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A B S T R A C T   

Many terrestrial ecosystems engage mycorrhizal symbiotic associations, potentially to enhance nutrition, in-
crease resistance to soil-borne pests and diseases, and improve resilience and soil structure. Mycorrhizal fungi 
create dynamic networked structures through branching and anastomosis that connect multiple plants and 
consent to transport resources underground from nutrient-rich patches to demanding plants. Controlled labo-
ratory experiments are fundamental to improving our knowledge of mycelium network growth dynamics and 
further understanding its role in preserving ecological niches. We propose a method for highly automated 
analysis of the mycelium network structure and other morphological properties, such as hyphal length, hyphal 
density, and number of crossing and branches, in 2D microscopy images of fungal samples. Available tools for 
automated network analyses suffer from overestimating network connectivity since filament crossings are not 
considered. In particular, we propose a) a ridge-based mycelium detection algorithm and b) a geometrical-based 
approach to identify overlapping filaments crossing each other. The algorithmic solution is evaluated on a total 
of 135 real mycelium sample images over different validation steps, originating from different datasets and 
having different characteristics, including background, contrast, image acquisition system, fungal species, and 
clearness (e.g., level of transparency, homogeneity, dirtiness of the medium) of the sample. Results show that 1) 
the proposed detection method can be used to measure the length of mycelium in an image, replacing manual 
tracing and allowing for less laborious analysis (ρ̂c = 0.96), 2) the filament detection is on par with state-of-the- 
art techniques (F1 = 0.88 − 0.94) with a more intuitive parameterization, and 3) the proposed algorithm 
correctly identifies filament crossings (F1 = 0.89) in most common cases, yielding a reduction in the over-
estimation of network connectivity. The latter feature consents to applying the proposed fully automated solution 
to complex and irregular fungal structures, advancing mycelium detection and reconstruction performance ac-
curacy with respect to the state-of-the-art.   

1. Introduction 

1.1. Motivations 

Fungal networks consist of filamentous structures called hyphae, 
which grow from multiple apices or tips of a mycelium assuming to-
pologies that evolve through two processes: a) branching, meaning the 
creation of a new filament, and b) anastomosis, meaning that an apex 
merges into an existing filament that is part of the same colony (Dikec 
et al., 2020). Specifically, Ledoux et al. (2022) consider two types of 
branching behavior: a) lateral branching, where a mother hypha 

continues growing, but it shoots off a lateral branch, and b) apical 
branching, where the mother hypha splits into a primary branch and an 
exploratory branch. The creation of cyclic structures and hypha-hypha 
interaction has been observed for different species in several studies 
((Dikec et al., 2020), (Martínez-Galicia et al., 2023)). For instance, 
Martínez-Galicia et al. (2023) observed that their fungi initially grew in 
a tree-like manner characterized by apical growth and branching and, 
later (after about 11 h), anastomosis began to occur. Mycorrhizal fungi 
live in symbiotic relationships with one or multiple plants. When the 
mycorrhizal mycelium connects two or more plants, it is called a Com-
mon Mycorrhizal Network (CMN) (Simard et al., 2012). The presence of 
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symbiotic fungi and CMNs in the soil has been shown to positively affect 
plants connected to it. These advantages include increased resistance 
against diseases and herbivorous insects (Babikova et al., 2013; Song 
et al., 2010), improving resilience to environmental disturbances (e.g., 
droughts), and incentive plant growth (Simard et al., 2012). Mycorrhizal 
fungi have recently sparked attention as a possible strategy in crop 
management to reduce the usage of artificial fertilizers (Alaux et al., 
2021; Babikova et al., 2014; Bonfante and Genre, 2010; Gilbert and 
Johnson, 2017). Meanwhile, other researchers have predicted that 
mycorrhizal fungi may make natural ecosystems more resilient to 
climate change (Simard et al., 2012). Because of the high potential 
benefits, there is a growing interest in deepening knowledge of this 
natural organism and understanding mycorrhizal fungi’s network for-
mation and evolution. 

Automated analysis of images of filamentous organisms can provide 
a more in-depth analysis of the organism’s development (De Ligne et al., 
2019) and save a substantial amount of time (Cardini et al., 2020) 
compared to manual measurements in controlled experiments. Recent 
works have utilized automated image analyses to discover the growth 
characteristics of other types of fungi. In previous work, we proposed an 
automated image analysis tool for the non-invasive quantification of 
spores of Rhizophagus irregularis (Sten et al., 2023). Vidal-Diez de 
Ulzurrun et al. (2015) developed an automated image analysis tool to 
obtain growth curves of mycelium area and the number of apices of 
different species of pathogenic fungi aiming to find the optimal growth 
conditions for the different species (De Ligne et al., 2019). Instead, 
Sánchez-Orellana et al. (2019) developed a software tool for automati-
cally tracking individual tips and observed that, before branching, the 
hyphal apex stops growing for a few minutes. In (Fricker et al., 2017; 
Obara et al., 2012; Pain et al., 2019), algorithmic solutions were pro-
posed to generate and perform statistical analyses of network structures 
in 12 diverse species of fungi. The authors considered branch and 
anastomosis points as nodes and the connecting filaments as edges: each 
edge was assigned a weight depending on their predicted transport 
resistance, which scales linearly with the hyphal length and inversely 
with the hyphal thickness (Aguilar-Trigueros et al., 2022). The afore-
mentioned studies are examples of applying microscopy techniques and 
post-processing image analysis to observe and characterize fungal be-
haviors in controlled laboratory experiments. 

This study proposes an end-to-end solution for the automated anal-
ysis of key features in filamentous organisms, such as filament length 
and network topology. The focus is on the Rhizophagus irregularis, a 
model fungus known for establishing symbiotic relationships with 
numerous crop plants. Our objective is to provide automated analysis 
tools to spark light on the morphological characteristics and dynamics of 
this organism. 

1.2. Adjacent applications 

Two major different applications might challenge similar problems 
to ours. The first application is the analysis of network structures in 
biomedicine. Several tools have been developed in recent works for 
analyzing 3D volumetric microscopy images. In particular, in the field of 
neuroscience, two important datasets have been created: DIADEM, 
which contains images of 3D volumetric microscopy images of olfactory 
neurons imaged with 2-channel confocal microscopy Liu et al. (2018), 
and BigNeuron, which contains images of 3D volumetric microscopy 
images of various types of nerve cells. Images are acquired through 
various microscopy techniques: laser scanning microscopy or 2-photon 
confocal microscopy and brightfield or fluorescent microscopy. All the 
nerve cells have been marked with various techniques, including genetic 
labeling, virus, dye, and biocytin injection (Manubens-Gil et al., 2023). 
Also, CT scans of bronchi and images of retinal blood vessels have been 
utilized (Tan et al., 2020). In order to derive useful information from 
these images, it is crucial that the represented connectivity is as correct 
as possible; therefore, extensive effort has been put towards improving 

the fidelity of such topological reconstructions. Some recent contribu-
tions include the analysis reported in Liu et al. (2018), where an algo-
rithm for iterative tracing of the neuron structure is proposed by 
applying a global threshold followed by applying a fast marching tech-
nique. Differently, Tan et al. (2020) focused on detecting branch points 
in biomedical 3D images to enable graph reconstruction of tree-like 
biomedical structures. First, a 3D artificial neural network (ANN) was 
utilized to identify initial candidate points in a computationally efficient 
manner. Then, a different 2D ANN was trained to process patches pro-
jected from multiple scales and multiple views around these candidate 
branch points to remove false positives and improve reconstruction 
accuracy. Instead, (Chen et al., 2021) first applied an ANN for seg-
menting neurons, yielding a binary tensor with ones representing the 
neurons. The binary tensor was then skeletonized, and the branch points 
in the skeleton representation were identified as critical point candi-
dates. Around these candidate points, spherical patches were extracted 
and transformed into multiple 2D patches, which were used as input in a 
second ANN trained to classify candidate critical points as termination 
(endpoint), branch, crossover point (overlap), and non-critical point 
(false positive). This work was extended in (Guo et al., 2021) with a 
model to extract features like angles and intensities of neural fibers in 
crossover structures, which allowed separating crossover structures and 
obtaining adequate reconstruction. 

An issue with deep learning methods is that it can be difficult to 
obtain enough ground truth data. Sharma et al. (2017) utilized crowd-
sourcing, involving non-expert users for obtaining manual annotation, 
and demonstrated the efficacy of their method on karyotyping images of 
chromosomes. 

The other adjacent application is the morphological segmentation of 
a binary mask where the foreground pixels represent a certain type of 
land cover deriving from a remote sensor image, and the background 
pixels represent all other land cover types. The GUIDOS ToolBox and 
Fragstats are software examples that can segment a binary image into 
morphological categories (McGarigal et al., 2023; Vogt and Riitters, 
2017). The GUIDOS ToolBox includes the Morphological Spatial Pattern 
Analysis (MSPA) package (Soille and Vogt, 2009), which enables a more 
detailed categorization: core, connected elements exceeding a size 
threshold, islet, a smaller disconnected element, and edge and perfora-
tion (i.e., external and internal border pixels of core elements, respec-
tively). Furthermore, the narrow corridor segments are divided into 
bridges (connecting two core elements), branches (emanating from a 
core element without a destination), and loops (connecting element to 
itself). Consequently, how the bridges connect the core elements to each 
other can be modeled as a graph (Vogt and Riitters, 2017). Similarly, the 
software Fragstats enables the identification of segments with a linear 
morphology in the categorical map and generates a graph where these 
segments are represented as edges, and their intersections are repre-
sented as nodes. This graph may then be used to calculate ecologically 
significant parameters (McGarigal et al., 2023). These large-scale 2D 
networks are of interest, for instance, in landscape ecology (McGarigal 
et al., 2023; Vogt and Riitters, 2017). There are two key differences in 
this application with respect to mycelium analysis: 1) since the cate-
gorical land cover network is truly a 2D network, overlap detection is 
not of interest, and 2) a substantial part of the network derives for blob- 
like objects with irregular shapes. 

