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Many works in elasticity have exploited the concept of gradient index (GRIN) lenses, borrowed
from optics, for wave focusing and control. These effects are particularly attractive for cloaking,
absorption or energy harvesting applications. Despite their potential, current lens designs suffer
from limitations, mainly related to the difficulty in imaging point-like sources. Here, we exploit an
alternative GRIN lens design, which enables a one-to-one correspondence between input and output
phase, and allows to determine the focal length using the well-known thin lens equation, effectively
establishing the elastic equivalent of the convex lens in optics. This is demonstrated analytically,
obtaining a bijective relation between the location of a point-like source and its image, and the
results are confirmed numerically and experimentally in an aluminium plate, where the lens is
realized by introducing rows of circular cavities of variable diameters. Moreover, a proof-of-concept
experiment demonstrates the possibility to image sources of flexural waves at the centimetre scale
with subwavelength resolution. This research can extend applications of elastic GRIN lenses to new
fields such as imaging and non-destructive testing, where the location of defects can be identified
by focusing the scattered field. Multiple sources can be imaged simultaneously, and the combined
effect of multiple lenses can also be used to design more complex systems, opening new possibilities
in the technological exploitation of elastic wave manipulation.

I. INTRODUCTION

The mathematical analogy between the laws govern-
ing electromagnetism and linear elasticity has often led
researchers to draw inspiration from photonic devices to
obtain similar effects in the field of elastic wave propaga-
tion. The first full band-structure calculations for peri-
odic elastic composites were based on studies on photonic
crystals [1] and, from then on, many aspects of inter-
est for phononic crystals have followed a similar trend[2].
The quest for wide frequency band-gaps exploiting Bragg
or local resonances[3][4][5][6][7], the design of topologi-
cal waveguides [8][9][10][11], and gradient-index acoustics
[12] highlight several similarities in the theory of elas-
tic metamaterials with their optical counterpart. While
Gradient Index lenses can also be designed by modulat-
ing the thickness of the medium supporting the propa-
gation [13][14][15][16], Gradient Index Phononic Crystals
(GRIN PCs) exploit local variations of the unit cell ge-
ometry to design a refractive index profile that induces
the desired effect on the propagating acoustic wave in
a specific frequency band: in subwavelength conditions
(i.e., low frequencies), these devices behave as homoge-
neous non-dispersive materials whose effective properties
are tuned by locally changing the geometry of the units
[17]. While wave focusing can be achieved by exploiting
negative refraction at frequencies above the first com-
plete band gap [18][19][20][21][22], changing the radius of
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the holes modifies the phase velocity of all the modes,
allowing to work in wide bands [12] at low frequencies.
In the past decade, much attention has been dedicated
to the idea of exploiting GRIN lenses to focus elastic
waves by acting on the local phase of the propagating
wave to obtain the desired interference effects[23][24].
A typical refractive index profile chosen for this kind
of device is in the form of a hyperbolic secant[25], in-
spired from previous studies in gradient index optics
[26][27][28]; this profile allows to focus an incoming plane
wave in a focal point and has mainly been used for energy
harvesting applications [29][30][31][32][33][34]. Several
works propose the use of circular Lunenburg lenses to ob-
tain similar effects of plane wave focusing [35][36][37][38].
Both options allow unprecedented subwavelength focus-
ing, unattainable with traditional materials in elasticity.
Despite these attractive features, GRIN lenses are limited
in their applicability. Hyperbolic secant profiles [23][24]
are monodirectional and they are only designed to fo-
cus incoming plane waves. Lunenburg lenses can be seen
as omnidirectional[35], but their focusing properties are
also limited to plane waves, and they do not display the
ability to image finite objects. Maxwell’s fish-eye elas-
tic lenses have also been proposed[39][40], drawing in-
spiration from optics[41][42][43]: their dynamics is able
to refocus the field generated by point-like sources, but
this effect is limited to sources located at the boundaries
of the crystal. In this paper, we propose an alterna-
tive GRIN lens design for out-of-plane flexural waves,
exploiting the concept of “partitions” introduced in [44]:
by separating neighboring rows of the PC, we prevent
the waves propagating in one layer from interacting with
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FIG. 1. (a) GRIN lens engraved in an aluminium plate that was used for the experiments. (b) Render of the experimental
set up: a piezoelectric disk is used to generate a propagating flexural wave and a Laser Doppler Vibrometer is used to scan
over the post-lens area and detect the time dependent out-of-plane displacement point by point. (c-d) Representation of the
effect of the grading of the refractive index on the phase of the flexural waves propagating inside the lens: larger radii of the
enclosures correspond to higher refractive indexes and shorter wavelengths.

