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ABSTRACT
Bioinspiration has widely been demonstrated to be a powerful approach for the design of innovative structures and devices. Recently, this
concept has been extended to the field of elasticity, dynamics, and metamaterials. In this paper, we propose a seashell-inspired metasensor
that can simultaneously perform spatial frequency mapping and act as a polarizer. The structure emerges from a universal parametric design
that encompasses diverse spiral geometries with varying circular cross sections and curvature radii, all leading to tonotopic behavior. Adoption
of an optimization process leads to a planar geometry that enables us to simultaneously achieve tonotopy for orthogonally polarized modes,
leading to the possibility to control polarization as well as the spatial distribution of frequency maxima along the spiral axis. We demonstrate
the versatility of the device and discuss the possible applications in the field of acoustics and sensing.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0201722

I. INTRODUCTION

It is widely accepted that over millions of years of evolution,
nature has generated a wide variety of biological systems exhibiting
exceptional mechanical, optical, and thermal properties.1–5 Man has,
therefore, regarded these systems with great interest, investigating
their fundamental working principles also in view of the realization
of novel materials and devices in many different fields.6 From the
point of view of biological and bioinspired materials, most studies in
the literature are related to the investigation of static or quasi-static
properties.7 There are, however, several studies addressing different
relevant dynamical frequency-dependent features.8–11

Seashells have extensively been studied due to their hierar-
chical microstructure and the related quasi-static properties12,13

designed to ensure mechanical protection from impacts and preda-
tor attacks.14,15 Recently, the mechanical properties of the Tur-
ritella terebra and Turritellinella tricarinata seashells have also been
addressed and characterized from the dynamical point of view,11

showing that the overall shell structure and its shape may also play a
role in impact attenuation and vibration damping.

Many different seashell structures share common geometri-
cal traits and can be described by similar parametric equations,16,17

yielding, for instance, both planospiral and conispiral structures
with the tuning of a few key parameters. The variable cross section
of shells, which may feature an elliptical shape, defines their struc-
ture by describing a logarithmic spiral central line. While doing so,
the cross section reduces in size and, in some cases, can also dis-
place along the axis of the shell, giving rise to a conispiral shape, as
it is the case of the Turritella [Figs. 1(a)–1(c)]. To obtain the real
shell structure through these approximating mathematical models,
internal intersections should also be removed, following, for exam-
ple, the procedure reported in Ref. 17. In this work, the authors
used a numerical method to find and remove the self-intersecting
regions and finally to re-mesh the regions associated with the sutures
of the previously intersecting parts. The same type of logarith-
mic spiraling central line and grading of geometrical properties
is also present in other natural systems, such as the mammalian
cochlea,18,19 which exhibits a tonotopic behavior, i.e., presents a
structure that enables the detection of exciting sound waves based
on their frequency content due to specific regions that convert sound
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FIG. 1. (a) Central line defining the spatial evolution of the shell-like surface along the z axis, (b) Turritellinella tricarinata, (c) Turritella-like surface, (d) Pomacea diffusa
(adapted from Ref. 29), and (e) the associated surface. (f) and (g) Same as for (e) and (f), but for the Spirula spirula shell.