1.3. Related works 

The process of automatically analyzing an image of a filamentous 
organism can be divided into two core steps: 1) detecting or segmenting 
the organism of interest from a background and 2) creating a graph 
representation of its structure for further analysis. 

Several strategies have been implemented to detect the filaments in 
the sample image. One option is global thresholding (i.e., binarization 
by setting a threshold), which can be done manually (Barry et al., 2009, 
2015; Brunk et al., 2018) or automatically (Dikec et al., 2020; Martínez- 
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Galicia et al., 2023). Specifically, to automatically determine an optimal 
threshold value, Kapur’s maximum entropy method was adopted (Dikec 
et al., 2020; Ledoux et al., 2022, 2024). Global thresholding has been 
suggested to be unsuitable for filamentous structure since, depending on 
the threshold, thinner filaments may be omitted, or artifacts may be 
introduced (Fricker et al., 2017). Furthermore, it is sensitive to uneven 
illumination. This limitation has been surpassed with local adaptive 
thresholding, as adopted in (Sachs et al., 2019). Another option to 
segment filamentous images is to adopt ridge detection methods, as 
done in (Fricker et al., 2017; Lopez-Molina et al., 2015; Obara et al., 
2012; Pain et al., 2019; Vidal-Diez de Ulzurrun et al., 2015; Vidal-Diez 
de Ulzurrun et al., 2019). Filaments, in fact, appear in an image as lines 
displaying a local maximum towards a certain direction. In particular, in 
(Lopez-Molina et al., 2015; Vidal-Diez de Ulzurrun et al., 2015, 2019; 
Wang et al., 2019), second-order anisotropic Gaussian kernels (SOAGK) 
were utilized. Differently, Obara et al. (2012) detected a skeleton rep-
resentation of the mycelium by 1) enhancing the image ridges using 
phase congruency-based tensors (PCT), 2) identifying the image wa-
tersheds using the watershed transform, and 3) pruning branches using a 
cost function to reduce over-segmentation (Obara et al., 2012). Fricker 
et al. (2017) evaluated diverse ridge enhancement techniques in the 
framework of filamentous fungi. The authors found that SOAGK can 
achieve a higher detection performance but is more parameter-sensitive 
than PCT (Fricker et al., 2017). Zhang et al. (2019) proposed a combi-
nation of thresholding and a level-set method, where the segmentation 
was initialized manually and, as filaments grew, the growth was tracked 
automatically. The user can also adjust the filament segmentation 
manually through a graphical user interface (GUI) (Zhang et al., 2019). 
Concerning biological filamentous network analyses, Xu et al. (2021) 
trained a Convolutional Neural Network (CNN) with 727 manually an-
notated images to segment leaf vein structure. This strategy out-
performed other segmentation methods previously applied to leaf vein 
networks (Xu et al., 2021). 

Approaches to creating a graph representation typically depend on 
the segmentation process. Turning a binary image into a graph repre-
sentation, sometimes referred to as vectorization, is common in bio-
logical and biomedical applications and specifically for analyzing 
vascular structures (Kaufhold et al., 2012). This approach to represent a 
structure has been implemented for analyzing filamentous organisms in 
several studies (Aguilar-Trigueros et al., 2022; Dikec et al., 2020; 
Dirnberger et al., 2015; Fricker et al., 2017; Martínez-Galicia et al., 
2023; Obara et al., 2012; Pain et al., 2019; Sachs et al., 2019; Vidal-Diez 
de Ulzurrun et al., 2015; Vidal-Diez de Ulzurrun et al., 2019). Most 
vectorization approaches are based on skeletonizing or thinning the 
binary image, thus reducing it to a one-pixel-wide skeleton representa-
tion, often achieved using the medial axis transform (Kaufhold et al., 
2012). A problem with skeletonization methods, including the medial 
axis transform, is the ill-conditioning, meaning they frequently output a 
result with several small, spurious branches (Kaufhold et al., 2012; 
Lasser and Katifori, 2017). Skeletonization was utilized for analyzing 
filamentous organisms in (Barry et al., 2015; Cardini et al., 2020; 
Dirnberger et al., 2015; Pain et al., 2019; Sachs et al., 2019; Sánchez- 
Orellana et al., 2019). 

The conversion of a skeleton representation to a morphological 
graph can be done by identifying the junctions (nodes) and their con-
nectivity (edges) (Sachs et al., 2019). By contrast, in (Lopez-Molina 
et al., 2015; Vidal-Diez de Ulzurrun et al., 2015, 2019), the adopted 
ridge detection algorithm directly outputs the binary skeleton repre-
sentation. A different approach for generating a graph representation 
was proposed by Lasser and Katifori (2017), where the binary image was 
divided into triangles. Then, the triangles were classified based on their 
connection to other triangles. In some works, Geographic Information 
Systems (GIS) software was used to analyze the rasterized filamentous 
fungi. Specifically, the software ArcGIS Pro was used to a) vectorize the 
segmented mycelium (Dikec et al., 2020; Ledoux et al., 2022, 2024), b) 
compute intra-thallus surface areas (Dikec et al., 2020; Ledoux et al., 

2024), c) compute branching angles (Ledoux et al., 2022), and d) 
compute line density (Ledoux et al., 2024). 

Both segmentation and vectorization are operations where errors 
may be introduced. Several strategies have been implemented to filter 
out artifacts and reduce the influence of these errors. In (Brunk et al., 
2018), segmented components were filtered out based on area and 
circularity (Brunk et al., 2018). When analyzing images of filamentous 
structures, it is common to set a minimum branch length threshold and 
remove shorter branches. This operation is sometimes referred to as 
pruning and has been applied 1) when the skeleton representation is 
obtained through skeletonization (Barry et al., 2009, 2015), 2) in the 
case in which the skeleton representation is obtained directly from the 
detection algorithm (Vidal-Diez de Ulzurrun et al., 2019), and 3) when 
the structure is obtained from a segmented binary image (Lasser and 
Katifori, 2017). Indeed, finding a method to discriminate with certainty 
between a short filament and a spurious branch remains an open 
problem (Kaufhold et al., 2012). A common strategy is to provide a 
Graphical User Interface (GUI) to let the user manually remove artifacts 
(Cardini et al., 2020; Lasser and Katifori, 2017; Zhang et al., 2019). A 
peculiar strategy for making the manual removal of artifacts safer and 
more intuitive was the graph filters proposed by Dirnberger et al. 
(2015). This work provided a semi-automatic GUI to filter out compo-
nents based on their topology (Dirnberger et al., 2015). 

In works where a graph representation of the mycelium was created, 
overlapping crossings of filaments were either not considered or 
manually identified (Aguilar-Trigueros et al., 2022; Dikec et al., 2020; 
Dirnberger et al., 2015; Fricker et al., 2017; Obara et al., 2012; Pain 
et al., 2019; Sachs et al., 2019; Vidal-Diez de Ulzurrun et al., 2015; 
Vidal-Diez de Ulzurrun et al., 2019). It is worth mentioning that the 
instances of such crossings in the image sets considered in these works 
were very few (Aguilar-Trigueros et al., 2022; Dikec et al., 2020; Dirn-
berger et al., 2015; Sachs et al., 2019; Vidal-Diez de Ulzurrun et al., 
2015, 2019). Nevertheless, Lasser and Katifori (2017) (Lasser and 
Katifori, 2017) discussed how the 2D projection of 3D objects in images 
introduces spurious nodes and distorts edge lengths. The authors 
addressed this issue by implementing a GUI for graph manipulation. In 
addition, Aguilar-Trigueros et al. (2022) pointed out that disregarding 
the possibility of overlapping hyphae may overestimate the network 
connectivity. As a future possibility to identify such overlaps, Dikec et al. 
(2020) proposed to track the growth of the filaments. In the same work, 
since one of the main inquiries was to quantify the number of branches 
and anastomoses, the authors proposed a proportional relation between 
the number of geometrical nodes and actual nodes (Dikec et al., 2020). 
In Zhang et al. (2019), a GUI allowed the user to mark each filament, and 
the software tracked each filament’s growth even if it overlapped with 
other filaments (Zhang et al., 2019). However, to the best of our 
knowledge, fully automatically identifying and separating overlapping, 
crossing filaments in fungal images, such as the example shown at the 
center of Fig. 1, remains an open problem. 