those in adjacent ones, allowing to establish a one-to-
one correspondence of the output phase with the input
one. This condition allows us to determine the refrac-
tive index profile necessary for a lens with the desired
focal length, by compensating the phase discrepancy re-
lated to propagation with the in-lens phase delay. Hav-
ing determined the required parabolic phase profile for
a correct phase delay to the incoming wave, we develop
an analytical model in paraxial approximation showing
that this device mimics the simplest and most widely
used optical device, i.e. the convex lens, and conforms
to Snell’s law for thin lenses, also known as the “Lens
maker’s equation” [45], for which imaging conditions are
obtained at a specific distance from the lens for a given
source location. Given the similarities with the optical
convex lens[46], the device proposed in this work is re-
ferred to as “positive flat lens”, as it maintains the same
converging and imaging properties without requiring a
curved shape. The device presented in this work can go
beyond the limitations of existing GRIN lenses, allowing
unprecedented flexibility in terms of applications. Ex-
ploiting the possibility of establishing a bijective relation
between the object location and its image, it can map the
pre-lens plane to the post-lens one. Thus, the novelty of
this work lies in the demonstration of effective imaging of
point-like sources, regardless of their shape and location.
Our approach includes a theoretical analytical to deter-

mine the focal properties of the lens, a numerical verifi-
cation of the full-field elastic wave propagation problem
and an experimental realization and characterization of
the lens in lab tests.

II. RESULTS

A. Design of positive flat lenses

The lens design is based on a partitioned phononic
crystal [44], ensuring wave propagation in each “chan-
nel” to be independent of the others. Thus, the phase
delay imposed at a specific position y of the lens depends
only on the refractive index n(y) of that specific line,
based on the bijective relation ∆ϕ(y) = Wk0n(y), where
W is the length of the acoustic path inside the lens and
k0 is the wavevector in the original material. The ap-
proach proposed to design a lens that is able to focus a
plane wave at the coordinates (f, 0), where f is the focal
point, is to compensate the post-lens phase delay so that
all acoustic paths contribute to constructive interference
in this point.In general, the acoustic path crossing the
lens at the coordinate y, is characterised by the following
phase components: ϕtot(y) = ϕin(y) + ∆ϕ(y) + ϕP (y),
where ϕin is the input phase, ∆ϕ is the phase delay im-
posed by the lens and ϕP is the post-lens phase related
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to the propagation towards a specific point.

FIG. 2. (a) Representation of the unit cell: the filling fac-
tor is a parameter equal to 2r

a
that is used to quantify the

grading. (b) Red-shift of the A0 mode with increasing filling
factor: eigenfrequency simulations with Bloch-Floquet condi-
tions were run on unit cells with filling factor ranging from
0.1 to 0.9. (c) Bijective relation between the filling factor and
the refractive index n = k

k0
.

A lens designed to focus a plane wave needs to consider
a constant input phase and the total phase needs to be
independent of y, i.e. independent of the acoustic path,
to provide constructive interference. The post-lens phase

can be expressed as ϕP (y) = 2πk0d(y) = 2πk0
√
y2 + f2.

The phase delay imposed by the lens is then expressed

as ∆ϕ(y) = Φ0 − 2πk0
√
y2 + f2. A parabolic refractive

index profile leads to a parabolic post-lens phase profile.
In this work, we consider a lens (fig. 1.a-b) with focal
length f = 15 cm and working frequency ν = 20 kHz.
The supporting medium is a thin aluminium plate of area
100× 60 cm2 and thickness d = 3mm, the partitions are
0.2mm-wide slits separating the layers, and the unit cells
of the phononic crystal are squares in the xy plane with
side length a = 1 cm and circular holes (fig. 2.a), whose
radius r determines the refractive index (fig. 1.c-d). The
gap related to the presence of partitions does not affect
the cell dimensions and shape, as it is added laterally
keeping the side length unchanged.
Eigenfrequency simulations imposing 2D Bloch-

Floquet quasi-periodicity in the xy plane are conducted
for 10 values of the filling factor F = 2r

a , sampling the
Brillouin zone in the Γ−X direction. Full 3D FEM sim-
ulations are carried out via the Finite Element solver
COMSOL Multiphysics. Aluminium is modeled with
the following parameters in the linear elastic constitu-
tive law: density ρ = 2700 kgm−3, Young’s modulus
E = 70GPa and Poisson’s ratio νP = 0.33. The cell
is meshed by means of tetrahedral elements with a max-
imum size of 0.55mm, which are automatically created
by the software in order to preserve the geometry of the
circular enclosure. The dispersion relation of the first
anti-symmetric bending mode A0 undergoes a red-shift
with its effect intensifying with an increasing filling factor
(fig. 2.b). Assuming that the frequency ν of this flexu-
ral mode has a quadratic dependence on the wavevector
[47] ν = C(F ) · k2, where C is a coefficient depending
only on F , we obtain an expression for the refractive
index n(F ) = k(F )/k0 =