energy into neural impulses, depending on the different locations
of excitation.20,21 Therefore, tonotopy allows different frequencies
of input signals to be univocally spatially mapped at different loca-
tions on the cochlea basilar membrane, stimulating the appropriate
motion receptor cells.22 This behavior can be mimicked by metama-
terials using locally resonant structures.23–25 Although the frequency
range associated with local resonance is generally small, graded res-
onators can be coupled to considerably extend the frequency range
by creating a rainbow effect.26,27 Interesting tonotopic features can
also be obtained in a solid structure with continuously varying geo-
metrical properties as done by Dal Poggetto et al.,28 where the
tonotopic effect is achieved without the use of locally resonant struc-
tures. In this case, the tonotopic effect was observed only in the
out-of-plane displacements of the structure due to the mainly flexu-
ral nature of the vibration modes. Here, we report on the design of
a seashell-inspired resonator with a circular cross section exhibit-
ing a tonotopic effect along two different polarization directions:
one along the z-axis of the spiral and the second in the coiling
plane, perpendicular to the z-axis. The choice of a circular hollow
cross section instead of a plate-like one is due to the similar res-
onant frequencies in the transverse and in-plane directions related
to similar moments of inertia along perpendicular axes in the cross
section. Conversely, in the plate-like case, the moments of inertia
with respect to the axes of the cross section are considerably different
concerning out-of-plane and in-plane vibration modes. Exploiting
this design, the device displays not only tonotopy but also sensitivity
to the polarization of input or output pulse signals.

II. METASENSOR DESIGN AND MODAL
CHARACTERIZATION
A. Surface parameterization

Similarly to what has been shown in Refs. 16 and 17, several
different shell structures can be generated with the same formula,
as shown in Fig. 1. The parametric expression for the central line,

shown in Fig. 1(a), which describes the 3D surface whose radius of
the cross section r(θ) varies as a function of the curvilinear angle θ,
can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

x = R0 cos θ exp(kR
θ

θmax
),

y = R0 sin θ exp(kR
θ

θmax
),

z = Raθ exp(ka
θ

θmax
),

(1)

where θmax = 2π ⋅ nT , in which nT is the number of turns. R0
is the initial curvature radius, and kR is the reduction factor
of the curvature radius, that is, R(θ) = R0 exp (kR

θ
θmax
). Finally,

Ap1 = Ra2π exp ( ka
nT
) is the axial pitch of the first turn, i.e., the

rate of change of the z coordinate with increasing θ. The pitch
decreases with increasing θ by means of the reduction factor ka.
The cross section of the seashell, centered around the central line,
is usually described by an ellipse or a similar numerically gen-
erated curve. Figures 1(c), 1(e), and 1(g) show some examples
of different shell species that can be generated, following Faghih
Shojaei et al.17

B. Modal analysis of different shell-inspired structures
In the following, we will consider three distinct shell-inspired

structures that will mainly feature a different axial pitch, as shown in
Fig. 2(a): a Turritella-like structure, with the largest pitch, an inter-
mediate one and, finally, a structure with zero axial pitch i.e., purely
planar, similar to the S. spirula shell. Different Boundary Condi-
tions (BCs), fixed or free, can be considered for the bottom cross
section and for the apex. For simplicity, the cross section is taken
as circular and is expressed as r(θ) = rg exp (kb

θ
θmax
), where rg is

the initial radius of the cross section, which also reduces as a func-
tion of the curvilinear angle via the reduction factor kb. Moreover,
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FIG. 2. (a) The three analyzed structures with an example, in the lower right part of the figure, of the geometrical locations used for calculating the displacements, indicated
with red symbols. (b) Eigenfrequency study of the Turritella-like structure with fixed–free boundary conditions, that is, the base is fixed and the apex is free. The color map
represents the displacements U(ωi , θ j), and the yellow symbols represent the maximum U for that eigenmode. (c) Same as in (b) but with fixed–fixed BCs. (d) The axial
pitch is reduced, and BCs are fixed–fixed.

we will also avoid intersections between different turns. This condi-
tion is achieved by imposing a minimum distance between the inner
surface of a turn and the outer surface of the successive one. The
vibrational modes of the structure are derived by Finite Element
Analysis (FEA) by considering the surface as a structural shell ele-
ment with both displacement and rotational degrees of freedom. The
thickness is given by rg

kth
, where kth is a constant factor that we usually

choose equal to 10 or 15. The FEA is performed using the Shell inter-
face of the Structural Mechanics module in COMSOL Multiphysics,
and more details are reported in the Appendix.