1.4. Paper contribution 

Working towards the automated analysis of the network topology of 
filamentous organisms, this paper proposes a six-step ridge-based 
mycelium detection strategy combining a) second-order steerable 
filtering for enhancing ridge-like features and b) local adaptive thresh-
olding for obtaining a continuum detection output (i.e., output without 
gaps). The approach is then demonstrated on fungal images that differ in 
fungus species, image acquisition system, stained and non-stained 
samples, contrast, scale, background, and noise level (e.g., introduced 
by dirtiness), thus demonstrating its generalizability. We refer to our 
mycelium detection procedure as a detection algorithm rather than a 
segmentation algorithm since the output does not correspond to the 
actual filaments, but it is a binary image with positive pixels around the 
center of the filaments. Then, we propose a novel, fully automated 
technique to identify and match probable overlaps of filaments in a 
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binary skeleton matrix, and we evaluate its performance. The result is a 
highly automated software tool for analyzing mycelium images that can 
be applied to filamentous organisms that grow into complex and irreg-
ular networks. This advances the state of the art in fungal analysis since 
it can allow studying biological models not yet fully characterized due to 
their complexity, such as the case of Rhizophagus irregularis. 

2. Methodology 

2.1. Test images 

For the algorithm development and testing, three different publicly 
available sets of fungal images were used. The first image set originates 
from (Cardini et al., 2020). It contains 20 images of low-density, extra- 
radical mycelium of the mycorrhizal fungus R. irregularis stained with 
Trypan blue in lactic acid. This set is available at https://gitlab. 
iit.it/EDelDottore/hylength/, and it has previously been used 
to validate a semi-automated length measurement tool (Cardini et al., 
2020). In the current work, we annotated these images for our study. 
Example images from this dataset are used throughout the manuscript to 
exemplify the methodology and show validation results. The second 
dataset is the Ghent University Fungal Images (GUFI-1), available from 
https://doi.org/10.13140/RG.2.1.4441.1607. This data set 
comprises 100 images of five commercially relevant fungal mycelium 
species and corresponding hand-made ground truth annotations. The 
image set has been used in previous studies, including (Lopez-Molina 
et al., 2015; Shokouh et al., 2021; Wang et al., 2019). An example is 
shown in Fig. 2a. The third image set consists of ten images of the 
nematode-trapping fungus A. oligospora stained with SR2200 and 
available at https://github.com/hsueh-lab/FFT, plus five extra 

images sent to us by the authors. This image set was developed to 
validate the software tool Fungal Feature Tracker (Vidal-Diez de 
Ulzurrun et al., 2019). An example is shown in Fig. 2b. 

2.2. Automated scale estimation 

To extract a standard unit measure from pixel information, it is 
necessary to estimate the scale of the image, i.e., the real-world surface 
area to which a pixel corresponds. In the image set provided by Cardini 
et al. (2020), the images had a scale bar with text inserted by the mi-
croscope software (Cardini et al., 2020). Since the scale bar has a very 
different color from the sample, its presence can cause a strange gray-
scale image histogram, which may introduce segmentation problems. 
Therefore, removing the scale bar before filament detection was 
imperative. Performing a separate segmentation of this scale bar and its 
text has two benefits: 1) it removes the risk of the scale bar disrupting the 
thresholding, and 2) it allows to fully automatically estimate the scale of 
the image with higher precision than manual methods like the “Mea-
sure” tool in ImageJ/Fiji (Schindelin et al., 2012). We implemented an 
ad-hoc algorithm for 1) segmenting the scale bar and corresponding text, 
2) interpreting the text using Matlab’s embedded OCR library, and 3) 
replacing the segmented pixels with a color similar to the background. 

2.3. Detection of mycelium 

In the considered data sets, all the RGB images had unimodal his-
tograms on all three channels, making zeroth order segmentation chal-
lenging, e.g., using Otsu’s method (Otsu, 1979) (Fig. 3c). Therefore, we 
opted for ridge detection following the example of (Fricker et al., 2017; 
Lopez-Molina et al., 2015; Obara et al., 2012; Pain et al., 2019; Vidal- 

Fig. 1. Resulting skeleton output around an overlapping pair of hyphae. Original image adapted from (Cardini et al., 2020).  

Fig. 2. Examples of image utilized for validating the mycelium detection algorithm.  
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Diez de Ulzurrun et al., 2015; Vidal-Diez de Ulzurrun et al., 2019). In a 
recent review on filter-based ridge detection by (Shokouh et al., 2021), 
the authors found that steerable filters of the type proposed in (Freeman 
and Adelson, 1991) and (Jacob and Unser, 2004) performed better than 
other techniques used on natural images (Shokouh et al., 2021). In the 
following section, we describe the procedure we implemented to detect 
the mycelium, and Fig. 3 shows the resulting output of the proposed 
steps. 

The gray-scale image (Fig. 3a) is filtered with a steerable 2nd order 
Gaussian filter (Pang, 2022) with the standard deviation σ, which must 
be set depending on the image scale, and a vector of angles Θ in the 
range from 0◦ to 360◦, with a selected step size (Fig. 3d). Following the 
filtering, the segmentation is performed in three steps: 1) a non- 
maximum suppression is applied to the filter output (Fig. 3e), and the 
local maxima of interest are segmented using Otsu’s method (Otsu, 
1979) (Fig. 3f), 2) a local adaptive thresholding using Bradley’s method 
is applied (Bradley and Roth, 2007) (Fig. 3g), and 3) a hysteresis of step 
1 and step 2 is performed (Fig. 3h). The segmented output is then 
skeletonized using the medial axis transform and pruning branches with 
a length corresponding to less than 22 μm (The MathWorks Inc, 2022a) 
(Fig. 3i). 

The skeletonization output can be used to estimate the length of the 

mycelium. We obtain millimeters represented by each pixel (S), as 
described in Section 2.2. Then, we compute the total mycelium length by 
quantifying the number of 4-connected pixels n4 and the number of 
exclusively 8-connected pixels n8. The two sets are separated using the 
MATLAB function bwareaopen. Thus, we can compute the mycelium 
length (L) using eq. 1. 

L = n4⋅S+ n8⋅S⋅
̅̅̅
2

√
(1)  

2.4. Separation of filaments 

In this section, we present step-by-step our approach for generating a 
network representation that is more accurate with respect to the con-
ventional morphological graph from a sample image by 1) assessing the 
local geometry of the binary skeleton around BPs (Section 2.4.1), 2) 
extracting a preliminary morphological graph, similar to the ones built 
in (Aguilar-Trigueros et al., 2022; Dikec et al., 2020; Dirnberger et al., 
2015; Fricker et al., 2017; Obara et al., 2012; Pain et al., 2019; Sachs 
et al., 2019; Vidal-Diez de Ulzurrun et al., 2015; Vidal-Diez de Ulzurrun 
et al., 2019) (Section 2.4.2), 3) the BP pairs that are likely to represent a 
filament overlap (i.e., between them two filaments are crossing each 
other) are identified based on vicinity and local approximations of the 
filament directions (2.4.3), and 4) finally each filament is assigned with 

Fig. 3. Workflow of our proposed mycelium detection algorithm. a) It starts originating a gray-scale image. b) The colormap shows that the filaments down on the 
left-hand side have an intensity similar to the background. c) Provide an example of why global threshold binarization is unsuitable in this context. d) The steerable 
ridge filtering output enhances the filaments with respect to the background. e) The ridge filter output with local maximum suppression shows several fragmented 
lines; however, those in the center of the filaments have higher numerical values than those in the rest of the image. f) The output from binarizing the image in (e) 
using Otsu’s method shows fragmented lines. g) Shows the output of applying local adaptive thresholding to (d), the filaments are detected, but some artifacts are also 
detected. g) A hysteresis between (f) and (g) results in a binary image representing the filaments without the artifacts. i) The final skeleton output superimposed on 
the original image. 
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an ID and a filament graph representation is built (Section 2.4.4). We 
refer define a filament overlap as the area where two filaments cross 
each other. 

2.4.1. Branch point assessment 
From the binary skeleton matrix generated in 2.3, the branch points 

can be identified using the Matlab native function bwmorph. This 
function returns the following: i) points representing the center of a T- 
crossing or Y-crossing (i.e., branch points with three arms), ii) points 
representing the center of an X-crossing or + − crossing (i.e., branch 
points with four arms), and iii) some false positive branch points (i.e., 
branch points with one or two arms). For each candidate branch point 
(CBP), a patch of the binary skeleton surrounding the branch point is 
provided (Fig. 4a). The dimension of the patch must be set to provide a 
local representation of the filament geometry, and, in our case, a patch 
side (l) corresponding to 0.022 mm provided adequate representations. 
From this patch, components not connected to the branch point are first 
set to zero. Then, the 3 × 3 pixels square surrounding the branch point is 
set to zero (Fig. 4b), and the remaining connected components in the 
patch are finally assigned an integer label (from 1 to max 4) using the 
Matlab native function bwlabel (Fig. 4). 

Each arm may include other branch points, which may be a false or 
true positive. In the latter case (e.g. Fig. 5), it is important that the arms 
of the other branch point (Fig. 5b) are disregarded, and this can be 
achieved by identifying other branch points overlapping with one of the 
arms and breaking the connected skeleton lines around the other branch 
point. If the arm is split into multiple connected components, only the 
one connected to the original branch point is considered (Fig. 5c). A rare 
yet important edge case occurs when the Euler characteristic χ of the 
image patch is less than one, i.e., there is an encircling (e.g., Fig. 5). An 
encircling contains three or more branch points, which would all be 
falsely removed if not handled. Thus, if χ < 1, the following operations 
are performed: 1) the points compiling the encircling are identified 
(Fig. 5b), 2) the two branch points that are part of the encircling and 
connected to the CBP are identified, and 3) the part of the encircling that 
does not represent the shortest geodesic path between a BP and the CBP 
is removed (5c). 