√
C0/C(F ), i.e., n increases

monotonically with the filling factor (fig. 2.c). This con-
firms that the relation between filling factor and phase
delay is bijective. The refractive index is frequency in-
dependent for the A0 mode, as the ratio between the
wavevector in the crystal and in the supporting medium
is unchanged for a given value of C(F ). A lens with fo-
cal length f can focus a plane wave at the coordinates
(f, 0). The lens compensates the post-lens phase delay so
that all acoustic paths contribute to constructive interfer-
ence in this point. The phase delay imposed by the lens

is ∆ϕ(y) = Φ0 − 2πk0
√

y2 + f2, where Φ0 is a constant.
This profile exhibits a dependence on the direction y per-
pendicular to propagation that is the same as that of op-
tical convex lenses, where the phase delay is imposed by
the radius of curvature. In the case of the considered flat
lens with fixed width W , the same effect is obtained with

the refractive index profile n(y) = nmax −
√
y2 + f2/W .

Considering the generic object location (xo, yo) and
image location (xi, yi), the phase associated with the
acoustic paths of an elastic wave propagating from one
point to the other is

Φtot =2πk0
√
y2 + x2

o +Φ0

− 2πk0
√
y2 + f2 + 2πk0

√
y2 + x2

i

(1)
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FIG. 3. Numerical simulation in frequency domain of the
effect of a GRIN Lens designed to focus a 20 kHz plane wave
with a focal length f = 15 cm (low displacement amplitude in
black, high displacement amplitude in white).

Following a similar approach to the one used in optics
[48], the equation is simplified by applying a paraxial
approximation, that holds when y << xo, f, xi. In these
conditions, we can write:

2πk0
y2

2

(
1

xo
− 1

f
+

1

xi

)
= Φtot (2)

The total phase at the location (di, 0) is independent
on the acoustic path only when

1

xo
+

1

xi
=

1

f
(3)

This imaging condition is totally equivalent to the thin
lens formula and it entails a one-to-one relationship be-
tween the x coordinate of the object and that of its image,
given the focal length. In optics, this law can be obtained
when the lens is thin, i.e. when the propagation inside
the lens is almost uniaxial: in this approach, the equiva-
lent concept is the partitioning of the lines of cells with
different refractive indexes.

A final step to generalize this model is to extend the
approach to out-of-axis source positions (xo, yo). The
distance rin between the object and the lens at the coor-
dinate y is:

rin =
√
(xo)2 + (yo − y)2 ≈ do +

(y − yo)
2

xo
(4)

This leads to an input phase profile that can be written
as:

ϕin(y) = 2πk0

(
xo +

1

xo
(y2 + y2o − 2yyo)

)
(5)

The same holds in the post-lens propagation phase
term. To seek for the imaging conditions, we impose
that the total phase associated to the propagation is a
constant, Φtot, independent of the acoustic path:

Φtot =2πk0

(
1

do
− 1

f
+

1

di

)
y2

2

+ 2πk0
1

2

(
y2o
do

+
y2i
di

)
− 2πk0

(
yo
do

+
yi
di

)
y

(6)

In the paraxial limit, that is described by this formula,
it is possible to observe that the total phase is indepen-
dent of the acoustic path (i.e. Φtot is independent of y)
when two imaging conditions are satisfied:

1

xo
+

1

xi
=

1

f
(7)

yi = − xi

xo
yo (8)

From these equations, we observe that positive flat
lenses are capable of creating images of point-like ob-
jects: the (xo, yo) space is mapped into the (xi, yi) one,
with a functional dependence whose only parameter is
the focal length. Equation 7 establishes the relationship
between the position of the focal line and the distance of
the source from the lens in the direction of propagation,
while equation 8 states that their off-axis positioning de-
pends upon the ratio of these distances.

FIG. 4. a) Refractive index profile of the lens under study.
b) Displacement amplitude profile in the propagation direc-
tion x obtained from the numerical simulation in frequency
domain. c) Normalized displacement distribution in the focal
plane for various numerical aperture values of the lens. d)
Resolution of the focal spot (calculated as its full width half
maximum) compared to the expected resolution.
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FIG. 5. Experimental validation of the focalization properties of the lens: a piezoelectric source is placed in the focal point
of the lens at a distance f = 15 cm and a snapshot of the plane wave propagating in the post-lens plane is shown. The input
signal is a Gaussian pulse centered at 20 kHz with a 10% bandwidth. The plot on the right shows the phase of the 20 kHz
component of the signal measured in the post-lens plane, with planar wavefronts.

