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Abstract

Generalizations and unification of the celebrated Paris’ and Wöhler’s laws for fatigue crack propagation are derived by
applying the recently developed quantized (or finite) fracture mechanics. In particular, three generalized Paris’, Wöhler’s or
unified laws are proposed and compared, demonstrating their applicability for predicting the life time of structures con-
taining from small (the Wöhler’s regime) to large (the Paris’ regime) propagating fatigue cracks.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Fatigue; Cracks; Paris; Wöhler; Quantized fracture mechanics
1. Introduction

Fatigue life prediction is still an empirical science rather than a theoretical one, despite being a relatively old
subject having nearly 150 years of history [1], as described in a number of books or review papers (e.g., [2–6]).
In the old days, strength vs. number of cycles to failure (SN) curves were measured and generally maintained
their empirical nature even when simplified equations like the Basquin power law [7] emerged, or when simpler
rules for the fatigue limit or for describing various other effects (notch geometry, size-scale, roughness) were
recognized. This was generally driven by the need to have engineering rules still used today when designing
against fatigue with the safe-life approach, i.e., virtually for infinite life. With the advent of fracture mechanics,
a more ambitious task was undertaken, i.e., to predict, or at least, to understand the propagation of cracks. It
clearly emerged that the propagation ‘‘speed’’ was far to be constant in time: generally, it was clear that the
crack advance was larger for increasing stress amplitudes, but also for larger cracks, until the pioneering work
of Paris et al. [8,9] who suggested to use the Irwin’s stress-intensity factor (more precisely, its range), to char-
acterize the rate of crack advance per cycle, since many data collapsed in a single power law. Since then, a lot
of work has been done to understand more of Paris’ law, its deviations, but we are still far from a complete
understanding (see [10]).
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These different approaches in turn imply that there must be deviations from these two limit power laws
(Wöhler’s [1,7] and Paris’ [8,9] regimes); one key responsible is certainly cyclic plastic deformation at the crack
tip, which in the Paris’ regime satisfies small-scale yielding, i.e., either sufficiently low loads or sufficiently
‘‘long’’ cracks [11–13]. A ‘‘long’’ crack is nearly always related to the fatigue limit and threshold stress-inten-
sity factor range (see the definition of intrinsic crack from El Haddad et al. [14]) whereas, the definition of
‘‘short’’ is more correctly taken with respect to the size of the process zone. Hence, it should depend also
on the load level: in the limit of static failure, the equivalent size for the transition from strength- to tough-
ness-controlled failure [15] is various orders of magnitude larger than the El Haddad size. This means that
what is ‘‘short’’ in this range is certainly ‘‘long’’ around the fatigue limit region. Thus, whereas Wöhler’s
law works only for small cracks, Paris’ law can be applied only to large cracks and their unification and tran-
sition remains unclear.

We shall not try here to compete with the previous fatigue models (see the review by Newman [10] for an
extensive historical perspective). However, in the case of fatigue, mechanical models need to make significant
assumptions, since information on cyclic elasto-plasticity is needed.

A possible alternative approach, explored in this paper, for a unified treatment of short and long cracks, is
an ‘‘intermediate asymptotic matching’’ of the well-known empirical fatigue laws by Wöhler and Paris,
obtained by applying quantized, or finite, fracture mechanics concepts [16–20]. ‘‘Universal’’ fatigue laws
are thus derived, that could strongly improve our life-time predictions, e.g., for Air Force and Ministry critical
components, usually still based on the celebrated Paris’ law.

2. New unified laws in fatigue

Let us consider a structure subjected to an applied load r, pulsating between rmin and rmax, where
Dr = rmax � rmin, and containing a crack of length a. The stress-intensity factor at the crack tip be K(a,r);
in addition K(a,rmin) = Kmin(a), K(a,rmax) = Kmax(a) and DK(a) = Kmax(a) � Kmin(a). For large crack, the
fatigue crack growth can be classically deduced according to the Paris’ law, i.e., da

dN ¼ CðDKðaÞÞm, where N

is the number of cycles and C, m are (nominally) ‘‘material’’ constants. Thus by integration, the fatigue life
in terms of limit cycle number N P