The mechanical properties of the material are chosen as those of
a standard polymer used in 3D printing, for instance, Solflex SF650
(W2P Engineering GmbH), with Young’s modulus E = 2.5 GPa,
density ρ = 1150 kg/m3, and Poisson’s ratio ν = 0.33. This is in
view of a future experimental implementation, which will rely on
3D printing as the most likely fabrication technique. An eigen-
frequency study was performed, and, for every eigenfrequency,
ωi, and the value of the curvilinear angle, θj, the average of the
absolute displacements was computed with respect to 10 points

along the cross section, U(ωi, θ j) =
∑

n
k=1 ∣uk(ωi ,θ j)∣

n with n = 10, and
normalized to the maximum average obtained for all the curvi-
linear angles at that eigenfrequency, max[Ū(ωi, θ)], finally giving

U(ωi, θ j) =
U(ωi ,θ j)

max[U(ωi ,θ)]
. The bottom right picture of Fig. 2(a) shows

the location of these points as red symbols along the cross section
of a portion of the planar structure, for four different values of the
curvilinear angle, θ.

Figures 2(b) and 2(c) show the results for the Turritella-like
structure with the fixed–free and fixed–fixed BCs for the bottom and
the apex, respectively. More information on the BCs is reported in
the Appendix. The abscissas are the normalized curvilinear angle
θ = θ/θmax, and the ordinates are the normalized logarithmic fre-

quency ω =
ln ( ωi

ωmin
)

ln ( ωmax
ωmin
)

, where ωi is the angular frequency of the

ith eigenmode and ω = 2πf . We chose f min = 100 Hz and f max
= 10 kHz. A maximum number of 100 eigenmodes are considered
in the simulations, although considerably fewer occur in the cho-
sen frequency range for the investigated structures. The color map
represents the absolute displacements U(ωi, θ j), while the yellow
symbols correspond to the maxima for the corresponding eigen-
modes in the (ω, θ) plane. As discussed in Liu et al.,11 the energy
concentrates at the apex, i.e., close to θ = 1, possibly to protect the
organism living inside the seashell against impacts. This can be seen
in a more detailed way in the fixed–free configuration shown in
Fig. 2(b), where the maximum displacement is concentrated at the
apex for most of the eigenmodes. At the same time, one family of
eigenmodes shows a linear trend on the semi-logarithmic scale of
the plot, which is reminiscent of the tonotopic behavior observed
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in the mammalian cochlea or in cochlea-inspired devices,28 where
there is an approximately linear correlation between frequency and
curvilinear angle. If we now change the BCs to fixed–fixed [Fig. 2(c)],
we notice an enhancement of this behavior, where several modes are
now distributed linearly in the (ω, θ) plane. As it will be discussed
later in more detail in Fig. 3 for another structure, by looking at
the modal shapes of these eigenmodes, it is possible to notice that
almost all the modes above the dashed line are predominantly polar-
ized along the z-axis, while those below the line are dominant in
the xy plane (not shown in this figure). The black dashed line repre-
sents an ideal tonotopic behavior described by the ω = θ line, while
the isolated maxima in the left part of the graph are circumferen-
tial modes. An example of this type of modes is shown in Fig. 3
for a different structure. By keeping the same BCs but reducing
the axial pitch along z so that the structure is “flattened,” we can
now observe in Fig. 2(d) that the tonotopic behavior is improved
because there are fewer parallel linear branches. Figure 3 illustrates
the case when the axial pitch is reduced to zero, i.e., the structure is
planospiral: the same type of behavior occurs, with the maxima dis-
tributed along two almost parallel lines, and, in the top left corner,
it is possible to notice the presence of some circumferential modes.
For this structure, the different BCs, fixed–fixed or fixed–free, do
not give rise to considerable differences in the tonotopic behav-
ior, apart from the fact the latter BCs give rise to the presence
of a larger number of eigenmodes in a linear trend, as shown
in Fig. 3.