Some BPs may escape because they overlap with the patch edges 
(Fig. 5). In these cases, the position of the missing BP can be approxi-
mated as the point with the second-greatest geodesic distance further 
from the other BP. Instead, if two BPs need to be approximated, they are 
placed at half the geodesic distance from the furthest point of the 
encircling. 

In Matlab, the image coordinate system has the origin at the top left 
corner of the image, with the x-axis pointing to the right and the y-axis 
pointing downwards (The MathWorks Inc., 2022a). To extract the ridge 
filter response values for the arms of the intersection, we translate the 
arm coordinates to the global image coordinate system and obtain the 
median ridge filter response for each arm. Approximating the direction 

of each arm as a 2D vector allows for the estimation of the angles, both 
between arms of the same intersection point and between arms of 
diverse intersection points. To obtain a 2D vector estimating the direc-
tion of each arm, the coordinates of each arm (Fig. 4c & 5c) must be 
transformed from the patch coordinate system into a Cartesian coordi-
nate system with the origin at the center of the patch. Thus, the affine 
transformation in eq. 2 is used to transform the image patch coordinates 
(x, y) to the Cartesian coordinates (X,Y) with the origin in the point 
(
x0, y0

)
, which in this case corresponds to the center of the image patch. 

[
X
Y

]

=

[
1 0
0 − 1

][
x
y

]

+ [ − 1 1]
[

x0
y0

]

(2) 

After transformation, a linear least squares regression can be applied 
to estimate the line inclination and provide the arm direction. Then, the 
predicted values for the x-coordinates are computed, and the point 
resulting the furthest from the connection point is identified. Finally, the 
transformed coordinates of the connection point are subtracted from the 
coordinates for the furthest point on the estimation line to obtain the 
arm vector. If the branch point has three intersection arms (most com-
mon case), we assume that the three-way junction consists of one main 
filament, to which two arms belong, and one subordinate filament or the 
branch-out arm, to which the third arm belongs. In Fig. 4c, the branch- 
out arm is arm 2, marked in green. We may define the subordinate 
filament as the arm with the weakest median ridge filter response value. 
This strategy works well, as shown in Table 1. However, it is very sen-
sitive to the presence of dirt or accumulations of staining ink. An 
alternative is to compute the angle between each pair of director vectors 
of the arms (Fig. 6). This strategy also works well in most cases, as shown 
in 1). However, in intersections with a Y-shaped morphology (i.e., the 
angles are very similar), since the direction approximation is not exact 
and depends to some degree on local aspects of the mycelium detection, 
the result becomes a matter of chance. 

To improve the results, we merged the two strategies. If the differ-
ence between the angles (Fig. 6) exceeds a certain threshold (Θswich), the 
second strategy is utilized; otherwise, we assume the arms form a Y- 
shape, and the arm with the weakest median ridge filter response is set 
as the branch-out arm. This combined strategy yields an improved 
result, as shown in Table 1. Having defined the branch-out arm, we can 
define the branch-out point as connecting the branch-out arm to the 
corresponding branch point. We define the branch-out vector as the 
vector that approximates the direction of the branch-out arm and the 
two main filament vectors as the two vectors that approximate the di-
rection of the two other arms. Fig. 7 shows six examples of local vector 
approximations of BPs with three different types of filament overlaps. 
How these BPs are subsequently identified as part of a filament overlap 
is detailed in Section 2.4.3. 

2.4.2. Building the morphological graph without overlaps 
To abstract the fungal network morphological graph, we first define 

Fig. 4. Extraction of the intersection arms in the simplest case.  
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an undirected morphological graph with the BPs (Section 2.4.1) as nodes 
and the geodesic distances between the BPs in the binary skeleton 
(Section 2.3) as edges. We built this undirected graph by a) removing all 
the valid branch points (as well as assuring 8-connections are broken) 
from the binary skeleton, b) inserting one of the branch points at the 
time, and c) identifying the tip points (corresponding to hyphal apices) 
connected to the branch point and the quasi-Euclidean geodesic dis-
tances from the branch point to the tip points. The branch points con-
nected to the tip point are set as connected to the current branch point, 
with edge weights corresponding to the geodesic distances. The result-
ing undirected graph representation is used to identify mutually closest 
branch points, which is necessary to identify pairs of branch points that 

may constitute a filament overlap. 

2.4.3. Identifying overlap pairs 
As stated in Section 2.4.1, a BP may have three or four arms. If the 

number of arms is four, the structure generally represents an overlap of 
two (quasi-) perpendicular filaments. Hence, an ad-hoc solution is 
applied, where the points on opposite sides of the BP are identified as 
belonging to the same filament. The same method is applied for pairs of 
BPs separated by a distance (D ≤ 2

̅̅̅
2

√
). 

Instead, in cases like the examples shown in Fig. 1 and Fig. 7, the 
overlap’s resulting skeleton representation consists of two BPs with 
three arms each. In particular, in the example shown in Fig. 7c, two 
filaments cross each other at a fairly acute angle, causing the resulting 
binary skeleton output to be characterized by two Y-intersections 
separated by a relatively long line. A similar morphology is observed in 
Fig. 7a and b. However, the separating lines are shorter since the overlap 
angle is less acute. Therefore, to match the pairs of branch points making 
up an overlap, we propose a technique considering the geodesic distance 
between the branch points and the angle between the filaments. Spe-
cifically, we define the set of candidate branch point pairs Acand and add 
to this set all those pairs of points that are each other’s mutually closest 
neighbor in the morphological graph. An example of such a pair BP1 and 
BP2 is shown in Fig. 8a. For each pair of BPs, the vector V→1 = BP1 − BP2 

is defined (Fig. 8b). We determine the angle θ1 between V→1 and the 
branch out vector of BP2, V→B2 with the dot product. If θ1 ≥ 90◦ , the 
pairing is considered plausible. Otherwise, it is removed from the set 
candidate pairs. 

Fig. 7a shows an example in which two filaments cross each other at 
an almost perpendicular angle. In this case, the angles between the 
branch-out vector and main filament vectors tend to be perpendicular, 
and the resulting geodesic is small. By contrast, if the filaments cross at a 
more acute angle, the angles between the branch-out vector and main 
filament vectors result in acute or obtuse, and the geodesic is greater. 
Hence, to determine if the remaining BP pairs in Acand belong to an 
overlap, we propose a criterion based on the angle between the filament 
and the distance between branch points. By subtracting one main fila-
ment vector from the other, a single vector V→Main approximating the 
direction of the main filament is obtained, as shown in Fig. 8c. If the 
angle θBi (i = 1,2) between V→Main and the branch out vector of each 
branch point is very acute or obtuse, likely the candidate pair forms an 
overlapping, even if the geodesic distance (D) between them is large. On 
the contrary, if the θBi are close to a right angle, the distance between the 
branch points should be short for the candidate pair to remain in the set 
of branch point pairs likely to make up an overlapping. Considering this, 
we defined the criterion in (3), where DT is a distance threshold, θT is an 
angle threshold, and c is the resulting Boolean determining if the BP pair 

Fig. 5. Extraction of the intersection arms in a patch with Euler ring and adjacent branch point.  

Table 1 
Number of correctly identified and matched branches and crossings assessed on 
a complex image (see Fig. 9a in Section 2.5.2).   

Ideal matching function Min ridge Max angle Combined 

Branches 156 123 130 132 
Crossings 18 17 15 17  

Fig. 6. Angles between arm vectors.  
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remains in the Acand set. For the remaining BP pairs in Acand, the related 
connection points are removed from the set of connection points and 
added to the set of passage points, i.e., pairs of coordinates indicating 
points where filaments overlap. 

c = (D ≤ DT) ∨ (|90 − θBi| ≤ θT) (3) 

Furthermore, since hyphae grow from the apex, a configuration as 
the one reported in Fig. 7c is unlikely to derive from two branches, 
otherwise one of them would have had to branch backward with a very 
obtuse angle with respect to the mother hypha. Previous experimental 
observations of other types of filamentous fungi have shown that the 
branch angles tend to remain within a certain range (Ledoux et al., 
2022). Therefore, if the angle threshold θT in 3 is large enough, this is an 
unlikely source of false positives. 

2.4.4. Rebuilding the filament graph 
Given the binary skeleton structure (Section2.3), the set of branch 

connection points (Section 2.4.1), and the set of passage points (Section 
2.4.3), the skeleton structure can be divided into individual filaments. 
All the branch connection points and passage points are then set to zero, 
obtaining a binary skeleton with multiple thin, connected components. 
We then apply the Matlab native function bwlabel to assign an ID to each 
connected component. 

Consequently, the filaments connected through a pair of passage 
points must have their IDs reassigned so that all components of the same 
filament have the same ID. In this context, we loop over pairs of passage 
points and extract a 3 × 3 patch from the matrix of labeled components 
around each passage point. To each patch are associated two different ID 
numbers: 1) the ID of the main filament and 2) the ID number filament to 
be merged. For a given pair of passage points, the main filament is the 
same; hence, the two unique IDs in the two 3 × 3 patches are the IDs of 
the filaments that should be merged. 

A filament may overlap multiple other filaments. Therefore, we 
create a set of traversals where each traversal is a list of filament ID 
numbers for filaments belonging together. Given an Nx2 vector where 
each row is a pair of ID numbers that belong together, we utilize 

Algorithm (1) to create a set of lists specifying which filaments should be 
merged. 