C is easily estimated. On the other hand, for plain specimens (or more real-
istically for very small cracks) the fatigue life predictions are usually derived according to the Wöhler’s law,
i.e., NW

C ¼ C
Drm, where C;m are again (nominally) ‘‘material’’ constants. Wöhler’s law does not take into

account the presence of cracks, differently from the Paris’ law. Note that this picture is dual to the static case,
where maximum stress and stress-intensity factor criteria for structural strength [15] are used respectively for
plan and cracked specimens. These two criteria have been recently unified by means of quantized (or finite)
fracture mechanics [16,17], i.e., simply relaxing the assumption of a continuum crack advancement in the Grif-
fith’s energy balance (see also [18–20]).

Generalized Paris’ law. According to quantized fracture mechanics [17], instead of the stress-intensity factor

K(a) we have to consider K�ða;DaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK2ðaÞiaþDa

a

q
, where Da is the ‘‘fracture quantum’’, a microstructural

parameter (the symbol h Æ i denotes the mean value operator). Note that the fracture quantum is similar to
the ‘‘intrinsic crack length’’ already proposed by several authors; the novelty is here represented by the new
fatigue laws, involving such a parameter, rather than by its introduction. Thus, in the study of fatigue crack
growth we have proposed the following generalized Paris’ law [19,21,22]:
da
dN
¼ CðDK�ða;DaÞÞm ð1aÞ
from which the total number of cycles N P�

C at the fatigue collapse, arising when the crack length has reached its
critical final value aC, can be deduced as
N P�

C ¼
1

C

Z aC

a

da
ðDK�ða;DaÞÞm ð1bÞ
In the criterion of Eq. (1b) we can fix Da to recover, in the limit case of a! 0, the Wöhler’s prediction, i.e.,
Da : NP�

C a! 0ð Þ ¼ NW
C ð1cÞ
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Thus, Eq. (1b), with the position of Eq. (1c), can be considered the first generalized law. Note that such a law
is of very simple application, and would allow one to study not only the final condition but also the evolution
of the fatigue crack growth NP� ð~aÞ, where a 6 ~a 6 aC is the actual crack length.

Generalized Wöhler’s law. According to [23] we can generalize the Wöhler’s law by replacing the stress r
with the mean value r* of the stress field ahead the crack tip (let us say ryy(x) if the crack is placed along
x, x = 0 defining the crack tip) along the fracture quantum, i.e., r�ða;DaÞ ¼ hryyðxÞiDa

0 . Thus
NW�

C ¼
C

ðDr�ða;DaÞÞm
ð2aÞ
Here the parameter Da must be determined in order to recover, in the limit case a! aC, the asymptotic Paris’
prediction, i.e., N P

Cða! aCÞ:

Da: N W�

C ða! aCÞ ¼ NP
Cða! aCÞ ð2bÞ
Eq. (2a), with the position of Eq. (2b), is the second generalized law. Note that such a criterion is not of very
simple analytical application, requiring the complete stress field at the crack tip.

Unified Paris–Wöhler law. In general, the previous two generalized laws are expected to give similar but not
identical results. On the other hand, following the procedure outlined in [24] for static failure (a dynamic
extension is proposed in [19]), we can require the results to be identical by removing the assumption of a con-
stant crack advancement. In other words, Da(a) is such that
DaðaÞ: N P�

C ¼ NW�

C ð3aÞ

Introducing Eqs. (1b) and (2a) into Eq. (3a), by derivation we can write the differential equation providing the
function Da(a):
CC
d

da
½ðDr�ða;DaðaÞÞÞ�m� þ ðDK�ða;DaðaÞÞÞ�m ¼ 0 ð3bÞ
Thus, by integration, the function Da(a) can be deduced. The integration constant can be obtained imposing
the validity of Eq. (3a). Introducing the derived function Da(a) into Eq. (1b) or into Eq. (2a) will give the same
prediction N PW�

C . Thus, Eq. (1b) coupled with Eq. (2a), with the position of Eq. (3a), represents the third uni-
fied law. Note that such a criterion is not of very simple analytical application, requiring the complete stress
field at the crack tip as well as the solution of a differential equation.