It is also possible to analyze the modal shapes of the differ-
ent eigenmodes. The upper left figure shows the modal shape of
a circumferential mode (indicated as “C”). This can be seen by
the deformation of the cross section at various positions along the
structure. It is worth recalling here that the initial part of the struc-
ture (larger radius of the cross section) is fixed. We can distinguish
two other types of modes in this structure: One is characterized by
displacements mainly parallel to the z axis, and the other is charac-
terized by displacements that are dominant in the coiling plane. By
taking as a reference the z axis, we will call parallel (∥) the first type
and perpendicular (�) the second type.

Figure 3 shows two modal shapes for each of these two fami-
lies, as indicated by the corresponding labels. The different vibration
direction for the two different cases is clear. If we call u, v, w the
components of the displacement along the x, y, and z axes, respec-
tively, it is then possible, according to the previous discussion, to
calculate the parallel and perpendicular displacements. While the
displacement along z is simply u∥ = w, the perpendicular one can be

regarded as u� =
√

u2
+ v2. Then, similarly to what has been done

in the case of the total displacement, it is possible to calculate the
normalized displacements U∥(ωi, θ j) and U�(ωi, θ j) and make the
same considerations as in the case of the eigenfrequency study for
the total displacement. It is possible to see that all modes display a
dominant vibration either along the z-axis or in the coiling plane.
The absolute displacements for the three different types of eigen-
modes are displayed in Fig. 3 with three different dedicated color

FIG. 3. Eigenfrequency study of the structure when the axial pitch is reduced to zero, i.e., the structure is planospiral, and the BCs are fixed–free. Main panel: color
bars represent the normalized displacements as a function of the curvilinear angle and eigenfrequency. The different color maps represent the different types of modes,
circumferential, predominantly axial, or predominantly planar. The blue diamonds and red squares represent the maximum axial and planar displacements, respectively, while
the circles refer to circumferential modes. The black dashed line represents the ideal tonotopic line. The other sketches report some examples of modal shapes for the three
types of modes. The red arrows represent the displacement vector.
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maps, where the corresponding maxima are represented as blue dia-
monds and red squares for the parallel and perpendicular modes,
respectively. Maxima related to circumferential modes are indicated
by empty circles. Interestingly, both axial and planar modes partially
follow a tonotopic trend. Thus, a distance di in the (θ, ω) plane from
a given maximum displacement and the desired ideal tonotopic line
can be defined, as shown by the black dashed lines.

III. OPTIMIZATION AND SENSING APPLICATIONS
A. Optimization

The geometrical parameters describing the structure featuring
the behavior shown in Fig. 3 can be optimized to achieve the behav-
ior indicated by the ω = θ line. The procedure can be performed
by optimizing at the same time the displacements along the two
directions by minimizing the sum of the distances di from the ω
= θ line, in a similar way as done in Ref. 28, where the focus was
on one type of excitation only. A metric function Γ is defined as Γ

=
∑

n
i d2

i
n , where n is the number of considered eigenmodes. Since the

structure is planar, ka = 0. Furthermore, to make all the structures
comparable, we fix the number of turns to nT = 3 and the mass (or,
equivalently, the volume) of the structure to be optimized. Finally,
to avoid intersections that would considerably modify the vibra-
tional behavior of the structure, we add an additional constraint that
sets the minimum distance between two successive turns to Δmin

R
= 10−4 m. Thus, the parameters to be optimized are only the two
reduction factors, kR for the curvature radius, R(θ), and kb for the
radius of the cross section, r(θ). Another constraint is applied to
kb to avoid that the radius of the cross section at the end of the
structure, r(θ = 2πnT), becomes smaller than the thickness of the
structure. The procedure is implemented by using a MATLAB
sequential quadratic programming algorithm to solve the con-
strained optimization problem. Figure 4(a) shows a more detailed
diagram of the steps followed in the optimization process.