B. Determination of lens focal length

The analytical model developed for the positive flat
lens is initially verified through numerical and experimen-
tal approaches. The device is designed with a focal length
of 15 cm, which is the parameter to be validated before
checking its imaging properties. To do this, numerical
full-field frequency domain Finite Element (FE) 3D sim-
ulations are performed using Comsol Multiphysics. Per-
fectly Matched Layer (PML) boundary conditions are im-
plemented on the edges of the 100 × 60 cm2 aluminium
plate to minimize reflections at the boundaries: the PML
is modeled with polynomial stretching, featuring a scal-
ing factor of 1 and curvature parameter of 3. The lens
area is meshed with tetrahedral elements and the rest of
the plate with 8-node hexahedral elements of maximum
size 6mm. The lens is positioned at the center of the
plate and a 20 kHz excitation is imposed over a line to
ensure a constant phase profile at the interface with the
lens (fig. 3). The graded cell design gives rise to a the
parabolic-like refractive index profile shown in figure 4.a.
The jump in refractive index is not perceived as a discon-
tinuity since waves propagating in neighbouring channels
do not interfere with each other and a phase delay equal
to 2π at the lens end is equivalent to 0. The first test is
performed on a lens with an aperture of 30 cm and for this
design the maximum displacement amplitude confirms
the expected focal length value (4.b). The aperture of the
lens has no influence on its focal length (see also Supple-
mentary Material), but influences its resolution[48][49]:
the Abbe diffraction limit defines the minimum resolv-
able size of an optical system as d = λ/(2NA), where
NA = n sin(θ) represents the numerical aperture. To as-
certain whether our lens operates as a diffraction-limited
system, the same simulation is performed on the lens with
lateral dimension ranging from 20 cm to 30 cm, i.e. nu-
merical aperture in the range 0.55−0.71. The Full Width
Half Maximum of the focal spot in each test (fig. 4.c-d)
is compared with the expected value of the diffraction

limit, demonstrating quantitative agreement with theo-
retical predictions. Enhancing the system’s resolution
is possible by either increasing the aperture or using a
higher refractive index in the post-lens plane: it’s always
possible to include additional layers to the design to ob-
tain a better resolution without modifying the focal point
and the imaging properties of the lens.

Additionally, experimental validation of the lens’s focal
length was undertaken: the lens used for the experiments
is the 20 cm wide version. The lens design is fabricated
on an alluminium thin plate via numerically-controlled
laser cutting. Piezoelectric transducers are taped to the
plate and used to excite elastic waves. The wavefields
are measured using a Polytec scanning laser Doppler vi-
brometer (SLDV): the out-of-plane velocity of points be-
longing to a predefined grid is measured by moving the
specimen in the xy plane with two linear stages. Mod-
eling clay is applied to the boundaries of the plate to
partially reduce the back-scattering. The aim is to limit
the steady-state effects on the wave-fields. Due to the
finite dimensions of the supporting medium, generating
a plane wave at the lens entrance, indicative of a source
positioned infinitely distant, proved challenging; there-
fore, experiments are performed in a time-reversed con-
figuration, by placing the object in the focal point and
detecting the plane wave that is expected to be gener-
ated on the other side of the lens. A piezoelectric trans-
ducer placed at a distance f = 15 cm from the lens is
excited with a Gaussian pulse centered at 20 kHz with
10% bandwidth. This signal is sufficiently long to ensure
spatial coherence[50] of the field at the lens entrance. A
laser Doppler vibrometer is used to scan over the post-
lens plane and record the time dependent out-of-plane
displacement in each point (fig. 5), which confirmed the
propagation of a plane wave. In order to check the ra-
dius of curvature of the wavefront, the signal in each
point is Fourier transformed and the 20 kHz component
is analysed: apart from a small deviation at the edges,
linked to the background signal propagating out of the
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FIG. 6. (a) Comparison between analytical model, numerical simulations and experimental results for the imaging of a point-
like source located at different distances from the lens: the image location corresponds to the point of maximum amplitude
of the 20 kHz component of the propagating wave along the central line in the post-lens plane. (b-c) Post-lens map of the
amplitude and phase of the 20 kHz component of the signal generated with a source located in xo = 37 cm and yo = 0 cm. (d-e)
Results of imaging experiments with the source located out of the central axis and the analytical expectations: three sets of
experiments with xo = 28 cm, 30 cm and 32 cm are performed, measuring the output at the specific focal line xi and the peak
location of each measurement is compared with the expected yi = − xi

xo
yo. (f) Numerical frequency domain simulation of the

lens imaging a source located at (xo = 30 cm, yo = 4 cm).

lens, the phase profile indicates that the wavefronts are
planar (fig. 5 and Supplementary Material). Thus, both
numerical simulations and experiments corroborate the
analytical design’s focal length prediction for the device.