Discussion. Numerically all the three different criteria, formerly introduced by Pugno in [19], can be easily
applied. However, Eq. (1) are of very simple application, also analytically, requiring the integration of a
known function (the stress-intensity factor for the specified geometry and type of loading, usually available
from the related Handbooks). All the criteria recover the prediction of the Wöhler’s and Paris’ laws for small
and large crack sizes respectively, thus representing ‘‘universal’’ laws in fatigue.

The Paris’s and Wöhler laws, and thus our three generalizations, do not consider explicitly the influence of
the R = rmin/rmax ratio on fatigue crack growth rate da/dN. On the other hand, including such an effect is
straightforward, by using Elber’s [25] crack closure treatment. Elber noticed that at low loads the stiffness
was close to that of an uncracked structure; he rationalized that the low incremental compliance, a conse-
quence of the presence of the crack, at low tensile loads was due to the contact between crack surfaces,
i.e., to crack closure. He proposed that crack closure occurs as a result of the development of the crack-tip
plastic zone, where the yield stress of the material is exceeded. Thus, as the crack grows, a track of plastically
deformed zone is developed while the surrounding body remains linear elastic. During unloading, the plastic
zone causes the crack surfaces to contact each other before zero load is reached. Elber further postulated that
crack closure decreased the fatigue crack growth rate da/dN by reducing the effective stress-intensity range,
DK, as a function of the stress ratio R. Thus, he introduced a new stress-intensity range, the ‘‘effective’’
one, DKeff, to be used in the Paris’ equation as DKeff = Kmax � Kop = UDK, U � 0.5 + 0.4R. Thus, Kop =
(1/(1 � R) � U)DK represents the stress intensity at which the crack opens. U is the empirical relationship
between DK and DKeff derived by Elber, and confirmed by many subsequent researchers, as a function of
R. Clearly in our treatment considering DK�eff ¼ UDK� instead of DK* allow us to self-consistently consider
the effect of the R ratio in an explicit way.
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3. On the Paris’ ‘‘constants’’

Several workers have noticed that the C and m Paris’ ‘‘constants’’ exhibit a correlation of the form
C = ABm [26–28], considered having no fundamental significance and a result of the logarithmic method con-
ventionally used to plot the data and of the nature of the dimensions of the physical quantities used in the
Paris’ equation [26]. For example A = 7.6 · 10�7 m/cycle, B ¼ 1:81� 10�2 ðMPa

ffiffiffiffi
m
p
Þ�1 for steels and

A = 2.5 · 10�6 m/cycle, B ¼ 4:26� 10�2 ðMPa
ffiffiffiffi
m
p
Þ�1 for Al alloys have been experimentally observed [27].

We note that interpreting the final fatigue instability as a brittle fracture, thus arising for Kmax(aC) = KC

(KC is the material fracture toughness) at the fixed crack speed c, would exactly imply C = ABm with
A ¼ da=dN jC ¼ c= _N , and B = [(1 � R)KC]�1 (the dot over the symbol represents the time derivation). On
the other hand, since A is clearly observed _N independent (otherwise in the Paris’ law the time would appear
instead of the number of cycles) the final collapse must not be a pure brittle collapse, but rather intermediate
between a brittle and a fatigue crack propagation, perhaps a brittle ‘‘grain-trapped’’ crack propagation. This is
confirmed by the fact that BjR=0 is found to be of the order of K�1

C for many materials and structures: for
example, considering the experiments reported in [27] (R = 0), we deduce the reasonable toughness
KC � 55:2 MPa

ffiffiffiffi
m
p

for steels or KC � 23:5 MPa
ffiffiffiffi
m
p

for Al alloys.
Furthermore, as discussed in the previous section, to take into account the R ratio effect Elber [25] basically