Algorithm 1. Identify and Merge Traversing Filaments.   

Once all the traversals have been completed, the filaments that are 
the same are set to have the same ID number. If we consider the branch 
connection points as links between different filaments, an undirected 
graph representation of the filamentous structure can be created. 
Starting with the highest ridge prominence filament, a breadth-first 
search where every filament connected to the current filament is 
added as connected in the undirected graph. Thus, an undirected graph 
is created with the filaments as nodes and the branch points and anas-
tomoses as edges. Furthermore, a more accurate representation of the 
morphological graph can be obtained considering the remaining BPs and 
tips as nodes and the filaments connecting them as edges. 

2.4.5. Generating the morphological graph with overlaps 
The common way to model a graph representation of a 2D mycelium 

image is to consider branches/anastomoses as nodes of degree 3, tips/ 
apices as nodes of degree 1, and the filaments between them as edges 
with weights corresponding to the length of the filament between the 
nodes (Aguilar-Trigueros et al., 2022; Dikec et al., 2020; Vidal-Diez de 
Ulzurrun et al., 2015). Generating such a representation considering 
overlaps would be more accurate in extracting the number of nodes and 
distances between branch points and defining the network structure. 
Such a graph can be generated given the ID filament map (Section 2.4.4) 
and the coordinates of the identified branch points, passage points, and 
tip points. First, a map containing all branch points and a map with all 
passage points are generated. Then, we iterate over the set of labeled 
filaments, and for each filament, the nodes on the filament are identi-
fied. Each node can be an end node or a middle branch node. 

Each filament has two endpoints, and each endpoint can be either a 
tip or a branch point. These endpoints are identified in two steps: 1) the 
morphological endpoint operation is applied, and if one or two identi-
fied points are present in the set of identified tip points, they are added 
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to the set of end nodes; 2) if none or only one of the filament endpoints 
are in the set of tips, then the remaining end nodes are connected to 
other filaments and, by definition, it is connected as a secondary fila-
ment. Consequently, the distances from all endpoints to all connection 
points are calculated, and the connection points with a distance ≤

̅̅̅
2

√
to 

an endpoint are identified, and the connection points’ corresponding 
branch points are added to the set of end nodes. On the contrary, the 
middle branch nodes are, by definition, branch points where another 
filament connects to the current filament and can thus be identified with 
a simple “and” operation between the filament and the map of branch 
points. It is important to highlight that all branch points are middle 
branch nodes in one filament and end nodes in another filament, and all 
tip points are end nodes in one filament. To repair any gaps in the 
filament, the passage points attached to the filament are identified, and a 
straight line between these pairs of passage points is created. 

To identify the topological order of the filament’s nodes and compute 
the weights of the edges between them, one of the two end-points are 
selected randomly and the geodesic distance to all the other nodes 
present on the filament is computed using the MATLAB function 
bwdistgeodesic with the option “quasi-Euclidean”. Then, the edges in the 
subgraph representing the current filament are generated iteratively. 
First, an edge from the starting node to the closest node is created, and 
then from the closest node to the second closest node, and so on. This 
generates a table of edges with coordinates of the source node, co-
ordinates of the target node, and weight, allowing for the creation of a 
graph. In the typical case, all nodes have a degree of 1 or 3. However, 
due to spurious filament detections or other errors up streams, self-loops 
are deleted, and nodes with degree 2 are replaced with an edge between 
the node’s neighbors. 

2.5. Validation 

2.5.1. Validation of mycelium detection 
The automated scale bar reading was tested on the images of in-vivo 

and in-vitro R. irregularis samples from Cardini et al. (2020) and 
compared to manual extractions of the scale bar. The aim was then to 
detect highly irregular lines composed of a set of pixels by quantifying 
the number of hits, misses, and false positives. Since the human ground 
truth annotation can never be perfect, it is important that a) some 
discrepancy between pixel detection and manual annotation is tolerated, 
and b) there is a one-to-one correspondence between pixels in detection 
output and ground truth so that each pixel is counted only once. To this 
end, we adopted the strategy originally proposed by Liu and Haralick 
(2002), where an optimal matching problem is formulated. Martin et al. 
(2004) proposed a sparse version of the method presented in Liu and 
Haralick (2002) and this was then adopted for the evaluation of detec-
tion algorithms for hyphal filaments in several works (Fricker et al., 
2017; Lopez-Molina et al., 2015;Vidal-Diez de Ulzurrun et al., 2019; 
Wang et al., 2019). 

In this study, the hand-labeled ground truth images were loaded, 
binarized, and skeletonized to assure adequate comparability. Then, we 
computed a rectangular cost matrix, where a) each row represents a 
ridge pixel detected by the algorithm, b) each column a ridge pixel in the 
ground truth, and c) the element value is represented by the Euclidean 
distance between each pair of points. The assignment problem is then 
solved using the MATLAB function matchpairs, with half the tolerance as 
cost of non-assignment (The MathWorks Inc, 2022b). Consequently, we 
defined a) the number of assigned pairs as the number of true positive 
(TP) ridge pixels, b) the number of unassigned columns as the number of 
false negative (FN) ridge pixels, and c) the number of unassigned rows as 

Fig. 7. Examples of filament overlaps.  

Fig. 8. Auxiliary vectors for determining if a pair of BPs make up a filament overlap.  
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the number of false positive (FP) ridge pixels. Finally, we assumed as 
true negatives (TN) the pixels not present in any of these categories. 

For testing the detection performance, we tested a) the precision (4), 
the recall (5), the F1-measure (6), and Mathew Correlation Coefficient 
(MCC) (7) of the pixel detection following (Vidal-Diez de Ulzurrun et al., 
2019; Wang et al., 2019), and b) length measurement test following 
(Cardini et al., 2020). The test (a) was applied to the images in the GUFI- 
1 dataset with corresponding ground truth provided by the authors in 
(Lopez-Molina et al., 2015; Vidal-Diez de Ulzurrun et al., 2019) and to 
the image set provided by the authors in (Cardini et al., 2020) with 
ground truth annotations performed by us, utilizing the Matlab Image 
Labeler tool (The MathWorks Inc., 2022a). Test (b) was applied to the 
image set provided in Cardini et al. (2020), and manual measurements 
were obtained through manual tracing using the Matlab Image Labeler 
tool (The MathWorks Inc., 2022a). 

In case (a), to compensate for small displacements of the ground 
truth, for all three datasets, we used the tolerance used by Wang et al. 
(2019), (i.e., 6

̅̅̅
2

√
pixels) was adopted as tolerance value. This type of 

statistical evaluation measures suffers from the issue that they do not 
reward closeness or penalize distance from the actual ridge line, which 
in the context of edge detection is problematic (Lopez-Molina et al., 
2013). Our visual inspections suggested that the automatic ridge local-
ization was typically more accurate than the manual annotations and 
that errors were caused by a lack of detection or detection of background 
objects. Consequently, we believe that the adopted measures are suit-
able for the application. 

Precision =
TP

TP + FP
(4)  

Recall =
TP

TP + FN
(5)  

F1 = 2⋅
Precision⋅Recall

Precision + Recall
=

2TP
2TP + FP + FN

(6)  

MCC =
TP⋅TN − FP⋅FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (7) 

In case (b), the goal was to assess the strength of agreement between 
the gold standard method (manual tracing) and the proposed automated 
method measuring the mycelium length. Lin’s Concordance Coefficient 
(ρc) (McBride, 2005) is a commonly adopted method to assess agree-
ment strength. Since the relation between our measurement and the 
manual one can be regarded as a statistical population of continuous 
random variables, following the guidelines by McBride (2005), we 
considered the one-sided 95% confidence limit of ρc which was 
computed using the software provided in (Mathew, 2018). CIlow95%(ρc) <
0.9 as poor, 0.9 < CIlow95%(ρc) < 0.95 as moderate, 0.95 < CIlow95%(ρc) <
0.99 as substantial, and CIlow95%(ρc) > 0.99 as almost perfect, 

considering that we only had 20 samples whereas it is recommended to 
include at least 25 samples (McBride, 2005). 

2.5.2. Validation of separation of filaments 
The software’s capability to correctly separate the filaments was 

assessed in two steps: 1) identification of branches and overlaps, and 2) 
correctness of intersection arm matching. In case (1), we annotated two 
selected images (Fig. 9) from (Cardini et al., 2020) using the Image 
Labeler App in MATLAB (The MathWorks Inc., 2022a). We applied 
rectangular annotations of two categories: branch and overlap. Then, 
concordance between the automatic software and manual annotations 
was assessed, and precision, recall, and F1-measure were computed. In 
case (2), we annotated the images using the Image Labeler App in 
MATLAB, where we labeled the areas surrounding every intersection as 
one of three categories: 1) main filament, 2) branch filament, or 3) 
passing filament (i.e., part of an overlap). Since assessing the correctness 
of the intersection arm matching makes sense only in the case of a 
correctly identified branch or overlap (i.e., true positives), this step was 
applied only to such cases. Consequently, we quantified the percentage 
of correct assignments. 

3. Results 

The following section presents our results. In detail, Sections (3.1- 
3.3) summarize the results of our quantitative validation of the different 
processing steps of the mycelium analysis tool, Section 3.4 reports a 

Fig. 9. Selected images for validation of branch and overlap detection.  