The parameters of the optimized structure, shown in Fig. 5(a),
are kR,opt = −2.97 and kb,opt = −2.57. Then, to avoid intersections

FIG. 4. (a) Flow chart illustrating the steps followed to optimize the tonotopic structure. (b) Color plot representing the normalized displacements as a function of the curvilinear
angle and eigenfrequency for the optimized structure. The three types of modes, predominantly axial, predominantly planar, and circumferential, are represented by different
color maps. The blue diamonds and red squares represent the maximum axial and perpendicular displacements, respectively, and the circles indicate circumferential modes.
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FIG. 5. Time-domain simulations: (a) optimized structure and loading configuration with variable input polarization angle, φ. The arrow represents a polarization angle φ
= 45○. (b) Gaussian-modulated input time-domain signal used for the simulations, and (c) corresponding frequency content. (d) Normalized maximum axial displacement,
U∥, as a function of the normalized curvilinear angle for input signals at different frequencies. (e) Same as (d) but for the planar displacement, U�.

between different turns and to maintain the volume fixed, we also
obtain rg,opt = 6.9 × 10−3 m and R0,opt = 2.9 × 10−2 m. Figure 4(b)
shows the result of the optimization process, which maximizes the
tonotopy along both the axial and perpendicular directions at the
same time. It is possible to notice that the maximum displacement
of the axial and perpendicular modes follows a tonotopic trend for
almost two decades for both types of excitations, displayed with two
different color maps.

B. Tonotopy and sensitivity to polarization
We now focus on evaluating the possibility of exploiting the

tonotopic properties of the designed structures for vibration sens-
ing applications. This can be verified by means of time-domain
simulations, which can reproduce configurations close to future
experimental conditions. These are performed on the optimized
structure previously obtained, described by the tonotopic profile
shown in Fig. 4(b). First, it is necessary to demonstrate that the
frequency of a given signal can be determined by observing the
curvilinear angle of the maximum displacement and, from that, to
check that the predicted frequency matches with the one emerging
from propagation simulations.

For the time-domain simulations, a short segment of a straight
hollow cylinder of the same material as the resonator and with the
same radius and thickness as the initial cross section, i.e., at θ = 0,

is attached to the device, as highlighted in red in Fig. 5(a). The edge
of the other end is fixed, to reproduce the boundary conditions used
in the optimization process. The input signal is then applied on the
whole surface of the attachment. An input polarization angle, φ, can
be defined with respect to the xz plane of Fig. 5(a): φ = 0 refers to an
input signal parallel to x, while φ = 90○ parallel to the z-axis. In the
simulations, the input polarization angle is initially set to φ = 45○.
The input signal is a Gaussian-modulated sine wave, and the width
of the Gaussian window is 10 sine periods. The total duration of the
input is 20 periods of the sine wave. Panels (b) and (c) of Fig. 5 show
the time-domain signal and the corresponding spectrum in terms
of fundamental period and frequency, respectively. More technical
details regarding the FEA in the time domain are reported in the
Appendix.