C. Imaging point-like sources

Positive GRIN lenses are not only capable of focalising
energy: their working principle also enables imaging ob-
jects and reconstructing their location. Equations 7 and
8 show that the only parameter determining the relation
between source and image position is the focal length f ,
whose value has been shown to be consistent with the
design predictions both numerically and experimentally
in the previous section. For this given value of the fo-
cal length, a one-to-one relation between the object and

image location exists: in order to demonstrate the imag-
ing capability of the device, numerical and experimental
results are compared with analytical predictions.

From Eqs. 7 and 8, it follows that xi = (xof)/(xo−f).
This relation holds if the object is located at a distance
larger than the focal length, since for smaller distances
the field does not converge to an image. A set of values
of xo around 2f is selected, ranging from 27 cm to 34 cm.
Frequency domain FE simulations are carried out us-
ing Comsol Multiphysics, with a point excitation at a
frequency of 20 kHz for each value of xo and the same
process is replicated experimentally using a piezoelectric
disk as a source. The object is located along the central
axis (yo = 0) and displacements in the post-lens area are
studied on the same line. Numerically, the value of xi is
determined as the distance from the lens of the maximum
of the out-of-plane component of the displacement ampli-
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tude. In experiments, a Fourier transform is performed
on the time domain signal measured in each point along
the line and the amplitude of the 20 kHz component of
the signal is selected to determine the maximum value.
The analytical predictions are confirmed both by the ex-
periments and by the numerical simulations (fig. 6.a).
The numerical and experimental results indicate a step-
like behavior in the relation between the object and image
location: the values of xi appear to form a discrete set,
attributable to the finite size of the supporting medium,
resulting in the presence of a back-scattered wave. The
reflections from the sides of the plate create an interfer-
ence pattern in steady-state conditions, whose maxima
occur at intervals of λ

2 along the direction of propaga-
tion. This effect, superposed on the actual working prin-
ciple of the device, is also accounted for in the simulations
where the actual plate geometry is considered. Figure 6.b
shows the map of the experimentally detected displace-
ment amplitude with the source located at xo = 37 cm:
the fringes in this image correspond to the maxima of in-
terference with the reflected wave. The map of the phase
(fig. 6.c) indicates that the image is located in the region
where the converging wavefront begins to diverge. The
relation between off-axis positioning of the source and of
the image is also verified. The lens has the capability to
work both in magnification and demagnification. When
the object is located at a distance xo < 2f from the lens,
the ratio xi/xo > 1 applies: in this condition, distances
are increased and the lens works in magnification. The
opposite is true for xo > 2f , representing the demagnifi-
cation condition, and for xo = 2f the object is precisely
mirrored at the focal line (yi = −yo). Three sets of ex-
periments are conducted both in a numerical and exper-
imental environment, for xo = 28 cm, 30 cm and 32 cm,
i.e. xo < 2f , xo = 2f and xo > 2f . In each condition,
the amplitude profile is analyzed at the corresponding fo-
cal line with the source placed at the location yo ranging
from −4 cm to 4 cm. The position yi of the peak of the
displacement amplitude of the 20 kHz component deter-
mines the image location. Figure 6.d demonstrates a sig-
nificant correlation between the experimental results and
the analytical predictions as outlined by equation 8. As
expected, distances are either magnified or demagnified
depending on the operational state of the lens (fig. 6.e).
Numerical simulations (fig. 6.f) confirm the experimen-
tal results (see also Supplementary Material). Therefore,
the model for positive GRIN lenses is verified and the
imaging properties of the device are fully respected for
point-like sources.

D. Localization of objects

The imaging capability of the positive GRIN lens can
be extended from piezoelectric point-like sources to any
object that interacts with the wavefield propagating in
the pre-lens area. In this section, a localization technique
for point-like defects is tested, based on the focalization

FIG. 7. (a) Set up of the defect imaging experiment: the
defect is located at (xd, yd) and the signal in the focal line

xi = f ·xd
xd−f

is compared to a defect-less reference to check

for variations in the amplitude profile that was previously
measured. (b) Magnetic cubes used as defect sources: the
pressure on the plate generated by the magnetic attraction
between the two cubes generates a local variation in the me-
chanical properties. (c) Image of defects located in different
positions observed in the focal line: the amplitude shift is the
difference of the current field with respect to the defect-less
field.

and imaging properties of the lens. The localization of
defects relies on the fact that there is a one-to-one re-
lation between the position of a source and its image.
While it is possible that existing gradient index lenses
induce a focalization effect on the field scattered from a
defect, there is no documented way to extract informa-
tion on its location from the amplitude distribution of
the post-lens field.