Fig. 10. Comparison between automatic and semi-automatic estimates mm/ 
pixel relations. 
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comparison between the morphological graphs obtained with and 
without overlaps, and Section 3.5 reports some qualitative results 
deriving from the aforementioned validation procedures. 

3.1. Scale bar reading 

We found that the automatic method provides a highly precise esti-
mation of the pixel-millimeter ratio, with only a couple of cases where 
one or two fewer or additional pixels were counted to the scale bar. 
Manually tracing the scale bar may lead to a less exact estimate. Fig. 10 
shows boxplots of the mm/pixel ratios obtained considering 1) an 
automated segmentation and reading of the scale bar and 2) manual 
tracing. The results show that manual tracing is very accurate in the 
median case. However, the lower quartile represents an underestimation 
of 9%, and the lower whisker represents an underestimation of 21%. 

3.2. Mycelium detection performance 

Following the methodology described in Section 2.5.1, we computed 
the average precision, recall, F1-measure, and MMC for the three 
different sets of fungal images. Results are shown in Table 2. In all cases, 
the 2nd-order Gaussian filter was applied with the set of angles θ having a 
step size of 15◦. The datasets contained diverse organisms and were 
acquired with diverse resolutions. Therefore, the standard deviation σ 
and the minimum branch length were varied. In the image set from 
(Cardini et al., 2020), all images were acquired at the same scale and 
represented the same organism. Therefore, the σ and minimum branch 
length parameters were the same for all images (i.e., σ = 4 pixels or 
4.4μm and minimum branch length = 22 μm.). For the image set from 
(Vidal-Diez de Ulzurrun et al., 2019), the image scales vary between 
samples, and the σ-parameter was varied (σ = [2.5, 3.5] pixels, step size 
= 0.5) and the minimum branch length was set to 3 pixels for all sam-
ples. In some images, the border of the petri dish was visible, and the 
effect of this border was removed with an ad-hoc masking operation. 
Finally, the image set from (Lopez-Molina et al., 2015) contained a va-
riety of scales and species, and therefore, the σ-parameter was varied 
(σ = [1,6] pixels, step size = 0.5). Instead, the minimum branch length 
was always set to 5 pixels. After visual inspection, these parameters’ 
values were selected based on perceived output adequacy. 

Fig. 11 shows the concordance between manual tracing-based length 
measures and length measures obtained by applying the detection al-
gorithm. Fig. 11a shows that the length is vastly over-estimated for some 
images, and consequently, the concordance is poor. From a closer in-
spection, all these images had important chunks of dirt and accumula-
tions of staining ink. Therefore, we applied a filter to remove all 
components not connected to a reference. The resulting comparison 
between manual tracing and automatic measurement is reported in 
Fig. 11b, and the resulting estimate of Lin’s Concordance Coefficient 
(ρ̂c) is 0.96, with a 95% lower confidence interval of 0.91, which may be 
interpreted as a moderate level of agreement (McBride, 2005). 

3.3. Separation of filaments 

The separation was tested following the method described in Section 
2.5.2 on image #1 (Fig. 9a) and image #2 (Fig. 9b). Table 3 summarizes 
the branch/overlap identification outcomes obtained directly from the 
mycelium binary skeleton matrix from a relatively clean image con-
taining 160 branches or anastomoses and 20 overlapping points. In eq. 

(3), the distance threshold DT was set to 13 μm, the angle threshold θT to 
45◦, and Θswich described in Section 2.4.1 was set to 30◦. 

Spurious filament detection substantially affects the number of 
perceived branches. It is also a frequent occurrence that filaments at the 
edge of the image are not detected due to boundary effects, causing the 
omission of branches. The evaluation described in Section 2.5.2 was 
performed while ignoring parts of the output with dirt or boundary ef-
fects to conduct an isolated performance assessment of the process after 
skeletonization. This assessment was applied to two selected images, 
image #1 (same as in Table 3) and image #2, which was considered 
more challenging. The results are reported in Table 4. 

Besides correctly assigning whether an intersection point is a branch, 
an anastomosis point, or a filament overlapping, it is important to 
correctly connect the arms, especially in filament overlappings. In this 
context, 139 branches and 35 overlappings were annotated, and the 
concordance is reported in Table 5. Two wrongly matched overlapings 
are studied in detail in Figs. (12a, 12d). 

Fig. 12 shows a selection of faulty assessments obtained through the 
algorithm. In Fig. 12a, the direction vectors related to the BP on the left- 
hand side are assigned based on the ridge prominence values (the 
steerable filter response), which differ marginally in this case. However, 
since the wrong filament is assigned at the branch-out filament, the 
result is a faulty matching. In Fig. 12b, a thinner filament appears to pass 
under a thicker point where a thicker hypha branches. The middle BP is 
matched with the BP on the right-hand side, although the BP on the left- 
hand side is more suitable. This type of overlapping multi-structures was 
out of scope in this study. Fig. 12c shows another example of a multi- 
structure, which is more extended. In this case, one filament goes 
from the top left corner to the bottom right corner, and another enters 
the Figure below the top left corner and exits above the bottom right 
corner. The overlaying filament is connected to two other filaments 
through branching or anastomosis. Consequently, the two BPs with 
branch-out vectors related to the underlying filament are separated by 
the other two BPs. In Fig. 12d, two filaments overlap each other, and the 
two resulting BPs are close enough to each other to satisfy the criterion 
in (3) based on the distance. The three vectors are, in both cases, 
separated by roughly equal angles, and there is no clear difference in 
ridge prominence. In this particular case, the branch-out arm label is 
assigned to diverse filaments, and consequently, the match gets wrong. 

3.4. Comparison between the morphological graph with and without 
overlaps 

We selected six images from the set of images in Cardini et al. (2020) 
that were relatively clean with few strange objects. We generated the 
morphological graph with overlaps as described in Section 2.4.5 and the 
morphological graph without overlaps as detailed in Section 2.4.2. 
Fig. 13 shows an example of these two types of representation. 

In the graph shown in Fig. 13a, nodes may have degrees 1–4: nodes 
with degree 1 are tips, nodes with degree 2 are branch nodes sharing two 
edges with a neighbor, nodes with degree 3 represent regular branch 
nodes and nodes with degree 4 derive from quasi-perpendicular over-
laps. The branch nodes could be either real biological branch nodes or be 
part of an overlap. By contrast, in the graph shown in Fig. 13b, all nodes 
have degree 1 or 3. Dikec et al. (2020) estimated the number of actual 
biological nodes using the formula N = Ng(1 − r) where N is the number 
of biological nodes, Ng is the number of geometrical nodes. r was then 
estimated with r =

Ng
n

Ng , where Ng
n was the number of geometrical branch 

nodes within the distance n from each other. If we consider branch nodes 
in the morphological graph with overlaps to represent a direct estima-
tion of the set N, we can compute r = 1 − N

Ng. Table 6 shows a) the 
number of geometric branch nodes Ng in the morphological graph 
without overlaps and b) the number of branch nodes in the morpho-
logical graph with overlaps, which is an estimate of the number of 
biological nodes. Consequently, the mean r corresponds to 20% (also 

Table 2 
Detection performance on diverse fungal image sets.  

Image set reference Precision Recall F1 MMC 

Cardini et al. (2020) 0.82 0.92 0.88 0.88 
Vidal-Diez de Ulzurrun et al. (2019) 0.96 0.92 0.94 0.94 
Lopez-Molina et al. (2015) 0.88 0.89 0.88 0.88  

O. Sten et al.                                                                                                                                                                                                                                     



Ecological Informatics 82 (2024) 102670

12

20% in (Dikec et al., 2020)), and the standard deviation σr = 6% (1.6% 
in (Dikec et al., 2020)). 

Another difference observed between the two morphological graphs 
is that the edges become fewer and longer when the geometrical nodes 
are removed. An average reduction of 15% in the number of edges is 
found among the six tested images. Fig. 14 shows the histograms of the 
stacked edge lengths from the two types of graph representation. In 
Fig. 14a, there are numerous very short edges, and the number of edges 
in each bin declines rapidly. In Fig. 14b, the longer edges make up a 
larger part of the histogram, and the decline in frequency is smoother. 

3.5. Qualitative results 

Considering the above outcomes, several interesting qualitative re-
sults can be derived (Fig. 15). From the binary skeleton matrix obtained 
from the procedure described in Section 2.3, we show in Section 3.2 that 
the total mycelium length in the sample can be accurately estimated. A 
common measure of mycelium density in a 2D sample is mm/mm2 (Avio 
et al., 2006; Cardini et al., 2020). A sliding window moving average 
filtering operation on the binary skeleton matrix can be performed to 
obtain the local mycelium density distribution over the sample. The 
output of this operation is highly dependent on the window size: a 
window that is too small will only reveal an increased density around 
the filaments, and a window that is too large will just reveal a blob in the 
middle of the image. We found that, for our samples of R. irregularis, 
square windows of sizes between 0.19mm2 and 0.42mm2 yield mean-
ingful outputs. In Fig. 15a, we apply a window with a size corresponding 
to 0.29mm2. Given a set of thin binary filaments, each with a unique ID, 
eq. (1) can be applied to each filament to get its length (Fig. 15b). To 
visualize the network structure, we can consider two diverse represen-
tations (Fig. 15c & 15d). In Fig. 15c, the separated hyphae have been 

colored based on their relative ridge prominence. In Fig. 15d, each 
isolated filament is instead represented as a node in the graph, and the 
node is placed over the filament. The node color and size are set based on 
the relative ridge prominence and node degree, respectively. 