Four different central frequencies for the pulse are tested,
namely f1 = 1 kHz, f2 = 2 kHz, f3 = 3.5 kHz, and f4 = 5 kHz. For
each of the two selected directions of displacement, axial and per-
pendicular, and for each value of the curvilinear angle θ, the maxi-
mum of the signal recorded in time is plotted in Figs. 5(d) and 5(e),
respectively. The signals are usually measured in 50 θ points either
along a line tangent to the outer surface of the structure and lying in
the xy plane [see in Fig. 5(a)] or on the line tangent to the top of the
surface. For each frequency, a clear peak emerges for the recorded
signal at a precise curvilinear angle, confirming the expected
tonotopic behavior. The reported curves are normalized to the
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overall maximum of each signal, which also identifies the relevant
normalized curvilinear angle θ associated with the input frequency.
Notice that the width of the maxima is narrower in the case of z-
polarized signals, indicating a polarization direction along which
measurements provide greater precision. These results are summa-
rized in Fig. 6(a), to highlight the overall behavior. The symbols used
in Fig. 6(a) correspond to the curvilinear angle of the signal max-
imum at the corresponding frequency, as determined in Figs. 5(d)
and 5(e), while the blue and red lines, which serve as a reference,
correspond to the lines connecting the maximum displacement of
the eigenmodes of the optimized structure that were previously dis-
played as symbols in Fig. 4(b) for the two different polarizations,
axial and planar. For the sake of clarity, the two lines have been
slightly smoothed. The symbols relative to time-domain simulations
are reported with error bars to quantify the angular uncertainty
due to the finite number of detection angles in simulations. The
results indicate excellent agreement between frequency domain and
time domain simulations. Furthermore, analysis of the time-domain
signals, which are indicative of potential measurements in an exper-
imental setting, allows the determination of the input frequency
with remarkable precision, by detecting the curvilinear angle of
maximum displacement.

The results also highlight the capability of the optimized device
to simultaneously sense two polarization directions. It is, therefore,
interesting to see whether by analyzing the vibration of the res-
onator, it is also possible to determine the polarization of the input
signal or, on the other hand, if it is possible, by suitably tuning
the input polarization and frequency, to obtain a desired polar-
ization output. Moreover, given the input signal polarization and
frequency, this would also allow us to estimate the full-field dis-
placements by measuring only a single displacement component.
Additional simulations are thus performed in the time domain by
varying the input signal polarization, φ, and by the analysis of the
detected output signal. Three different frequencies are tested, i.e., f1
= 1 kHz, f2 = 2 kHz, and f3 = 3.5 kHz, and seven different input sig-
nal polarization: φ = 0○, 15○, 30○, 45○, 60○, 75○, and 90○. The output
signals are detected in the same locations as for the φ = 45○ case,
shown in Fig. 6(a). Figure 6(b) shows the output polarization, i.e.,
the arctangent of the ratio of the axial displacements over the pla-
nar one UOut

∥
/UOut
� for the three selected frequencies. The results are

reported as a function of the input polarization, and the displace-
ments are measured at the tonotopic curvilinear angle related to the
corresponding frequency. The symbols represent the time-domain
results, obtained with the same procedure used for the φ = 45○ case

FIG. 6. (a) Blue and red lines: tonotopically optimized eigenmodes for the axial and planar displacements, respectively. Symbols: time-domain results at different frequencies
and for polarization φ = 45○. (b) Output polarization vs input polarization for different frequencies: The lines correspond to frequency domain simulations for 90 different
polarization angles, while the symbols correspond to time-domain analysis for seven different polarization angles. Black: 1 kHz. Red: 2 kHz. Blue: 3.5 kHz. (c) Output
polarization vs input polarization for some frequencies in the 1.8–2.2 kHz range, showing a strong polarization variation with the input frequency.