In the experiment, two cubic magnets (fig.7.a and 7.b)
are placed at a corresponding location on the upper and
under sides of the plate, to create a local scattering
obstacle[51] to the wavefield at the location where they
are placed. A defect-less reference of the amplitude dis-
tribution of the signal is acquired, enabling a comparison
of amplitude variations when the defect is introduced.
An initial set of experiments is run with the defect lo-
cated at xd = 32 cm and four different values of yd from
−4 cm to 4 cm (fig. 7.c). The amplitude shift is measured
at the corresponding focal line xi = 28.2 cm, where the
effect of the object is expected to be focalised. Figure
7.c shows that the peak of the amplitude shift is local-
ized in the position yi, as predicted by the lens model.
For the magnet placed at yd = −4 cm, the expected im-
age location is yi = 3.5 cm, as observed in the experi-
ments. A final experiment is performed to directly test
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FIG. 8. (a-b-c) Peaks generated by the simultaneous presence of two defects located at a distance of 8 cm, 6 cm and 4 cm: in
the last case the distance is comparable with the wavelength λ = 3.75 cm and the two defects can’t be distinguished. The blue
dotted line represents the experimental data, the red solid line fits the data with the sum of two Gaussian functions.

the resolution of the system, by placing simultaneously
two defects on the same line (fig. 8.a-b-c). The dis-
tance of the objects in the three experiments is respec-
tively 8 cm, 6 cm and 4 cm, with an expected distance at
the image line of 7 cm, 5.25 cm and 3.5 cm. The objects
are well resolved in the first two configurations (fig. 8),
whilst they cannot be distinguished in the last one (fig.
8.c). Several mechanisms need to be considered in eval-
uating the resolution of this system: first, the width of
the lens, which defines the numerical aperture and thus
sets the diffraction limit. Second, the source used in this
configuration generates a spherical wave: the field inter-
acting with the object has non-zero components in the
direction perpendicular to propagation as the magnets
are placed off-axis. As the object approaches the cen-
tral axis, the reduced value of ky in the scattered field
increases the minimum distinguishable feature size, ex-
plaining why objects placed only 4 cm apart fail to be
resolved.

III. DISCUSSION

In conclusion, we have proposed a design procedure for
the elastic counterpart of the optical convex lens based
on gradient index phononic crystals. The gradient index
designs that are currently available in the domain of elas-
ticity are effective in focusing energy but their working
conditions are either limited to a specific direction of the
incoming wave-field or location of the source. These lim-
its are overcome by the device proposed in this work: the
positive flat lens is the first phononic crystal based de-
vice that is able to create an image of a source of elastic
waves regardless of its shape and location. The analytical
model for the positive flat lens predicts that the device
can create images of objects in a location unequivocally
determined by its focal length. Both numerical simula-
tions and experiments performed with point-like sources

confirm the design predictions in terms of both image lo-
cation and resolution, ensuring full reliability to the phys-
ical model behind it. Moreover, the imaging capabilities
of the lens have been tested in a scattering configuration:
using mechanical defects generated by the local pressure
of two magnets, the lens has been shown to be capable
of simultaneously localising more than one object. This
work opens a range of potential applications. The first
is to exploit focusing for energy harvesting or for in ma-
terial signal processing in low-power devices, since the
simple design of the lens is amenable to miniaturization.
Another possibility is related to the fact that the lenses
can be used to magnify and demagnify objects, depend-
ing on their focal properties. This can be very useful,
e.g., in non-destructive testing applications when the in-
spected area is very large or very small, or scarcely acces-
sible. An appropriate lens design can allow to generate
a scaled image of the measuring region in a convenient
adjacent region. Finally, the combined effect of multiple
lenses can also be used to design more complex systems
for the control of flexural wave propagation, such as in
elastic microscopes.

The convex lens, although simple in design, revolution-
ized the field of light manipulation and paved the way for
advanced applications. The positive flat lens has the po-
tential to also have a considerable impact and to open up
new possibilities in the domain of elasticity.
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Appendix A: Analytical model of the positive flat
lens

The phase delay imposed at a specific position y of the
lens, depends only on the width W and on the refractive
index n(y) of the specific line:

∆ϕ(y) = Wk0n(y)

This makes it possible to design any lens given the de-
sired phase profile, with no limitations except for the
discretization imposed by the dimensions of the unit cell.
The width of the lens is imposed by the fact that the
whole phase domain needs to be covered, so the lines
with maximum refractive index and the pure material
need to have a phase delay of 2π:

W =
2π

k0nmax

The approach proposed to design a lens that is able
to focus a plane wave at the coordinates (f, 0), where f
is the focal point, is to compensate the post-lens phase
delay so that all acoustic paths contribute to constructive
interference in this point.

