Therefore, using ANTi-JAM strategies, inspired by the ants’ collec-
tive motion, could allow the simultaneous obtaining of capacity c and 
maximum speed vmax, with remarkable benefits for the transportation 

Table 3 
Scenarios and traffic variable values considered for phase 1 of smart roads with traffic composed only of CAVs.

Scenario

Traffic flow variable S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9

vmax [km/h] 130 130 130 140 140 140 150 150 150
α = c /cT ≤ 1.8 1.8–2.5 2.6–3.2 ≤ 1.8 1.8–2.5 2.6–3.2 ≤ 1.8 1.8–2.5 2.6–3.2
k[CAVs/km] ≤ 28 29–38 39–49.2 ≤ 28 29–38 39–45.7 ≤ 28 29–38 39–42.7
c [CAVs/h] ≤ 3640 3641–4940 4941–6400 ≤ 3920 3921–5320 5321–6400 ≤ 4200 4201–5700 5701–6400
h*

ti[s] ≥ 0.99 0.99–0.73 0.73–0.56 ≥ 0.92 0.92–0.68 0.68–0.56 ≥ 0.88 0.88–0.63 0.63–0.56
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system and avoiding congestion phenomena.

Limitations of the study

This research has its own limitations, which are encountered at 
various stages. The major limitation is that traffic data collection in-
cludes only one ant species. Given this limitation, it is not possible to 
generalize the results from this study to all ant species. Another limi-
tation is related to the analysis of a single trail section without curves, 
intersections and conflict areas among several ants’ streams. Finally, 
CAVs are emerging technologies and no empirical data are available 
from real-world applications in traffic and highway engineering.

Research perspectives

Studies on the collective motion of ants offer plenty of opportunities 
and information for testing models aimed at identifying strategies for 
better traffic regulation of future digitized infrastructures (smart roads).

However, despite these promising findings, further studies are 
needed to establish more accurate traffic models and rules that reflect 
the behaviour of ants and their abilities to avoid congestion on smart 
roads and thereby maximize both vehicle density and infrastructure 
capacity.
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