proposed the following substitution in the Paris’ law: C(R)! CjR=0(1 + R)m, similarly to C(R)!
CjR=0(1 � R)�m, derived according to our expression for B. Note that these two dependences for R!�0
are asymptotically identical. Obviously, interpreting the deviation of a ‘‘universal’’ law from that of Paris as
a variation of its constants C and m would quantify their variability not only as a function of the R ratio
but also of the crack length and stress range. For example, applying the generalized Paris’ law with m > 2 (usual
case) to the Griffith’s problem, we find the result identical to that predicted by a Paris’ law in which the constant
C is replaced by C(a,Dr) = C(1 + Da(Dr)/2a)m/2�1 (see Eqs. (5d) and (5e), next Section). Thus, larger values of
C are expected for smaller cracks, in qualitative agreement with the fractal prediction [29], for which
C(a) = C(D=1)a�(D�1)(1+m/2)/D, where 1 < D < 2 is the fractal dimension of the crack. However, quantitative
differences are expected: in particular, our universal law automatically recovers the celebrated Paris’ law for
large cracks, whereas the fractality for such a case would imply da/dN = 0; furthermore we can ‘‘universally’’
quantify the dependence of C also on Dr, as well as on the structural geometry (that does not appear in the
previous example, just considering an infinite plate).

4. Example of application: the Griffith’s case

As an example of application, let us consider the Griffith’s case (infinite elastic plate with a symmetric crack
of length 2a). For this case the stress-intensity factor (mode I) is K ¼ r

ffiffiffiffiffiffi
pa
p

and the full stress field at the crack
tip is ryy ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�ða=ðaþxÞÞ2Þ
p (where x is the distance from the tip). Accordingly, by integration
K� ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ Da=2

p
Þ ð4aÞ

r� ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a=Da

p
ð4bÞ
Generalized Paris’ law. By applying Eq. (1b), it follows:
N P�

C ¼
1

CDrmpm=2

aC þ Da
2

� �1�m=2 � aþ Da
2

� �1�m=2

1� m=2
ð5aÞ
From Eq. (1c) Da can be obtained by solving
1

CDrmpm=2

aC þ Da
2

� �1�m=2 � Da
2

� �1�m=2

1� m=2
¼ C

Drm
ð5bÞ
Assuming aC� Da (for the analyzed Griffith’s case, aC!1) gives
Da ¼ 2 a1�m=2
C � CCpm=2ð1� m=2Þ

Drm�m

� � 1
1�m=2

ð5cÞ
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For m > 2 (usual case), Eqs. (5a) and (5c) become
NP�

C ¼
1

CDrmpm=2

aþ Da
2

� �1�m=2

m=2� 1
ð5dÞ

Da ¼ 2
CCpm=2ðm=2� 1Þ

Drm�m

� � 1
1�m=2

ð5eÞ
Let us consider m = 2, even if materials usually possess larger Paris’ exponents; for such a case Eq. (5a)
becomes
NP�

C ¼
1

CDr2p
ln

aC þ Da
2

aþ Da
2

 !
ð5fÞ
and thus, by applying Eqs. (1c) and (5c) becomes:
Da ¼ 2aC

epCC � 1
ð5gÞ
Generalized Wöhler’s law. Applying Eq. (2a)
NW�

C ¼
C

Drmð1þ 2a=DaÞm=2
ð6aÞ
At the zeroth-order Eq. (2b) is approximately verified (0 = 0) for each Da satisfying (note that
NP

C ¼ NP�

C ðDa! 0ÞÞ:

Da	 2aC ð6bÞ
Since for the analyzed geometry aC!1, Eq. (6b) is always fulfilled. Thus, Da remains a free parameter: it can
be used to match the first-order condition of Eq. (2b), e.g., related to the slope dN=dajaC

at failure.
Unified Paris–Wöhler law. Applying Eq. (3b) we obtain
dDaðaÞ
da

þ G21þm�m
2 a

m�m
2 DaðaÞm�1�m=2 þ GDaðaÞm=2a�1 � DaðaÞa�1 ¼ 0;

G ¼ ðCCpm=2Drm�m21�m=2Þ�1
ð7aÞ
In general this differential equation has to be solved numerically. But for the sake of simplicity let us consider
m ¼ m ¼ 2, just for illustrative purpose. In these hypotheses Eq. (7a) becomes
dDaðaÞ
da