APL Mater. 12, 041104 (2024); doi: 10.1063/5.0201722 12, 041104-7

© Author(s) 2024

 08 April 2024 05:58:19

https://pubs.aip.org/aip/apm


APL Materials ARTICLE pubs.aip.org/aip/apm

and discussed above. The lines are the same quantity but obtained
with a frequency domain simulation as a function of 90 different
input angles. The agreement is remarkable, all the more since, to
accurately reproduce realistic experimental conditions, a Gaussian
pulse is adopted as an input signal with a rather wide frequency
spectrum, as seen in Fig. 5(c). Indeed, the device is excited with
multiple frequencies, but the dominant frequency is sufficient, in
frequency domain analysis, to estimate the input polarization direc-
tion. Thus, this type of analysis can reliably predict the response of
the device at different frequencies and different polarizations and
can be used, for example, as a reference to determine the polariza-
tion at any frequency. The localization of the curvilinear angle of the
maximum displacement, as explained above allows us to estimate
the input frequency, exploiting tonotopy. In addition, by measuring
output polarization, it is also possible to obtain a good estimation
of the input one. Furthermore, apart from the 3.5 kHz case, the
output polarization is different from the input one. This effect is
more evident, the more the behavior at a given frequency deviates
from the bisector line. If this effect can be controlled, the device
could be used as a polarizer, that is, any desired output polarization
can ideally be achieved, as a function of the input. As an example,
Fig. 6(c) shows that, in the 1.8–2.2 kHz range, a strong tuning of
the output polarization can be obtained as a function of the input
frequency for fixed input polarization. For an input signal polariza-
tion φ = 75○, the output one becomes φ = 84.5○ at 1.8 kHz and φ
= 7.8○ at 2.2 kHz, i.e., it passes from an almost axial polarization to a
planar one. As discussed in Sec. IV, this feature can be exploited in
applications, e.g., when multiple harmonic components are present
in an input signal, such as in Non-Destructive Testing (NDT)
techniques.30 These harmonics can appear due to the presence of
defects that give rise to nonlinearities. Polarization control can,
therefore, be used in conjunction with tonotopic spatial frequency
mapping to better discriminate their presence, despite their low
amplitude.

IV. DISCUSSION AND CONCLUSIONS
In this work, we have investigated the potentially non-trivial

dynamic properties emerging from bioinspired shell-like structures,
focusing on the intriguing characteristic of tonotopy that naturally
emerges in geometric structures where curvature and grading act
as distinctive elements. Specifically, we have focused on a three-
dimensional spiral structure that is symmetrical with respect to
the xy-plane, in which grading is introduced by varying the cross-
sectional shape and the curvature radius along the length of the
resonator. We have shown that this type of 3D geometry allows us
to simultaneously achieve tonotopic features on two types of modes,
with orthogonal polarization to each other, i.e., prevalently planar
or axial. We have described a geometrical optimization process that
allows us to achieve the most effective spatial distribution of vibra-
tional modes for both polarizations at the same time, resulting in a
planospiral metasensor with tonotopic properties both along the z-
axis and in the xy-plane. Both frequency-domain and time-domain
simulations employing realistic multifrequency pulsed signals have
highlighted the potential of the metasensor to not only spatially sep-
arate different frequencies, but also to control their polarization,
univocally determining the output vibration direction as a function
of the input one, or vice versa.

Given the bioinspired nature of the design, this might have
implications from a bio-evolutionary standpoint. The functionality
of the different shell designs discussed in this paper might thus be
linked to their impact resistance and elastic wave transmission prop-
erties. For example, it has been clearly shown for organisms such as
the mantis shrimp that microstructure directionality plays an impor-
tant role in deviating and damping impact energy to avoid fracture.31

It might also be that macrostructure is involved in this process, by
efficiently converting longitudinal vibrations to shear or vice versa
along the axis of the shell.

From a practical application standpoint, the considered struc-
ture can be exploited for signal analysis and advanced sensing of
elastic waves. In particular, this device acts as an elastic analog
of the optical prism, spatially separating the frequency content of
impinging propagating signals. Thus, its tonotopic nature can be
exploited for the optimization of the signal-to-noise ratio of spe-
cific frequencies by identifying points of maximal vibration for
the signal detection. This can be important in devices for speech
recognition32 or artificial cochlear implants,33,34 where the separa-
tion of time signals into different frequency-dependent channels
is a key point in achieving accurate and efficient processing of
auditory information. Another sector of potential interest is that
of Internet of Things (IoT), in which power consumption is of
paramount importance. A further possible application of the device
is in Non-Destructive Testing (NDT) sensors, where low-amplitude
higher harmonics emerging from defects/nonlinearities need to be
discriminated from fundamental frequencies.30 This can lead to a
more efficient analysis, circumventing the need for high-power pro-
cesses typical of conventional sensors. Integrating tonotopy into
a sensor design could thus be an original contribution to NDT
sensor technology for the monitoring of structural integrity. We
could consider, for instance, a scenario in which a smart sensor is
embedded in a structural member and functions as a low-power
real-time acoustic emission monitoring device. In general, it can be
used as a passive frequency separator for real-time analysis of the
harmonic content of a signal, working in a similar way to elastic
demultiplexers.35