4. Discussions 

4.1. Filament detection and length estimation 

This paper presents a method to detect the filamentous structure of 
mycorrhizal networks in 2D images. We assess the algorithm’s perfor-
mance in terms of precision, recall, F1-score, and MMC of the detected 
skeleton representation, and we assess the algorithm’s viability for 
automatically measuring mycelium length. To estimate the mycelium 
length, it is necessary to know the scale of the image, and any error in the 
scale estimation is directly multiplied by the detection error. The pro-
posed strategy of thresholding the scale bar relies on the assumption that 
the scale bar is distinctly the darkest object in the image: if this 
assumption does not hold, the result is fatal. An improvement might 
consist of using a scale bar with a specific RGB channel and applying the 
segmentation to that channel to guarantee correct functionality. 

Fig. 11. Comparison of automatic and manual estimates total mycelium length in R. irregularis samples from (Cardini et al., 2020).  

Table 3 
Identification of branches and crossing, including where mycelium detection 
errors are present.   

True 
Positive 

False 
Positive 

False 
Negative 

Precision Recall F1 

Branch img 
#1 

155 33 5 0.83 0.97 0.89 

Crossing 
img #1 

17 1 3 0.94 0.85 0.89  

Table 4 
Identification of branches and crossing, excluding where mycelium detection 
errors are present.   

True 
Positives 

False 
Positives 

False 
Negatives 

Precision Recall F1 

Branches 
img #1 

155 1 1 0.99 0.99 0.99 

Crossings 
img #1 

17 1 1 0.94 0.94 0.94 

Branches 
img #2 

65 3 0 0.96 1 0.98 

Crossings 
img #2 

18 1 2 0.95 0.90 0.92  

Table 5 
Matching accuracy.   

Correct Incorrect Accuracy 

Branch 132 7 95% 
Crossing 31 4 89%  
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The algorithms are evaluated for thin objects. The presence of thicker 
objects may cause severe problems already in the skeletonization step, 
as pointed out by (Dirnberger et al., 2015). As previously discussed in 
Sections (1 and 2.3), the skeletonization using the medial axis transform 
tends to yield short spurious branches. By setting a branch length 
threshold, there is the risk that some short branches are wrongly 
removed. In these cases, such short branches will not substantially affect 
the length estimate, and while it may lead to some branches being 
ignored, the branches will not be ignored anymore once they have 
grown. 

As observed in Section 3.2, the mycelium detection algorithm per-
formed similarly to the state-of-the-art algorithms on the data sets from 
(Lopez-Molina et al., 2015; Vidal-Diez de Ulzurrun et al., 2019), without 

Fig. 12. Examples of situations too complex for the algorithm.  

Fig. 13. Example of morphological graphs: original version (i.e., with no overlaps) (a), and modified version (i.e., with overlaps) (b).  

Table 6 
Difference in number of branch nodes in the morphological graphs without (Ng) 
and with (N) overlaps.  

Image Ng N r 

#1 218 186 0.15 
#2 181 134 0.26 
#3 88 75 0.15 
#4 80 67 0.16 
#5 80 58 0.28 
#6 185 148 0.2  

Fig. 14. Comparison of the resulting edge lengths in the two types of morphological graphs.  
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additional filtration (aside from border removal). An F1-score and MMC 
of 0.89 on fungal images in (Lopez-Molina et al., 2015; Wang et al., 
2019), and an average F1-score of 0.92 and MMC of 0.93 were reported 
in (Vidal-Diez de Ulzurrun et al., 2019). These results suggest that the 
detection performance of our method is slightly better than plain SOAGK 
and slightly worse than normalized adaptive SOAGK. However, the 
difference is not large enough for a decisive judgment, especially since 
the error occurring in the human annotation is not considered. 

In Vidal-Diez de Ulzurrun et al. (2019), two parameters, the binar-
ization thresholds τ1 and τ2, had to be tuned, and in Wang et al. (2019) 
the parameter κ, used for adjusting the threshold, was fine-tuned. On the 
contrary, with our technique, the only parameters needed to be tuned 
are directly related to the scale of the objects of interest, making the 
tuning more intuitive for our specific application. A future perspective is 
to find an ideal relation between these parameters and the image scale 
(automatically estimated from (2.2)) and the species (usually known) to 
obtain a fully automated procedure. In this study, this is not addressed 
due to the lack of diverse images with known scales. 

Although an exhaustive study of the algorithm’s performance in 
ridge detection benchmarks was not conducted, the results suggest that 
the proposed detection algorithm performs on par with the state-of-the- 

art algorithms on fungal images with a more intuitive parameterization 
for the considered application. Differently, the images from (Cardini 
et al., 2020) are much dirtier, and to obtain a satisfactory length esti-
mate, applying additional filtering is therefore required. The detection 
algorithm is not specific enough to discard uninteresting objects with 
color and geometry similar to those of interest. Thus, for the data set 
deriving from (Cardini et al., 2020), it is necessary to apply an ad-hoc 
criterion for removing such objects. Nevertheless, the results suggest 
that if the sample is sufficiently clean, the proposed method can replace 
manual measurements of mycelium length. 

Future perspectives for a more versatile removal of these compo-
nents might include adding a user interface for easily marking desired 
components or the development of a more specific detector. Deep 
learning is a paradigm that has been shown to outperform other methods 
in several domains. Indeed, (Xu et al., 2021) developed a Convolutional 
Neural Network-based segmentation model and compared its perfor-
mance against other methods, including the PCT method developed in 
(Obara et al., 2012), finding a substantial improvement. 

Fig. 15. Qualitative results. a) Maps the local mycelium density around different points on the pixel level. b) Length histogram of the segmented filaments in (c). c) 
Filaments are colored based on their ridge prominence (i.e., steerable ridge filter output). d) Graph representation of (c) with the same color coding. Edges imply that 
the filaments are connected, and node size depends on node degree (the larger the node, the higher the connectivity). 
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4.2. Filament separation 

This paper introduces a novel method to identify filaments crossing 
each other automatically. We first analyze each branch point and extract 
the branch point’s arms to remove false positive branch points and to 
obtain a local approximation of the arms’ geometry and prominence. 
Then, the following is done: a) a morphological graph representation is 
created, b) the main filament and branching filament are identified, and 
c) the branch points, likely to constitute a crossing based on their po-
sition and local geometry, are matched together. This two-step proced-
ure allows new representations of mycelium samples, reducing the 
connectivity overestimation reported in previous works (Aguilar-Tri-
gueros et al., 2022). Without considering this matching, the case re-
ported in Table 3 would be the same as shown in Table 7, implying that 
naively extracting the morphological graph would, in this case, over-
estimate the connectivity by 38% instead of 20%. On the contrary, the 
overestimation with crossing detection would be <1% if the errors 
related to detection error are disregarded, whereas otherwise, it would 
be equal to 19%. 

It is worth mentioning that edge crossings in the image sets analyzed 
in (Aguilar-Trigueros et al., 2022; Lasser and Katifori, 2017; Lopez- 
Molina et al., 2015; Vidal-Diez de Ulzurrun et al., 2019) were rare, so the 
added value of a fully automatic identification procedure of such edges 
is limited. Instead, in the images of R. irregularis from Cardini et al. 
(2020), the frequency of such edges was higher. In the first manually 
annotated sample, we found 160 branches and 20 crossings (89% 
branches, 11% crossings), and in the second image, we found 65 
branches and 20 crossings (76% branches and 24% crossings). Although 
not perfect, the identification of crossing can improve the interpretation 
of the mycelium network structure in 2D mycelium images. The results 
presented in Section 2.4.5 suggest an average reduction in connectivity 
of 20% between the conventional morphological graph and the 
morphological graph with overlaps. This outcome is consistent with the 
estimate proposed in (Dikec et al., 2020), who estimated that around 
20% of the branch nodes not real biological nodes. 

The approach is not scale-invariant, and it is crucial that, for each 
structure, there is a sufficient number of pixels for estimating local ge-
ometries and ridge prominence. The scale range in which the algorithm 
may work well was not investigated. However, a scale at which the side 
of a pixel corresponded to 1.1 μm worked well for samples of 
R. irregularis with a nominal hyphal width of 7.4–19 μm (University of 
Kansas, 2023). 