þ a
DaðaÞ

a
þ b ¼ 0; a ¼ 1

pCC
� 1

� �
; b ¼ 2

pCC
ð7bÞ
The previous differential equation presents variable coefficients, and can be solved by applying the method of
the ‘‘variation of the arbitrary constants’’. We found the following solution:
DaðaÞ ¼ �2aþ ca�a ð7cÞ
where c is the integration constant. Introducing Eq. (7c) into Eq. (3a) gives
c ¼ 2aaþ1
C ð7dÞ
Accordingly,
DaðaÞ ¼ �2aþ 2aaþ1
C a�a ð7eÞ
Introducing Eq. (7e) into Eq. (1b) or into Eq. (2a) gives, as imposed, the same result, namely,
NPW�

C ¼ C
Dr2

1� a
aC

� �aþ1
 !

ð7fÞ
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5. Comparison between the different ‘‘universal’’ laws

To make a simple example of comparison, let us consider the previously treated cases in which m ¼ m ¼ 2
(for Griffith’s geometry). Firstly, note that the classical Paris’ and Wöhler’s laws would yield, respectively:
Fig. 1
(Griffi
N W
C ¼

C
Dr2

ð8aÞ

N P
C ¼

1

pCDr2
ln

aC

a

� �
ð8bÞ
i.e., two completely different results. In particular it is clear that Paris’ law yields meaningless results for a! 0,
i.e., an infinite life for defect-free plates, whereas for a! aC, asymptotically:
N P
Cða! aCÞ �

1

pCDr2

aC � a
a

ð8cÞ
Now let us consider the first criterion. According to Eqs. (5d) and (5e), asymptotically:
N P�

C ða! 0Þ ¼ N W
C ð9aÞ

N P�

C ða! aCÞ ¼
1

CDr2p
aC � a

aC þ Da=2
� NP

Cða! aCÞ for Da	 2aC ð9bÞ
On the other hand, according to the second criterion, asymptotically
N W�

C ða! 0Þ ¼ N W
C ð10aÞ

N W�

C ða! aCÞ � 0 ¼ NP
Cða! aCÞ for Da	 2aC ð10bÞ
Finally, considering the third criterion, asymptotically
N PW�

C ða! 0Þ ¼ N W
C ð11aÞ

N PW�

C ða! aCÞ ¼
1

CDr2p
aC � a

aC

¼ NP
Cða! aCÞ ð11bÞ
All the three unified laws match asymptotically the Wöhler’s (small crack) and Paris’ (large crack) regimes.
The full comparison is summarized in Fig. 1. This clearly shows the consistency of the proposed ‘‘universal’’
laws, as ‘‘intermediate asymptotic matching’’ of the well-known empirical fatigue limit laws by Wöhler and
Paris. Consequently, our laws must automatically match the empirical observations. Note that in the unified
Wöhler’s law Da	 2aC remains a free best-fit parameter, that can be fixed to recover the slope of the Paris’
law for a! aC; in contrast, in Fig. 1 we have simply assumed the validity of Eq. (5g).

It is clear that the Wöhler’s prediction becomes unreasonable for large cracks, whereas the Paris’ prediction
fails for describing short crack growth, see Eq. (8) and Fig. 1. On the contrary, our universal laws based on
quantized or (finite) fracture mechanics [17–19] represent their unification, useful for treating fatigue growth of
cracks, from short to long sizes.
0

1

2

0.0001 0.001 0.01 0.1
a/ac

N
c
/N

c

Wöhler law
Paris law
Paris/Wöhler unified law
Paris unified law
Wöhler unified law

1

w

. Comparison between different fatigue laws: classical Paris’ and Wöhler’s laws and the proposed new universal fatigue laws
th’s case, with C ¼ C ¼ Dr2 ¼ 1; m ¼ m ¼ 2).
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6. Conclusions

We have proposed three different unified fatigue laws, by applying the recently developed quantized (or
finite) fracture mechanics [17–19]. Their applicability for predicting the fatigue life of structures containing
from short to long cracks is straightforward since they derive from an asymptotic matching between the
empirical Wöhler’s (small crack) and Paris’ (large crack) regimes. Such ‘‘universal’’ fatigue laws could thus
strongly improve our life-time predictions, e.g., for Air Force and Ministry critical components, usually still
based on the celebrated Paris’ law.
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