In general, the acoustic path crossing the lens at the
coordinate y, is characterised by the following phase com-
ponents:

ϕtot(y) = ϕin(y) + ∆ϕ(y) + ϕP (y)

where ϕin is the input phase, ∆ϕ is the phase delay im-
posed by the lens and ϕP is the post-lens phase related
to the propagation towards a specific point. A lens de-
signed to focus a plane wave needs to consider a constant
input phase and the total phase needs to be independent
of y, i.e. independent of the acoustic path, to provide
constructive interference.

∆ϕ(y) + ϕP (y) = Φ0

The post-lens phase can be expressed as:

ϕP (y) = 2πk0d(y) = 2πk0
√
y2 + f2

The phase delay imposed by the lens is then:

∆ϕ(y) = Φ0 − 2πk0
√

y2 + f2

This profile exhibits a dependence on the direction per-
pendicular to propagation that is the same as that of
optical convex lenses, where the phase delay is imposed
by the radius of curvature. In the case of the considered
flat lens with fixed width W , the same effect is obtained
with the refractive index profile:

n(y) =
∆ϕ(y)

Wk0
= nmax −

√
y2 + f2

W

The previous treatment is limited to the case when the
input phase profile is constant, which limits the working

conditions to sources at a large distance from the lens. If
the source is modeled as point-like, at a finite distance,
the term ϕin(y) cannot be omitted. Below we show that a
one-to-one relation between the object (source) position
and the image position can be obtained. A first extension
of the treatment is to consider a point-like source located
at (−do, 0) along the central line of the lens and to study
the phase of the wave propagating to the point (di, 0). In
these conditions

ϕtot(y) = ϕin(y) + ∆ϕ(y) + ϕP (y) =

= 2πk0
√
y2 + (−do)2 +Φ0 − 2πk0

√
y2 + f2

+ 2πk0

√
y2 + d2i

As in the previous case, the condition for constructive
interference is that the total phase related to the propa-
gation be independent of the acoustic path.

2πk0
√
y2 + d2o − 2πk0

√
y2 + f2 + 2πk0

√
y2 + d2i = Φtot

Following a similar approach to the one used in optics,
we can simplify the equation by applying a paraxial ap-
proximation, that holds when y << do, f, di. In these
conditions, we can write:

2πk0

do

√
1 +

y2

d2o
− f

√
1 +

y2

f2
+ di

√
1 +

y2

d2i

 ≈

≈ 2πk0

(
y2

2do
− y2

2f
+

y2

2di

)

2πk0
y2

2

(
1

do
− 1

f
+

1

di

)
= Φtot

FIG. 10. Image position as a function of the source distance

(di vs. do), as derived from the thin lens formula di =
dof

do − f
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FIG. 9. Diagram illustrating the phases involved in the lens system.

The total phase at the location (di, 0) is independent
on the acoustic path only when

1

do
+

1

di
=

1

f

This imaging condition is totally equivalent to the thin
lens formula and it contains a one-to-one relationship be-
tween the x coordinate of the object and that of its image,
given the focal length, as shown in figure 10. In optics,
this law can be obtained when the lens is thin, i.e. when
the propagation inside the lens is almost uniaxial: in this
approach, the equivalent concept is the partitioning of
the lines of cells with different refractive indexes.

A final step to generalize this model is to extend the
approach to out-of-axis source positions (−do, yo) and to
study the phase in a post-lens point (di, yi). The distance
rin between the object and the lens at the coordinate y
is:

rin =
√

(−do)2 + (yo − y)2 ≈ do +
(y − yo)

2

do

This leads to an input phase profile that can be written
as:

ϕin(y) = 2πk0

(
do +

1

do
(y2 + y2o − 2yyo)

)
The same holds in the post-lens propagation phase

term:

ϕP (y) = 2πk0

(
di +

1

di
(y2 + y2i − 2yyi)

)

As in the previous cases, to seek for the imaging con-
ditions, we impose that the total phase associated to the
propagation is a constant, Φtot, independent of the acous-
tic path:

Φtot =+ 2πk0

(
do +

1

do
(y2 + y2o − 2yyo)

)
− 2πk0

y2

2f

+ 2πk0

(
di +

1

di
(y2 + y2i − 2yyi)

)

Φtot =2πk0

((
1

do
− 1

f
+

1

di

)
y2

2
−

(
yo
do

+
yi
di

)
y

)
+ πk0

(
y2o
do

+
y2i
di

)
This results in two imaging conditions that determine

a one-to-one mapping of the object position (−do, yo) in
the post-lens plane at the point (di, yi), namely:

1

do
+

1

di
=

1

f
yi = − di

do
yo

From these equations, we see that this flat gradient
index phononic crystal follows the exact same working
principles of the optical convex lenses. When the source
is located at a distance do > 2f , the lens works in the
magnification regime: in this case di < do, which means
that on the image line |yi| > |yo|. Demagnification con-
ditions are met when f < do < 2f .
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FIG. 11. (a) Dispersion curves for different values of filling factor obtained with eigenfrequency simulation in Comsol Mul-
tiphysics. The unit cells are squares in the xy plane with side length a = 1 cm and circular holes. Their depth in the
vertical direction is 3mm. Aluminium is modeled with the following parameters: density ρ = 2700 kgm−3, Young’s modulus
E = 70GPa and Poisson’s ratio νP = 0.33. The dashed lines are the limits of the frequency region that is taken into account to
demonstrate the frequency independence of the refractive index. (b) The solid line shows the average values of refractive index
calculated from the numerical dispersion curves taking into account a frequency band between 1 kHz to 39 kHz. The errorbar
shows the standard deviation of the distrubution of values of refractive index for each value of filling factor.