Moreover, the distinctive feature of our device is the extension
of tonotopic properties onto two perpendicular planes. This charac-
teristic appears to be unique and is inherently linked to the tonotopic
structure, where energy is locally focused on different points across
the entire structure, depending on its frequency content. The first
advantage of such a structure, if employed as a tonotopic sensor,
is that it allows to determine full-field displacements by measur-
ing only a single polarization component. Other possible applica-
tions directly emerging from this work are a frequency-dependent
polarizer or an analyzer of input signal polarization. This can be
particularly useful in NDT, specifically in anisotropic materials such
as composites, where the acoustic radiation pattern is highly direc-
tional. Indeed, the capability of analyzing wave polarization could
be an additional feature that allows to distinguish between different
failure modes (e.g., cracks or delaminations), based on the coupled
analysis of both frequency36 and directionality.37 Another possible
application is in the field of speech recognition and signal process-
ing, with the prospect of creating an artificial cochlea. In particular,
the ability to distinguish different polarizations in the elastic exci-
tation of the proposed sensor could be exploited in conjunction
with MEMS directional microphones38 for the transduction of an
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acoustic signal into a mechanical one that also contains information
about the sound directionality.

In general, the adoption of a bioinspired approach in the devel-
opment of acoustic and elastic metamaterials and devices not only
enhances their performance, but also unlocks innovative design pos-
sibilities, paving the way for sustainable and efficient solutions in
diverse applications.
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APPENDIX: FINITE ELEMENT ANALYSIS DETAILS
1. Eigenfrequency study

Finite element simulations are performed on models consid-
ering structural shell elements, since the tonotopic effects mainly
depend on flexural modes. The representative matrix equation, in
this case, is

M
∂2u
∂t2 + C

∂u
∂t
+Ku = f (t),

where M is the mass matrix, C is the damping matrix, K is the
stiffness matrix, and f (t) is the external force. Both finite element
matrices and external force vectors are obtained through the usual
assembly processes considered in a finite element framework and
implemented in COMSOL Multiphysics.

Since in the considered modal analyses, the system vibrates
freely with no damping, the matrix equation reduces to

(−ω2M +K)ũeiωt
= 0,

where ω2 represents the resonance frequencies of interest and ũ
represents the vibration mode shape.

The eigenvalues of the previous equation can thus be found by
solving

det (−ω2M +K) = 0.

2. Boundary conditions
For the fixed BC, the displacement is set to zero, i.e., u = 0. The

fixed–fixed and fixed–free BCs correspond to uθ=0 = uθ=2π⋅nT = 0 and
uθ=0 = 0, respectively.

3. Time-domain simulations
The relationship between the mesh size and time step, deter-

mined by the Courant–Friedrichs–Lewy (CFL) condition,39 is used
for time-domain simulations. This is related to the Courant number,

CFL =
cΔt
h

,

where c is the wave velocity, Δt is the time step, and h is the mesh
element size. The time step for the simulations is determined as

Δt =
hmaxCFL

c
=

CFL
fmaxN

,

where hmax is the maximum element size and N represents the min-
imum number of mesh elements per wavelength (in principle, the
maximum element should be less than λmin/5, where λmin is the
minimum wavelength). With the default second-order, quadratic
discretization setting adopted in the shell interface in COMSOL, the
CFL number should be less than 0.2, and a value of 0.1 proves to be
nearly optimal. In our study, the CFL is, therefore, set as 0.1, N to 6,
so that Δt ≈ 1

60 fmax
.
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