The matching algorithm gives some errors typically when a) the 
overlapping filaments have similar prominence and b) when filament 
crossings coincide with branching/anastomosis. In the first case, the 
performance may be improved by utilizing more information about the 
filaments, which could be obtained by, e.g., considering the grayscale or 
ridge values of the filament in the BP’s neighborhood derived through 
the width estimation procedure proposed in (Obara et al., 2012). In the 
second case, there are some possible performance improvements to 
consider. For instance, in the examples shown in Figs. (12b) and (12c), 
the error might be solved by removing the condition of mutual closeness 
and permitting to match BPs separated by one or more other BPs. A more 
robust assessment of arm similarity needs to be performed to remove 
this condition, possibly demanding the extraction of more arm features. 
Indeed, there is a vast range of potentially complex situations, and 

guaranteeing the correct assessment of overlapping structures in 2D is 
challenging. Currently, the tool shows higher performances for samples 
that are not too dense. However, defining a threshold density is difficult 
since, for instance, in the densest areas of Image 1 (Fig. 15a), there are 
no apparent errors, while in other parts there are, suggesting that 
challenging conditions occur randomly rather than at a certain density. 
Furthermore, it is important that most of the colony is within the image: 
for instance, in Fig. 15c, the red filament on the right-hand side is not 
divided since it goes very close to the border of the image and, therefore, 
it appears to be connected to some filaments far from it, as shown in 
Fig. 15d. Strategies previously proposed by other authors might poten-
tially improve performance. For instance, Lasser and Katifori (2017) 
provided a GUI for manually fixing the errors. Given such an interface 
and the computed branch angle and difference in ridge prominence, the 
user might be directed towards where the algorithm is less confident and 
improve the procedure. As proposed in (Dikec et al., 2020; Zhang et al., 
2019), tracking the filaments’ growth from an early stage may facilitate 
keeping them apart and indicate with a higher degree of certainty that 
the filaments are actually separate. Tracking the filaments’ growth over 
time may also be a way to enable automated differentiation between 
branch points and anastomosis points. However, this does require 
multiple time image acquisitions and, consequently, an increased 
experimental effort. 

As mentioned in Section 4.1, performances may be improved by 
exploiting machine learning. Specifically, (Guo et al., 2021) extracted 
spherical patches around points of interest in the 3D volumetric images 
and used a deep learning-based model to classify the point of interest: if 
the point of interest was a cross-over point/overlap, the incoming fila-
ments were separated. With respect to the approach proposed in (Guo 
et al., 2021), our approach is similar for hierarchically starting by 
creating an overview and then locally analyzing the points of interest. 
Meanwhile, (Guo et al., 2021) analyzes all potential points of interest by 
considering a patch with a fixed radius, which may be advantageous in 
3D thanks to the volumetric information. We locally analyze the points 
of interest considering their respective filament angles in order to be 
able to identify overlaps with geometrical branch points far from each 
other (i.e., very acute intersection angle) in two dimensions. 

5. Conclusions 

This paper presents a highly automated analysis tool for mycelium 
network characterization. Specifically, we present a filament detection 
algorithm based on the ridge skeletonization method that also solves the 
problem of identifying and handling overlapping filaments in a 2D 
representation of a 3D object. The approach combines steerable filtering 
with first-order local adaptive thresholding. It processes the images in 
six steps: automated scale estimation, mycelium detection, branch point 
assessment, building of the morphological graph, identification of 
crossing pairs, and rebuilding of the filament graph representation. 
Crossings of overlapping filaments are identified by assessing the local 
geometry and ridge prominence around each branch point in the skel-
eton representation of the filamentous structure. We tested our algo-
rithm on manually annotated real images of filamentous fungi. We show 
that 1) our tool can be used to measure the length of mycelium in an 
image, and the result concords moderately with those obtained through 
manual tracing (Section 4.1), 2) filament detection is on par with the 
state of the art techniques in terms of precision and recall as discussed in 
Section 4.1, and 3) the identification and handing of overlapping fila-
ments perform well for simple crossings as detailed in Section 4.2. These 
results suggest that the proposed method can provide a more accurate 
representation of the filament structure of mycorrhizal fungi and facil-
itate the analysis in laboratory conditions for a better characterization of 
complex fungal networks. 

Table 7 
Identification of branches and crossing, without the matching algorithm.   

True 
Positive 

False 
Positive 

False 
Negative 

Precision Recall F1 

Branches 
img #1 

155 59 4 0.72 0.97 0.83 

Crossings 
img #1 

3 0 17 1 0.15 0.26  

O. Sten et al.                                                                                                                                                                                                                                     



Ecological Informatics 82 (2024) 102670

16

CRediT authorship contribution statement 

Oscar Sten: Writing – original draft, Visualization, Validation, 
Software, Methodology, Investigation, Formal analysis, Data curation. 
Emanuela Del Dottore: Writing – original draft, Supervision, Method-
ology, Conceptualization. Nicola Pugno: Writing – original draft, Su-
pervision. Barbara Mazzolai: Writing – original draft, Supervision, 
Resources, Funding acquisition, Conceptualization. 

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 

Barbara Mazzolai reports financial support was provided by Euro-
pean Research Council. If there are other authors, they declare that they 
have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 

Data availability 

Source code and all data required to reproduce the presented results 
are available at: https://gitlab.iit.it/oscar.sten/mycelium-network- 
analysis-tool 

Acknowledgments 

This work has received funding from the European Research Council 
(ERC) under the European Union’s Horizon 2020 Research and Inno-
vation Programme Grant Agreement No. 101003304 (I-Wood). The 
authors would like to thank Guillermo Vidal-Diez de Ulzurrun for 
providing us with additional test data. 

References 

Aguilar-Trigueros, C.A., Boddy, L., Rillig, M.C., Fricker, M.D., Jan. 2022. Network traits 
predict ecological strategies in fungi. ISME Commun. 2 (1), 2. URL https://www. 
nature.com/articles/s43705-021-00085-1.  

Alaux, P., Zhang, Y., Gilbert, L., Johnson, D., Sep. 2021. Can common mycorrhizal fungal 
networks be managed to enhance ecosystem functionality? PLANTS, PEOPLE, 
PLANET 3 (5), 433–444. URL https://onlinelibrary.wiley. 
com/doi/10.1002/ppp3.10178. https://doi.org/10.1002/ppp3.10178. 

Avio, L., Pellegrino, E., Bonari, E., Giovannetti, M., Oct. 2006. Functional diversity of 
arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. 
New Phytol. 172 (2), 347–357. URL https://onlinelibrary.wiley.com/doi/10.1111/ 
j.1469-8137.2006.01839.x.  

Babikova, Z., Gilbert, L., Bruce, T.J.A., Birkett, M., Caulfield, J.C., Woodcock, C., 
Pickett, J.A., Johnson, D., Jul. 2013. Underground signals carried through common 
mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16 (7), 
835–843. URL https://onlinelibrary.wiley.com/doi/10.1111/ele.12115.  

Babikova, Z., Johnson, D., Bruce, T., Pickett, J., Gilbert, L., Jan. 2014. Underground 
allies: how and why do mycelial networks help plants defend themselves?: what are 
the fitness, regulatory, and practical implications of defence-related signaling 
between plants via common mycelial networks? BioEssays 36 (1), 21–26. URL 
https://onlinelibrary.wiley.com/doi/10.1002/bies.201300092.  

Barry, D.J., Chan, C., Williams, G.A., Jun. 2009. Morphological quantification of 
filamentous fungal development using membrane immobilization and automatic 
image analysis. J. Ind. Microbiol. Biotechnol. 36 (6), 787–800. URL https:// 
academic.oup.com/jimb/article/36/6/787/5993586.  

Barry, D.J., Williams, G.A., Chan, C., May 2015. Automated analysis of filamentous 
microbial morphology with AnaMorf. Biotechnol. Prog. 31 (3), 849–852. URL 
https://onlinelibrary.wiley.com/doi/10.1002/btpr.2087.  

Bonfante, P., Genre, A., Jul. 2010. Mechanisms underlying beneficial plant–fungus 
interactions in mycorrhizal symbiosis. Nat. Commun. 1 (1), 48. URL https://www. 
nature.com/articles/ncomms1046. https://doi.org/10.1038/ncomms1046. 

Bradley, D., Roth, G., Jan. 2007. Adaptive thresholding using the integral image. 
J. Graphics Tools 12 (2), 13–21. URL https://www.tandfonline.com/doi/full/ 
10.1080/2151237X.2007.10129236.  

Brunk, M., Sputh, S., Doose, S., van de Linde, S., Terpitz, U., Dec. 2018. HyphaTracker: 
an ImageJ toolbox for time-resolved analysis of spore germination in filamentous 
fungi. Sci. Rep. 8 (1), 605. URL http://www.nature.com/articles/s41598-017- 
19103-1, doi:10.1038/836 s41598-017-19103-1.  

Cardini, A., Pellegrino, E., Del Dottore, E., Gamper, H.A., Mazzolai, B., Ercoli, L., May 
2020. HyLength: a semi-automated digital image analysis tool for measuring the 
length of roots and fungal hyphae of dense mycelia. Mycorrhiza 30 (2–3), 229–242. 
URL https://link.springer.com/10.1007/s00572-020-00956-w.  

Chen, W., Liu, M., Zhan, Q., Tan, Y., Meijering, E., Radojevic, M., Wang, Y., Feb. 2021. 
Spherical-patches extraction for deep-learning-based critical points detection in 3D 
neuron microscopy images. IEEE Trans. Med. Imaging 40 (2), 527–538. URL https:// 
ieeexplore.ieee.org/document/9224681/.  

De Ligne, L., Vidal-Diez de Ulzurrun, G., Baetens, J.M., Van den Bulcke, J., Van Acker, J., 
De Baets, B., Dec. 2019. Analysis of spatio-temporal fungal growth dynamics under 
different environmental conditions. IMA Fungus 10 (1), 7. URL https://IMAFungus. 
biomedcentral.com/articles/10.1186/s43008-019-0009-3.  

Dikec, J., Olivier, A., Bobée, C., D’Angelo, Y., Catellier, R., David, P., Filaine, F., 
Herbert, S., Lalanne, C., Lalucque, H., Monasse, L., Rieu, M., Ruprich-Robert, G., 
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