Appendix B: Frequency independence of the
refractive index

Considering the dispersion relation of the first anti-
symmetric bending mode A0, it is possible to assume
that the frequency ν has a quadratic dependence on the
wavevector ν = C·k2, where C is a constant depending on
the mechanical properties of the supporting medium and
its geometry. Figure 11.a shows the dispersion curves
obtained numerically using COMSOL Multiphysics for
the unit cells presented in the main text.

Dealing with unit cells with different filling factor F we
can write their dispersion relation as ν(F ) = C(F ) · k2,
with different coefficient C depending on F . The refrac-
tive index for a specific filling factor at a given frequency
ν is n(F, ν) = k(F, ν)/k0(ν), where k0(ν) is the wavevec-
tor relative to the frequency ν in the propagating medium
(the unit cell with null filling factor). Considering that

k(F, ν) =
√
ν/C(F ) and k0(ν) =

√
ν/C0, we can write:

n(F, ν) =
k(F, ν)

k0(ν)
=

√
ν/C(F )√
ν/C0

=

√
C0

C(F )
= n(F )

In the assumption of quadratic dispersion relation, the
dependence of n on the frequency ν disappears: it is
possible to say that the refractive index is frequency in-
dependent for the A0 mode, as the ratio between the
wavevector in the crystal and in the supporting medium
is unchanged for a given value of C(F ) for any value of
ν.

This analytical demonstration is also supported by nu-

merical results: starting from the dispersion curves ob-
tained with eigenfrequency simulation and reported in
figure 11.a, the refractive index for each value of filling
factor was calculated for a set of frequencies ranging from
1 kHz to 39 kHz, i.e. ranging over a bandwidth of 190%
around 20 kHz that covers most of the frequencies of the
A0 mode of this structure. In figure 11.b we can observe
the standard deviation of the values of refractive index
around the average computed for each filling factor. The
frequency independence is clear for lower values of filling
factor, while a small deviation is present getting closer to
F = 0.9: this is related to the fact that these branches
deviate from a quadratic trend as they approach the X
point in the Brillouin Zone (frequencies close to 39 kHz).
Overall, considering that the bandwidth used for the cal-
culation was quite broad, the numerical results strongly
support the frequency independence of the refractive in-
dex.

Appendix C: Animations

This appendix contains animations related to exper-
imental and numerical results, showing either informa-
tion related to the temporal evolution of the system or
highlighting the differences in the response of the lens in
several working conditions.
In video 1 the measurement presented in figure 5, re-

garding the generation of a plane wave from the source
located in the focal point, is shown in time domain.
Video 2 shows the effect of the numerical aperture on
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Video 1. Animation showing the displacement amplitude of
the field propagating after the action of the positive lens. The
source is located in the focal point at a distance f =15 cm and
the gradient of the refractive index induces the wavefront to
become planar in the post-lens plane. The color map ranges
from blue to red going from negative to positive out-of-plane
displacement.

the width of the focal spot: as shown in figure 4 a wider
aperture enhances the resolution. The dimensions of the
aperture of the lens that are taken into consideration for
these simulations in frequency domain range from 20 cm
to 30 cm.

In video 3 it is possible to observe the action of the lens
on the field generated by a source located in several out-
of-axis positions (as presented in the main text in figure
6) and 4 shows the same simulation for a lens based on the
hyperbolic profile design procedure: in this case, some
focalization effect on the incoming wave is present, due
to the gradient of refractive index, but it is not possible to
predict the position of the source from that of an image.
In other words, the wavefront is modified by the presence
of the lens but the lens does not create an image of the
source.

Video 2. Animation showing the effect of the numerical
aperture on the dimensions of the focal spot: a wider aperture
enhances the resolution of the system.

Video 3. Full field simulations of the system with different
positions of the point-like source out of the central axis.

Video 4. Full field simulations of a lens based on hyper-
bolic secant refractive index profile with equivalent focaliza-
tion properties with respect to the positive lens studied in the
main text (i.e. focal length equal to 15 cm). The animation
shows the effect of the lens on the field generated by point-like
sources in several positions.
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